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ABSTRACT
Several key economic scenarios involve agents having limited ca-
pacities whose types change with time, e.g., service workers at-
tending to service requests, power plants supplying to power grids,
and machines connected to computing grids. Dynamic mechanisms
have been proposed to address the issue of dynamic types. Also,
a few mechanisms have been proposed to account for limited ca-
pacities in static settings. However, no prior work considers hos-
tile agents having a preference for harming other competing agents
by making capacity over-reports. This paper proposes two novel
mechanisms that possess desired properties even when the agents
are hostile. First, we extend a static mechanism with capacity con-
straints with (1) a novel utility function that captures the preference
to harm others and (2) a marginal compensation penalty scheme
that minimizes the cost of capacity misreports. Next, we extend
such a mechanism to the case where both the unit cost and the ca-
pacity elements of agent types are dynamic. We show that both of
our mechanisms are ex-post incentive compatible, ex-post individ-
ually rational, and socially efficient.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence- Multiagent sys-
tems

General Terms
Economics, Design, Algorithms

Keywords
mechanism design, multi-agent systems, VCG, social welfare

1. INTRODUCTION
Mechanism design has been a key technique for decision making

in various economic scenarios. In most real economic scenarios,
agents’ have limited capacities, for instance, the supply capacity
of a power plant on a given day. Also, in many of the economic
scenarios of interest, both the cost and the capacity of the agents’
change with time, e.g., the cost and capacity of producing a good.
Most importantly, economic scenarios can be fiercely competitive
where one agent’s loss is another’s gain. We call such agents hostile
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because they may be willing to over-report capacities and dent the
allocations to their competitors, even though the over-report attracts
a fixed penalty in future.

In this paper, we consider hostile agents in both the static setting
as well as a dynamic setting in which the private types evolve over
time according to a Markov process. The hostility is captured via a
novel component in the utility function that increases linearly with
the allocation even at the cost of allocation to others. We first pro-
pose an enhanced static mechanism that adapts the transfer scheme
of [6] to deal with over-reported capacity. The novelty here is a
variable penalty scheme that penalizes an agent to the extent of
damage his misreport caused in the allocation caused to the other
agents. Next, we extend this idea for the domain that lies at the
intersection of the two scenarios – agents having limited capacities
and unit costs, both of which change with time.

We consider a procurement setting in which a single buyer at-
tempts to obtain D units of a good from a set of n sellers. Each
seller i is capacity-constrained, in the sense that they can produce
up to ci units at a constant unit price ui. The capacity and unit price
are private information. While a simple VCG-like transfer scheme
ensures truthful unit price reports from the individual agents, the
same is not true w.r.t. capacity type element (See Example 1).

Several mechanisms have been proposed to deal with the case of
limited capacity of agents in the static case, but we focus on the
work of [6]. In their work, the limited capacity of agents is ac-
commodated by ensuring that an agent is never allocated more than
its reported capacity and by imposing a fixed penalty of a positive
δ to ensure truthtelling w.r.t. the capacity type element. Here, if
an agent misreports its capacity, produces less units than allocated,
and is penalized as above, the agent would derive utility of −δ. In
a static setting, such a fixed penalty scheme is shown to be strate-
gyproof, i.e., truthful type reports is a dominant strategy for each
of the agents, see [6].

In spite of the fact that a fixed δ-penalty achieves strategyproof-
ness as shown by [6], in practical competitive scenarios, agents
could be willing to incur a loss of δ, if it is relatively small com-
pared to the major losses inflicted to other agents due to the over-
report. We incorporate the preference of agent to harm other agents
via capacity misreport through an additive term in the utility func-
tion that captures the agent’s allocation under the reported capacity.
Note that the reported capacity of an agent may be overstated, re-
sulting in an increased allocation at the cost of other agents. In this
modified utility setting, as we demonstrate via examples later, the
mechanism of [6] does not ensure truthful capacity reports. In other
words, a fixed δ-penalty does not deter capacity misreports by an
agent because the degree of losses inflicted on other agents via a
capacity misreport is a variable, which depends on the allocation
and hence the individual agents’ reported types.
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To address this issue, we present a static mechanism MC that
enhances the mechanism from [6], to incorporate a novel variable
penalty scheme. The penalty imposed on agents misreporting their
capacities is the same as the loss of allocation to other agents due
to misreported capacities. We formally show that MC is strate-
gyproof. In particular, we show thatMC ensures truthful capacity
reports from the individual agents in a setting where the agents have
a preference to overstate capacity and hence, negatively impact the
allocation of other agents.

Dynamic mechanism design is a key area, especially when the
center makes allocations to participating agents repeatedly. For ex-
ample, service workers employed by a service provider would typ-
ically attend to thousands of service requests during their employ-
ment period. Each service worker has a limited amount of time
(which keeps changing every day) and her estimate of the amount
of time required to resolve service requests also changes with skill
gain or decay. For an efficient allocation, i.e., for minimizing the to-
tal time required to resolve a set of service requests, it is not enough
for the provider to consider the current types of service workers but
also the future horizon. Significant results have been already estab-
lished in this area [2, 3, 5]. We focus on the work of Bergemann
and Valimaki (B&V) [2], that proposes a dynamic pivot mechanism
that is truthful, efficient, and individually rational. The optimal al-
location is computed as the expectation on the discounted sum of
valuations of each agent with his payoff computed based on his
marginal contribution. However, B&V’s mechanism considers a
setting where a common resource is allocated to an agent at every
time step and the agent’s capacities are not considered. Hence the
question of capacity misreports and the consequent need to penal-
ize misreporting agents does not arise in their work.

Unfortunately, capacity constraints are nontrivial to accommo-
date in the design of truthful and socially efficient dynamic mech-
anisms. The main challenge is that in a given time step, the payoff
to an agent cannot be determined until the time that the actual units
produced by an agent is known. If the allocation π to agent i to pro-
duce πi units is made at time t1 based on the expected discounted
sum of current and future valuations of all agents, and the actual
number of units c̄i produced by agent i is known at a later time
t2 > t1, then the payoff to agent i for the allocation π cannot be
made prior to t2 because it depends on c̄i. However, because the
valuations are discounted in the future, the marginal contribution
computed at t1 may not yield allocative efficiency at t2. This is
because, intuitively, a payment made at t1 is worth more than the
same payment at t2. The question then is what should the pay-
off to agent i be at time t2 for allocation π such that the resulting
mechanism is truthful in terms of unit costs as well as capacities
and is socially efficient? Note that this question does not arise for
B&V’s work because the payoffs can be made at t1, i.e., the time
of allocations.

To answer the above question, we develop a delayed transfer
scheme that consists of a marginal contribution component and a
penalty component. The marginal contribution component is sim-
ilar to the transfer scheme in the dynamic pivot mechanism [2].
However, we establish via a counterexample that providing the
marginal contribution alone is not sufficient to ensure incentive
compatibility of the mechanism. For this purpose, a penalty com-
ponent is necessary in the transfer to the agents. With this motiva-
tion, we propose DMC, the first dynamic mechanism to tackle ca-
pacity constraints. While DMC is an extension ofMC for the dy-
namic case, a key novelty of DMC is the delayed transfer scheme
where payoffs are adjusted based on the period elapsed since al-
location. We establish that DMC is allocatively efficient, within
period ex-post incentive compatible, and individually rational.

1.1 Literature review
For a survey of the core results to date in the area of dynamic

mechanism design, the reader is referred to [4]. The authors in [5]
present a dynamic mechanism without capacity constraints wherein
agents become unavailable for a period after the allocation is made
and the payoffs can only happen when the agents eventually be-
come available. The payoffs are adjusted upwards by compounding
the discount factor for all the time points during which the agent is
unavailable. In [1], the authors obtain a Bayes-Nash incentive com-
patible, efficient and budget-balanced mechanism for a persistent-
population, dynamic-type environment with private values and in-
dependent type transitions. While the works outlined above con-
sider interesting and realistic extensions to dynamic mechanism de-
sign, they do not consider capacity constraints and hence are com-
plementary to our work.

The rest of the paper is organized as follows: In Section 2, we
describe in detail the static setting and present a mechanism (MC)
that incorporates a variable penalty scheme. In Section 3, we present
the dynamic mechanism framework with capacity constraints and
develop an incentive compatible mechanism (DMC) in this frame-
work. Finally, in Section 4 we provide the concluding remarks.

2. STATIC MECHANISM
WITH CONSTRAINTS (MC)

2.1 The Setting
Consider a setting involving N agents (numbered 1, 2, . . . , N )

that are capable of performing certain manufacturing tasks. Note
that the results of this paper would apply to any domain where the
agents are allocated some work for the external customers. A cen-
tral controller receives a task of manufacturingD items of a certain
commodity. Each agent i is characterized by his type information
- a tuple (ui, ci), where ui is the unit price and ci is the maximum
capacity that agent i can provide. We assume here that the col-
lective capacity of the agents exceeds the demand D and further,
the same holds true even in the absence of an agent i, where i =
1, . . . , N . The type vector θ is given by θ = (θ1, . . . , θN ), where
θi = (ui, ci). We let θi ∈ Θi, where Θi denotes the type space of
agent i. The joint type Θ is then given by Θ = Θ1 × . . . × ΘN .
The problem at the central controller is to obtain an efficient allo-
cation such that the demand is met and the total cost is minimized
as well. We denote an allocation by y = (y1, . . . , yN ), where yi
is the number of items that have to be produced by agent i. The
central controller thus solves the following optimization problem:

Find π(θ) = argmin
y∈Y

N∑
j=1

ujyj

s.t. 0 ≤ yj ≤ cj , j = 1, 2, . . . , N,

and
N∑
j=1

yj = D.

(1)

In the above, Y is the set of all possible allocations. The policy
π(θ) obtained as a solution to (1) is called socially efficient and we
use πi to denote the allocation to agent i under the efficient policy
π. For the purpose of defining payments to agent i in the marginal
sense, we also require the solution to (1) with agent i removed, i.e.,
a solution to the following optimization problem:

Find π−i(θ) = argmin
y∈Y

∑
j 6=i

ujyj

s.t. 0 ≤ yj ≤ cj , j 6= i,
and

∑
j 6=i

yj = D.
(2)
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The allocation to agent j under the policy obtained as a solution to
(2) is denoted π−i,j . The problem now is to define a mechanism
that results in truthful type reports by the individual agents. This
will happen if the agent’s utility function is maximized under true
reports, which constitutes strategyproofness. Before formalizing
our mechanism, we define the utility function Ui of an agent i in
our setting.

DEFINITION 1. The utility function Ui of agent i is quasi-linear
and is given by

Ui(π, ti, θ̂) = ti − uic̄i(θ̂) + πi((ui, ĉi), θ̂−i), (3)

In the above, c̄i(θ̂) denotes the achieved capacity of agent i, given
that its allocation was πi(θ̂). Note that if the agent has overstated
its capacity, then the achieved capacity can in fact be lesser than
the allocation. The second term in (3) signifies the cost to agent
i under the allocation policy π and ti is the payment that agent i
receives from the central controller. The rationale behind the final
term πi(·) above is that the utility an agent derives increases lin-
early with its allocation, even if it is at the cost of other agents. This
is evident by noting that πi(θ) = D −

∑
j 6=i

πj(θ). Thus, the final

term captures the preference of an agent to ruin others by overstat-
ing capacity. This is unlike the utility function formulation in [6],
where the utility function contained the first two terms of (3).

REMARK 1. One could also use a reward function f(·) that
converts from allocation units to money or reward points in the
utility function (3) as follows:

Ui(π, ti, θ̂) = ti − uic̄i(θ̂) + f(πi((ui, ĉi), θ̂−i)), (4)

The exact details of the reward function f(·) is immaterial for the
discussion here, as long as it is ensured to be monotonic in its pa-
rameter. Further, we do not incorporate the reward function in the
material next and the analysis can be seen to be trivially extended
to include f(·).

Formally, a mechanism is a tuple (π, t), where π is the policy
component that maps the types to an allocation vector and t denotes
the transfer scheme, with ti : Θ → R denoting the monetary pay-
ment received by agent i. The policy employed in our mechanism
is socially efficient (as defined by (1)). Further, the transfer scheme
t ensures strategyproofness and individual rationality - properties
desirable of any mechanism. We later prove these properties for-
mally.

DEFINITION 2. A mechanism is strategyproof if truth-telling
constitutes a dominant strategy for the agents, i.e., for all agents
i = 1, 2, . . . , N ,

Ui(π, ti(θi, θ̂−i), (θi, θ̂−i)) ≥ Ui(π, ti(θ̂), θ̂), ∀θ̂ ∈ Θ

where θ̂ denotes the reported types of all agents and θ̂−i the re-
ported types without agent i.

DEFINITION 3. A strategyproof mechanism is individually ra-
tional if the agents have an incentive to participate than leave it
i.e., for all agents i = 1, 2, . . . , n, for all types θ ∈ Θ

Ui(π, ti(θ), θ) ≥ 0.

We assume that the utility an agent derives by leaving the mecha-
nism is 0.

An important aspect of the mechanismMC worth noting here is
that on completion of a production task by agent i, the allocation is

re-computed with achieved capacity of agent i being used instead
of the reported capacity. The policy that results from this allocation
is used to decide the transfer for agent i. Table 1 summarizes the
notation used for the policies obtained by solving (1) under differ-
ent type vector arguments. Note that the allocation to individual
agents is obtained via subscripting. For instance, πj(θ̄i, θ̂−i) de-
notes the allocation to agent j when (1) is solved with the type
argument (θ̄i, θ̂−i).

2.2 Motivation
Before formalizing the various aspects ofMC , we present a mo-

tivating example that considers a limited capacity setting and shows
that the popular VCG mechanism’s transfer scheme as well as the
transfer scheme featuring a fixed δ-penalty proposed by [6] fail to
ensure truthful capacity reports. However, note that eliciting truth-
ful unit price reports is not a problem and the VCG mechanism’s
transfer scheme ensures this part. It is the capacity constraints that
make the problem non-trivial. In all the example scenarios through
the paper, the demand D is assumed to be 150.

EXAMPLE 1. Consider a scenario where there are three agents
with their types given by (u1, c1) = (1, 100), (u2, c2) = (2, 50)
and (u3, c3) = (3, 130). Suppose agent 1 misreports his capacity
to be 125 while reporting his unit price truly. The other agents
report their true types. Now, the efficient allocation with reported
types is (125, 25, 0). However, after the agents complete their task,
the achieved capacities would be (100, 25, 0). A VCG-like payment
scheme in this setting would be according to:

ti =
∑
j 6=i

ûjπ−i,j(θ̂−i)−
∑
j 6=i

ûjπj(θ̂). (5)

As per the above payment rule, agent 1’s payoff would be t1 =
(2 × 50 + 3 × 100) − (2 × 25) = 350. On the other hand, if
agent 1 reported his capacity truthfully, he would have received as
transfer t1 = (2 × 50 + 3 × 100) − (2 × 50) = 300. Thus, it is
evident that agent 1 has an incentive to misreport his capacity and
receive a higher transfer at the cost of other agents.

To handle capacity constraints, the mechanism of [6] incorpo-
rated a fixed δ-penalty based transfer scheme, where the payment
ti to an agent i is according to:

ti =
∑
j 6=i

ûjπ−i,j(θ̂−i)−
∑
j 6=i

ûjπj(θ̄i, θ̂−i)− δβi. (6)

In the above, βi is a binary variable which is equal to 1 if c̄i <
πi(θ̂), i.e., when the agent has over-stated his capacity, and 0 oth-
erwise. The first two terms in (6) refer to the marginal contribution
of agent i. This is calculated using the achieved capacity of agent
i, denoted by c̄i.

Thus, as per (6), agent 1’s payoff would be t1 = (2× 50 + 3×
100) − (2 × 50) − δ = 300 − δ. On the other hand, if agent 1
reported his capacity truthfully, he would have received as transfer
t1 = (2× 50 + 3× 100)− (2× 50) = 300.

While the mechanism proposed in [6] achieved strategyproofness,
the utility function of agent i in their setting wasUi(π, ti, θ) = ti−
uic̄i(θ). However, in our setting with the utility function as defined
in (3), strategyproofness isn’t necessarily ensured using the transfer
of [6]. This is because, an agent i has an incentive to misreport his
capacity and improve his allocation at the cost of others (see the
last term in (3)). To make this precise, the utility U1 of agent 1 in
our setting, i.e., with Ui given by (3), turns out to be (300 − δ −
1× 100 + 125) = 325− δ, whereas with true capacity report it is
(300 − 1 × 100 + 100) = 300. Thus, it is clear that truthtelling
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Table 1: Summary of the various allocation policies used inMC

Notation Description Input type

π(θ̂) Efficient allocation with reported types θ̂ = (θ̂1, θ̂2, . . . , θ̂N ),
where θ̂i = (ûi, ĉi)

π(θ̄i, θ̂−i)
Efficient allocation with achieved type of agent i (θ̄i, θ̂−i),

and reported types of all other agents where θ̄i = (ûi, c̄i)

w.r.t. the capacity element does not guarantee a higher utility for
all values of δ.

The choice of utility function in our setting is realistic because in
practical competitive scenarios, agents could choose to inflict ma-
jor losses to other agents. The mechanism of [6] penalized a misre-
porting agent by a fixed δ, which in our setting may not be enough
to ensure truthful capacity reports. This is because, an agent may
be willing to incur a loss of δ, if it is relatively small compared to
the major losses inflicted to other agents due to the misreport. This
is evident in the above example where agent 1 may choose to mis-
report his capacity and significantly impact the allocation of agent
2 (reduced by 25 units) while incurring a penalty of a potentially
relatively small δ. On the other hand, a large value of δ also is
not advisable. Consider again the above example and assume that
δ = 1000. It can be the case that agent 1 was probably capable
of producing 125 units but fell short due to some unforeseen issues
that he faced during production. A large δ may not be appropriate
in this scenario. In general, precisely because the degree of losses
to others that can be caused by capacity misreports in a given mar-
ket are unknown, it is difficult to determine a fixed δ that effectively
deters capacity misreports. Instead, it is necessary to devise a trans-
fer scheme that penalizes the agent with the extent of damage (in
the marginal sense) his misreport caused. MC achieves this by
having a novel variable penalty scheme, that we present below.

REMARK 2. As we observed in the above example, an agent
has an incentive to overstate its capacity, while it has no incentive
to under-state its capacity. Suppose an agent under-reports its ca-
pacity and this influences the optimal allocation (8). This would im-
ply that the optimal allocation (8) would be performed with tighter
constraints and hence the marginal contribution of the agent is re-
duced, implying a reduced utility to the agent. In a similar fashion,
it can be argued that an agent has no incentive to over-report its
unit price.

2.3 The Mechanism
Given the above problem description, we now define our cen-

tralized mechanism. Our mechanism builds on the one proposed
by [6], while incorporating a novel variable penalty scheme. The
penalty scheme proposed here enables our mechanism to ensure
zero loss to other agents when one or more agents misreport their
capacities. Our mechanism is direct where each agent reports his
type information and the central controller then calculates an effi-
cient allocation. The transfer, however, happens with a delay and is
made only after the agent completes the allotted production task.

Transfer Scheme
The transfer ti that an agent i receives is a sum of two components
and is made when agent i’s production task is completed. The first
component, denoted xi, is the marginal contribution of agent i to
the system, while the second component is a penalty, denoted pi,
imposed on agents who misreport their capacities to influence the

efficient allocation. The transfer components are given by:

ti = xi + pi,
where

xi =
∑
j 6=i

ûjπ−i,j(θ̂−i)−
∑
j 6=i

ûjπj(θ̄i, θ̂−i)

pi =
∑
j 6=i

πj(θ̂)−
∑
j 6=i

πj(θ̄i, θ̂−i).

(7)

The first component xi of the payment ti to the agent i is his
marginal contribution towards reducing the total production cost,
i.e., the difference between total costs of allocation that other agents
obtain without and with agent i, respectively. The penalty compo-
nent pi is also marginal in the sense that it is the difference between
the total costs of allocation that other agents obtain with agent i’s
reported capacity and achieved capacity, respectively. Hence, the
loss caused by agent i’s misreport is compensated via pi.

REMARK 3. Considering that
N∑
j=1

πj = D, the penalty compo-

nent can be seen as equivalent to pi = πi(θ̄i, θ̂−i)− πi(θ̂).

REMARK 4. The reward function f(·) mentioned previously,
can be incorporated into the penalty component as follows:

pi =
∑
j 6=i

f(πj(θ̂))−
∑
j 6=i

f(πj(θ̄i, θ̂−i)).

2.4 Discussion
I) Now we demonstrate the usefulness of our penalty scheme

using example 1, which involved a single agent misreporting his
capacity. In example 1, π−1(θ̂−1) = (50, 100) and π(θ̄1, θ̂−1) =
(100, 50, 0).MC would result in a payment of x1 = (2×50+3×
100)−(2×50) = 300. to agent 1 and the penalty component would
be p1 = 25−50 = −25. Note that while the marginal contribution
component withMC is the same as for [6], the penalty is variable
and calculated based on the damage caused by agent 1’s misreport,
unlike [6] where it was a fixed quantity δ. As explained before,
the utility U1 derived by agent 1 under true capacity report is 300,
while under capacity misreport, U1 = 325 − δ in the case of [6].
On the other hand, U1 in the corresponding case forMC turns out
to be (300 − 25) − 1 × 100 + 125 = 300, which is equal to the
utility derived under true report.

II) We now provide an example to illustrate that truth-telling in
unit price is a weakly dominant strategy in MC. Suppose there
are three agents with (u1, c1) = (3, 125), (u2, c2) = (2, 50)
and (u3, c3) = (4, 100). Assume that the agents report their true
capacities. With a unit price report of (û1, û2, û3) = (1, 2, 4),
i.e., with agent 1 misreporting his unit price, the optimal alloca-
tion is π(θ̂) = (125, 25, 0). In this case, agent 1’s payment is
(2 × 50 + 4 × 100) − 2 × 25 = 450, whereas with the true type
reports, it is (2×50 + 4×100)−2×50 = 400. Hence, the utility
derived by agent 1 in the former case (with unit price misreport) is
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450− 3× 125 + 100 = 175, whereas with true type report, agent
1’s utility is 400 − 3 × 100 + 100 = 200. This illustrates that
MC forces truth telling by agent 1 in the unit price component and
hence is dominant.

III) We now provide an example where both unit price and ca-
pacity elements are misreported. Suppose there are three agents
with (u1, c1) = (3, 75), (u2, c2) = (2, 50) and (u3, c3) = (4, 100).
Agent 1 misreports its type as (1, 125), whereas the other agents re-
port their true types. The optimal allocation π(θ̂) = (125, 25, 0)
and π(θ̄1, θ−1) = (75, 50, 25). The transfer components x1 and
p1 to agent 1 can be calculated as follows:

x1 =(2× 50 + 4× 100)− (2× 50 + 4× 25) = 300,

p1 =75− 125 = −50.

Thus, the utility of agent 1 is (300 − 50) − 3 × 75 + 75 = 100.
On the other hand, the optimal allocation under true type report by
all agents (including agent 1) is π(θ) = (75, 50, 25). Since the
penalty to agent 1 is 0, the transfer to agent 1 can be calculated
from the marginal contribution component x1 as (2 × 50 + 4 ×
100)− (2×50+4×25) = 300. Thus, the utility derived by agent
1 is 300 − 3 × 75 + 75 = 150, which is strictly greater than the
utility of 100 derived under the case when agent 1 misreported its
type.

The main result concerning the properties of MC is given as
follows:

THEOREM 1. The mechanism MC is strategyproof and indi-
vidually rational.

PROOF. Strategyproofness of MC will be established by the
following steps: (i) First showing that reporting the true unit price
is utility maximizing for agent i, regardless of the reported ca-
pacity of agent i and of what other agents report, i.e., Ui(θ̂) ≤
Ui((ui, ĉi), θ̂−i). (ii) Next, showing that reporting the true capac-
ity is utility maximizing for agent i, given true unit price report
and regardless of what other agents report, i.e., Ui((ui, ĉi), θ̂−i) ≤
Ui(θi, θ̂−i). The reader is referred to [7] for a detailed proof of the
above theorem.

3. DYNAMIC MECHANISM
WITH CONSTRAINTS (DMC)

UnlikeMC, here we consider a dynamic setting that involves an
infinite time horizon over which the individual agent types evolve.
The DMC that we develop in the following involves 1. a socially
efficient allocation which differs from B&V [2] as the capacity con-
straints are included, and 2. a novel delayed transfer scheme that
involves a penalty component apart from the payment.While the
payment to an agent is his marginal contribution as in B&V [2],
the penalty component that ensures true capacity reports is new.
We illustrate the need for the delayed penalty based scheme via
an example and also prove that DMC is incentive compatible in
Theorem 2.

3.1 The Setting
Consider a setting where there areN agents (numbered 1, 2, . . . , N ),

capable of performing certain manufacturing tasks. A central con-
troller receives new tasks from external sources. We use an in-
finite horizon discrete time-line 1, 2, . . . , n, . . . to indicate allo-
cation of new tasks and also completion of tasks by individual
agents. We allow for completion of a particular task by different
agents to be at different instants. Upon arrival of a new task at cur-
rent instant requiring manufacturing of D ∈ Θc number of units

of commodity, the central controller performs allocation to all the
agents based on the current capacity ci and unit cost ui of manu-
facturing for each agent i. Let θi = (ui, ci) ∈ Θi be the cost-
capacity type vector for agent i and θ = (D, θ1, θ2, . . . , θN ) ∈
Θ
4
= Θc × Θ1 × Θ2 × · · · × ΘN be the joint type vector. As

before, we use sub-script −i to denote all agents other than i. For

instance, θ−i = (D, θ1, θ2, . . . , θi−1, θi+1, . . . , θN ) ∈ Θ−i
4
=

Θc ×Θ1 ×Θ2 × . . .×Θi−1 ×Θi+1 × · · · ×ΘN .
We assume that θ evolves as a Markov process on the discrete-

time horizon. Also, we assume that the Markov process thus formed
is ergodic for all allocation scenarios from the central controller.
Thus, we restrict ourselves to stationary Markovian allocation poli-
cies where allocation is given by y : Θ → RN , i.e., at a given
instant if the Markov process is at θ, the allocation is given by
y(θ). Let yi : Θ → R denote the allocation to agent i. Let Y
be the set of all admissible allocation scenarios. When necessary
for clarification, we use super-script n to denote a quantity at time
instant n. For example, θn ∈ Θ represents the types at time instant
n, Dn represents the number of units to be manufactured at time
instant n, etc. Note that unlike the setting in the static mechanism
MC, this setting for dynamic mechanism allows for all parameters
including the manufacturing capacity ci of each agent i, to evolve
or change with time instants.

Allocative Efficiency
Given the Markov process of θ, the central controller needs to al-
locate to all agents in a way that the total cost of manufacturing is
minimized with no agent asked to manufacture beyond its capacity.
Also, the central controller needs to ensure that the requirement of
manufacturing of a particular D units for the task at each instant
is met. Thus, the central controller performs optimal allocation ac-
cording to the following optimization problem:

Find π
4
= argmin

y∈Y

∑
θ∈Θ

N∑
i=1

Vi(θ, y)

s.t.
0 ≤ yi(θ) ≤ ci, i = 1, 2, . . . , N, ∀θ
N∑
i=1

yi(θ) = D,∀θ,


(8)

where Vi(θ, y) = E

[
∞∑
k=0

γkvi(θ
k, yi)|θ0 = θ, y

]
represents the discounted cost infinite horizon value added to the
system by agent i, where vi(θk, yi) = uki yi(θ

k) represents the cost
incurred at instant k by that agent and 0 < γ < 1 is the discount
factor. The expectation is over various sample paths (θ, θ1, θ2, . . . )
starting with θ. The expression for Vi(θ, y) could be rearranged
using dynamic programming as follows:

Vi(θ, y) = vi(θ, yi) + γE
[
Vi(θ

′, y)|θ
]
,

where the expectation is now over the next state θ′ ∈ Θ. We as-
sume that for all possible θ ∈ Θ,

∑N
i=1 ci ≥ D, so that there are

feasible solutions available for the above optimization problem. In
the optimization problem (8), we assume that only one optimal al-
location exists which is defined to be π ∈ Y . In cases where there
are multiple optimal allocations possible, π is assumed to represent
any one of them. We also formulate an auxiliary optimization prob-
lem which is for computing optimal allocation without an agent i:
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Find π−i
4
= argmin

y∈Y−i

∑
θ∈Θ

N∑
j=1
j 6=i

Vj(θ, y)

s.t.
0 ≤ yj(θ) ≤ cj , j = 1, 2, . . . , N, j 6= i,∀θ
N∑

j=1
j 6=i

yj(θ) = D,∀θ.


(9)

In the above, Y−i denotes the set of admissible allocation policies
of the form y : Θ−i → RN−1. The optimal allocation thus ob-
tained is denoted by π−i ∈ Y−i. Also, π−i,j : Θj →R represents
efficient allocation to agent j without participation by agent i.

Given θ, the problem thus is simply to solve the optimization
problem (8). However, in practical circumstances there are two po-
tential issues: (i) θi is the private information of agent i. Thus, the
controller needs to derive this information either directly or indi-
rectly. In either case, the problem is to obtain the correct θ-value as
otherwise the allocation via π may not make any useful sense; and
(ii) The capacity, though assumed to be ci by an agent i, would be
subject to realization. Thus, the actual capacity attained by the end
of manufacturing may be ci which could be different from ci. So,
the problem here is that the allocation is done at the beginning of a
task while the attained capacity (ci) is known only at the end of the
task.

In order to address these issues, we will formulate in the next
subsection, a dynamic mechanism (π, t) where π is an optimal al-
location policy discussed previously and t =

(
t1, t2, . . .

)
is the

payment policy for the entire time horizon. At each time instant,
agents are asked to report their types, represented by
θ̂ =

(
D, θ̂1, θ̂2, . . . , θ̂N

)
, based on which a suitable payment t is

given by the controller. Let θ̄i = (ûi, c̄i) represent the type with
achieved capacity of agent i. Then, the payment for each allocation
corresponding to instant n is of the functional form, tni : Θi →R,
i.e., tni (θ̄i, θ̂i, θ̂−i).

REMARK 5. As in the case of the static setting, the payment
to agent i is made using the report type vector (θ̂k) as well as its
achieved capacity (c̄i). The need for using the achieved capacity of
an agent (known only at a later instant, see Figure 1) is illustrated
via Example 2.

We assume that σi : Θi → Θi, a stationary strategy, is used by
agent i to report its type, i.e., θ̂i = σi(θi),∀i = 1, . . . , N . Hence-
forth, we use θ̂i and σi(θi) interchangeably. Let σ = (σ1, σ2, . . . , σN ).
Also, we use Vi(θ, π, σ) interchangeably with Vi(θ̂, π).

We define the utility Ui realized by participation by agent i as
follows.

DEFINITION 4. The utility Ui realized by agent i is given by

Ui(θ, π, σi) = E

[
∞∑
k=0

γkŨi(θ
k
i , πi, θ̂

k)|θ0 = θ, π, σi

]
, (10)

where

Ũi(θ
k
i , πi, θ̂

k) = tki (θ̄ki , θ̂
k)− vi(θki , πi) + πi((u

k
i , ĉ

k
i ), θ̂k−i)

(11)

is the quasi-linear single-stage utility of agent i at instant k. While
the first component in Ũi(·) above is the transfer of agent i, the sec-
ond component is the cost and the third component is the allocation
received under agent i’s (possibly misreported) type. Note that the
utility function formulation above is different from the one used in

[2]. The difference is that, unlike [2], we have an extra additive
term (the last term in (11)) that denotes the allocation to agent i
at instant k, under true unit price report and a possibly overstated
capacity report. As noted in the static setting, this factor is incor-
porated to capture the preference of an agent to harm others by
obtaining a higher allocation. Further, as in the static setting, the
reward function f(·) can be incorporated to convert from alloca-
tion units to money in the last term of (11).

Summing the individual components over the infinite horizon,
one obtains the following form for the utility of agent i:

Ui(θ, π, σi) = Ti(θ̂, π, σi)− Vi(θ, π, σi) +Ai(θ̃, π, σi),

where

Ti(θ̂, π, σi) =E

[
∞∑
k=0

γk+δi(k)ti(θ̄
k
i , θ̂

k)|θ0 = θ̂, π, σ

]
, (12)

Ai(θ̃, π, σi) =E

[
∞∑
k=0

γkπi(θ̃
k)|θ0 = θ̃, π, σ

]
, (13)

where θ̃ = ((ui, ĉi), θ̂−i) and θ̃k = ((uki , ĉ
k
i ), θ̂k−i). In (12), δi(k)

is the time taken by agent i to complete the task allocated at instant
k. As discussed later, ti(θ̄ki , θ̂

k) is a payment made to agent i after
completion of the task by him. So, in order to account for the delay,
γδi(k) discount factor is used in the above definition of the total
transfer to agent i.

We assume standard definitions of within-period ex-post Nash
equilibrium, incentive compatibility and individual rationality (see,
for instance, [3]).

3.2 Motivation
Capacity constraints are not considered previously in the context

of dynamic mechanism design. For instance, B&V [2] propose a
marginal contribution based transfer scheme for allocating a com-
mon resource. The transfer scheme proposed in B&V’s work [2]
cannot be applied in our setting where agents have limited capac-
ities. This is because the transfer scheme of B&V [2] would not
ensure true capacity reports from the agents. On the other hand,
in DMC the same is ensured via a delayed penalty based transfer
scheme.

EXAMPLE 2. We illustrate by this example that the transfer
scheme from the dynamic pivot mechanism [2] would not ensure in-
centive compatibility, when the setting involves capacity constraints.
Consider a scenario where Dn = 150, n ≥ 0. Let there be three
agents with their types given by (un1 , c

n
1 ) = (1, 100), (un2 , c

n
2 ) =

(2, 50) and (un3 , c
n
3 ) = (3, 100), for all n ≥ 0. Fix a time instant

n and suppose that the reported types at n are given by (ûn1 , ĉ
n
1 ) =

(1, 125), (ûn2 , ĉ
n
2 ) = (2, 50) and (ûn3 , ĉ

n
3 ) = (3, 100). Also, as-

sume that the agents report truthfully for all time instants m > n.
Hence, we have a scenario where agent types are static and agent
1 misreports his capacity at time instant n.

From the fact that the future joint type of agents remain the same
in the above setting and also that the agents report truthfully in
the future, we have that πi(θk) ≡ πi, a constant allocation for all
time instants. Hence, the efficient allocation to agents remains as
(100, 50, 0) for all time instants m > n in the future. Further, the
value function of agent i turns out as follows:

Vi(θ
m, π) =

∞∑
k=m

γk−muki πi(θ
k) = uiπi

∞∑
k=m

γk−m =
uiπi
1− γ .
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Assuming γ = 3
4

, we obtain

V (θm, π) =

3∑
i=1

Vi(θ
m, π) =

1× 100 + 2× 50 + 3× 0
1
4

= 800.

Also, it is easy to see that V1(θm, π) = 400 = V2(θm, π) and
V3(θm, π) = 0,∀m > n.

We denote the payment made to agent i at instant n using the
transfer scheme from B&V’s mechanism [2] as x̃ni (θ̂), i.e.,

x̃ni (θ̂) = V−i(θ̂, π−i)−
(
v−i(θ̂−i, π(θ̂))

+γ Eθ′
[
V−i(θ

′, π−i)|θ̂, π(θ̂)
])

.

For the given example, since types are constant for all time instants,
this payment simplifies to

x̃ni (θ̂) = V−i(θ̂, π−i)−
[
v−i(θ̂−i, π(θ̂)) + γV−i(θ̂, π−i)

]
.

We observe that for instant n, the efficient allocation is π(θ̂n) =

(125, 25, 0) and π−1(θ̂n−1) = (50, 100). Hence, V−1(θ̂, π−1) =
(2× 50 + 3× 100)

1
4

= 1600 and

x̃n1 (θ̂) = 1600− (2× 25 +
3

4
× 1600) = 350,

while with true report, the agent would have got,

xn1 (θ) = 1600− (2× 50 +
3

4
× 1600) = 300.

Hence, the mechanism of B&V [2] did not penalize agent 1 for
misreporting his capacity. In the DMC scheme that we present
subsequently, we design a delayed transfer scheme with a penalty
that compensates the loss caused by agent 1’s capacity misreport.

Note that any mechanism which gives a penalty < 0 to an agent
upon misreport of capacity by him will not necessarily be ex-post
incentive compatible. For instance, we could simply extend the
static mechanism of [6], i.e., give a constant penalty p < 0 upon
misreport regardless of the value of the misreported capacity. How-
ever, as observed in the static case, the utility derived by an agent i
in our setting, i.e., according to (10), may be higher with a misre-
ported capacity as compared to that with true capacity report. This
is clear in the example setting above where the utility derived under
true report by agent is 300−1×100 + 100 = 300, whereas with a
capacity misreport (agent 1 overstating his capacity to be 125), the
utility is 300− δ − 1× 100 + 125 = 325− δ.

As we observed in the above example, an agent has an incentive
to overstate his capacity. Our mechanism DMC results in truthful
reporting by the agents in the system by means of a delayed transfer
scheme with a variable penalty component. An important aspect of
the mechanism is that on completion of a production task by agent
i, the allocation is re-computed with achieved capacity of agent i
being used instead of the reported capacity. The policy that results
from this allocation is used in deciding the transfer for agent i. We
formalize these aspects of DMC below.

3.3 The Mechanism
We employ a direct dynamic mechanism in which the central

controller solicits type information θ̂ from each agent i at every
time instant n. Based on the reported types, the central controller
then makes an efficient allocation. The payment, however, is not

n n+ 1 n̄i

θ̂

Allocation

θ′ θ̄i

Completion by i

δi(n)

Figure 1: A portion of the time-line illustrating the process

immediately disbursed. Instead, the agent continues to produce ac-
cording to the allocation and on completion of the production task,
the central controller observes the achieved capacity level of the
agent and makes a payment which is the marginal contribution.

We use the notation as in Table 1 for denoting allocations with
reported and achieved types and combinations thereof. The overall
allocation process in the dynamic mechanism can be illustrated by
the Figure 1. At instant n, an allocation is performed based on re-
ported types θ̂ of all the agents. The task gets completed by agent i
in a time span of δi(n). The achieved capacity of agent i is captured
in θ̄i = (ûi, c̄i) at completion instant n̄i.

The transfer ti(θ̄i, θ̂) to agent i for the task allocated at instant n
is performed upon completion of the task by that agent. In order to

account for this delay in payment, a compounding factor of
1

γδi(n)

is used in computing the transfer tni . DMC can be described step-
by-step as follows:

1. Solicit the types, i.e., the unit price and capacity of each of the
agents. The reported type vector is θ̂ as noted before.

2. Perform an allocation π(θ̂), by solving the system (8) using
the reported unit prices and capacities of the agents.

3. The individual agents perform production tasks as per the
above allocation.

4. Each agent i completes his part of the allocated task at instant
n̄i. Wait till all agents finish their portions of the task.

5. Compute the transfer to each agent according to (14). The
above procedure is repeated in the infinite horizon.

Transfer scheme
The expression for tni is as given below:

ti(θ̄i, θ̂) =
1

γδi(n)

[
xi(θ̄i, θ̂) + pi(θ̄i, θ̂)

]
, (14)

which is composed of two additive components: (i) xi(θ̄i, θ̂), the
marginal gain brought into the process by agent i’s participation at
instant n, and (ii) pi(θ̄i, θ̂), the penalty imposed on agent i to cover
the damage caused to the process by misreport of capacity by him.
Let

W−i(θ) =v−i(θ−i, π(θ)) + γ Eθ′
[
V−i(θ

′, π−i)|θ, π(θ)
]
,

where

v−i(θ−i, π−i) =

N∑
j=1
j 6=i

vj(θ, π−i,j), V−i(θ, π−i) =

N∑
j=1
j 6=i

Vj(θ, π−i).

In the above, the expectation is over F (θ′|θ, π(θ)), the conditional
distribution of the next state θ′ of the Markov process, given θ and
the allocation policy π. The two components of transfer ti(θ̄i, θ̂)
can be now written as

xi(θ̄i, θ̂) = V−i(θ̂, π−i)−W−i(θ̄i, θ̂−i), and (15)
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pi(θ̄i, θ̂) =
∑
j 6=i

πj(θ̂)−
∑
j 6=i

πj(θ̄i, θ̂−i). (16)

The quantity V−i(θ̂, π−i) in (15) represents the total cost in-
curred by all agents other than i if agent i had not participated at all
while the second term in the equation represents the total cost in-
curred by them if agent i did participate. Thus, the difference gives
the marginal gain brought in by agent i into the setting at instant
n. On the other hand, because of the misreporting of capacity, the
possible loss caused by agent i is characterized in pi(θ̄i, θ̂) in equa-
tion (16). If not for capacity related constraints, pi(θ̄i, θ̂) would not
be needed and the payment can simply be the marginal contribution
xi(θ̄i, θ̂) which may have been given at time instant n itself without
waiting for task to be completed. But as shown previously in an ex-
ample, the marginal contribution alone given as payment would not
be enough to ensure that revealing true capacity is incentive com-
patible. As will be shown later, the additive marginal compensation
pi(θ̄i, θ̂) is sufficient to ensure this fact. In equation (16), the first
term represents the total cost incurred by agents other than i when
agent i misreports its capacity and the second term represents the
total cost incurred by them when the achieved capacity by agent i
is used instead of its reported capacity. Thus one can see that the
difference gives the net loss created by the misreport of capacity by
agent i. As noted before in the static setting, the penalty pi(θ̄i, θ̂)
can be seen as equivalent to πi(θ̄i, θ̂−i) − πi(θ̂). Further, the re-
ward function can be included in the penalty component in exactly
the same manner as in the static setting (see Remark 4). Several
remarks are in order.

REMARK 6. Comparing with the transfer scheme in [2], i.e.,
x̃i(θ̂) and the payment in our scheme, i.e., xi(θ̄i, θ̂), we note that
both are similar in form except that the former is computed without
the achieved capacity and is paid at the allocation instant. How-
ever, as discussed previously in example 2, agent i will have incen-
tive to misreport capacity in the former case.

REMARK 7. In the example mentioned above, c̄n1 = 100 and
hence, π̄(θ̄ni , θ̂

n
−i) = (100, 50, 0). Using the transfer scheme of

DMC (14), we obtain:

xni (θ̄ni , θ̂
n) = 1600− (100 + 3

4
× 1600) = 300,

pni (θ̄ni , θ̂
n) = 25− 50 = −25 < 0.

(17)

The utility derived by agent 1 with an overstated capacity of 125,
can be calculated as 300−25−1×100+125 = 250. On the other
hand, as noted before, the utility with true capacity report turns out
to be 300. Hence, in comparison to the dynamic pivot mechanism’s
[2] transfer scheme, DMC penalizes the agent i to the extent of
the damage his misreport caused.

The main result concerning the properties of DMC is given as
follows:

THEOREM 2. DMC is ex-post incentive compatible and ex-
post individually rational.

PROOF. Suppose there is a simplified mechanism where we know
the achieved capacity of agent i at the instant of allocation. Hence,
the payment can be made in each period without any delay. Let t̃i
denote the payment in this simplified mechanism, i.e.,

t̃i(θ̄i, θ̂) =
[
xi(θ̄i, θ̂) + pi(θ̄i, θ̂)

]
,

which does not have any scaling factor with γ. Let T̃i(θ̂) denote
the total payment in the simplified mechanism. So,

T̃i(θ̂) = E

[
∞∑
k=0

γk t̃i(θ̂
k, θ̄i)|θ0 = θ̂, π, σ

]
.

Note that T̃i(θ̂) = Ti(θ̂) because

E

[
∞∑
k=0

γk+δi(k)ti(θ̂
k, θ̄i)|θ0 = θ̂, π, σ

]

=E

[
∞∑
k=0

γk t̃i(θ̂
k, θ̄i)|θ0 = θ̂, π, σ

]
.

So, we use Ti(θ̂) itself to represent the payment rather that T̃i(θ̂) in
the simplified mechanism. The proof follows by first establishing
that this simplified mechanism is incentive compatible and then, by
proving that the expected discounted sum of transfers in our mecha-
nism is equivalent to this simplified mechanism where transfers are
made without any delay. The reader is referred to [7] for a detailed
proof of the above theorem.

4. CONCLUSIONS
We presented two novel mechanisms with progressively realistic

assumptions about agent types aimed at economic scenarios where
agents have limited capacities and are hostile. For the simplest case
where agent types consist of a unit cost of production and a ca-
pacity that does not change with time, we proposed a novel utility
function and mechanismMC that extends the work of [6] with a
novel variable penalty based transfer scheme to address the hos-
tile agents over-reporting capacities to harm competing agents. We
established the strategyproofness of this mechanism. Next, we pro-
posed DMC that accommodates agents having dynamic types in
MC. A penalty scheme is needed for achieving truthful reporting
of capacities. However, penalties cannot be determined until the
actual number of units produced by agents are known. We showed
the non-triviality of extending the current dynamic frameworks in
determining the payoffs in the case of limited capacities. InDMC,
this was achieved by adjusting the payoffs upwards based on a com-
pounded future discount factor. We showed that DMC possesses
the desired properties of ex-post incentive compatibility, individual
rationality, and allocative efficiency.
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