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ABSTRACT

Diagnosability is a key attribute of systems to enable the detection
of failure events by partial observations. This paper addresses the
diagnosability in concurrent probabilistic systems. Four different
notions (L-, P-, A-, and AA-diagnosability) are characterised by
formulas of a logic of knowledge, time and probability. Also, we
investigate the computational complexities of verifying them: the
L-diagnosability is NL-complete, the A-diagnosability is PTIME-
complete, and the P-diagnosability is in PSPACE.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Reliability
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1. INTRODUCTION

Diagnosis is an area of artificial intelligence that focuses on the
development of algorithms and techniques to determine whether
the behaviour of a system is correct. The computation of diagno-
sis is based on the partial observation on the system’s behaviour
by utilising e.g., sensors. Model based diagnosis simulates the be-
haviour of the system by a model (e.g., discrete event systems, au-
tomata, Petri nets, etc.) and then compares the observations made
on the system and on the model to determine the occurrence of
failure events. The model based diagnosis systems have been ap-
plied in critical systems e.g., Livingstone [22] in spacecraft fault
protection and TEAMS and TEAMS-RT systems [1] in UH-60 He-
licopter, etc.

To enable the model based diagnosis, the system should be di-
agnosable. Simply speaking, a system is diagnosable if the oc-
currence of a failure event can be determined no matter what the
behaviour of the system is. Although the diagnosability is essen-
tial for a critical system, the designer of the system usually needs
to balance on the cost (e.g., the price of sensors and the human re-
source to check the correctness of a complex design) and the benefit
(e.g., the probability of detecting a failure event) on the number of

“Research supported by Australian Research Council Discovery
Grants DP1097203 and DP120102489.

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito, Jonker,
Gini, and Shehory (eds.), May 6-10, 2013, Saint Paul, Minnesota, USA.
Copyright © 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

853

sensors to be deployed. Therefore, it is meaningful to enable the
automatic verification of diagnosability.

In [17], a diagnosability notion, called L-diagnosability in the
paper, is defined on nondeterministic systems. Intuitively, it says
that once a failure event occurs, it is unavoidable that the failure
will be detected in the future. In the paper, we will give this notion
an alternative characterisation as a formula of the logic of knowl-
edge and time [20] which expresses the knowledge of an outside
observer who observes the partial information emitted by the sen-
sors: once a failure event occurs, the observer will eventually know
it. At the same time, the system M is transformed to another one
M’. The observer’s knowledge is based on the perfect recall view
on its own observation history. There exists another characterisa-
tion [15] that bases observer’s knowledge on its current observa-
tion and requires the detection to be successful without any delay.
Perfect recall makes the optimal assumption on the ability of the
observer and is more suitable.

The system model we are concerning about is concurrent prob-
abilistic systems. In every system state, there exist a nonempty set
of legal events. After one of them is nondeterministically taken, a
probabilistic distribution is imposed to decide the next system state.
In such a system, the L-diagnosability may be generalised by taking
into consideration the probabilistic information. The main intuition
is that the definition can be relaxed from the aspects of either the
objective aspect (the system’s behaviour) or the subjective aspect
(the observer’s evaluation on the system’s behaviour).

P-diagnosability of this paper relaxes from the L-diagnosability
the sureness of the observer’s knowledge about the occurrence of
failure event to the almost sureness. In other word, the observer
needs only almost certain knowledge (i.e., knows with probability
1) to conclude the occurrence of the failure event. On the other
hand, A-diagnosability and AA-diagnosability, adapted from [19]
on fully probabilistic systems, can be regarded as relaxing from the
L-diagnosability and P-diagnosability the sureness about the oc-
currence of failure events to the almost sureness. Simply speaking,
they only care about those system behaviour that has a probability
more than 0. The above three notions are characterised by formulas
of a logic that combines knowledge, time, and probability, whose
semantics will be defined in the paper by extending the one for
fully-probabilistic systems [8].

In the second part of the paper, we move towards solving the
computational complexity of verifying these diagnosability notions.
For nondeterministic systems, a polynomial time algorithm is pre-
sented in [10] for the L-diagnosability. This PTIME upper bound
is then improved in [16], which shows that the problem is NL-
complete. Our first complexity result shows that the verification
of the L-diagnosability is also NL-complete in concurrent proba-
bilistic systems.



Regarding to the verification of A-diagnosability, a polynomial
algorithm [11] is recently presented. But until now, it is still open
on the theoretical computational complexity: can this PTIME up-
per bound be lowered to NL as the L-diagnosability does? The
second complexity result of the paper gives a negative answer to
this open question and shows that the problem is PTIME-complete.
A new polynomial time algorithm, simpler than the one in [11],
is presented to reduce the verification problem to the problem of
finding end components. The later one is then reduced to the al-
most sure probabilistic reachability problem, to which the mono-
tone circuit value problem is reduced. The circuit value problem
is a known PTIME-complete problem. The PTIME-completeness
result suggests that, unlike the L-diagnosability, the verification of
A-diagnosability is “inherently sequential" and not able to be effi-
ciently improved by parallel algorithms, unless PTIME = NL.

The third complexity result of the paper shows that the verifi-
cation of P-diagnosability is in PSPACE. To obtain this result, we
first show that the general model checking problem on the logic
of knowledge, time and probability is undecidable, by a reduction
from the value one problem of probabilistic finite automata, which
is undecidable [5]. Fortunately, the verification of P-diagnosability
is strictly simpler because the system M’ has a special structure that
makes the verification workable via a subset construction, which
pushes the complexity bound down to PSPACE.

2. CONCURRENT PROBABILISTIC
SYSTEMS AND L-DIAGNOSABILITY

Let Prop be a set of atomic propositions. A concurrent proba-
bilistic system is a tuple M = (S, S, E, 4, 1), where S is a finite
set of states, s;,; € S is the initial state, E is a finite set of events,
m:S — P(Prop) is a labeling function, and p : S X EXS — [0..1]
is a probability transition relation such that

o Y oes (s, e, s)€f{0,1}forallse S and e € E, and
e dec EAs’ €S : u(s,e,s’)>0,forallseS.

Let f € E be a failure event. All failure events are simplified as
a single dedicated event, which means that we are dealing with
failure detection problem, instead of failure identification problem.

Let s,s" € § and e € E. A path p from a state s is a finite or
infinite sequence of states and events spegs;e; ... such that so = s
and u(s, ex, Sg+1) > 0 for all k such that k£ < |p| — 1, where |p| is the
total number of states on p. Given a path p, we use s(p, m) to denote
its (m + 1)-th state and e(p, m) to denote its m-th event. Moreover,
we use s(p, 0..m) to denote the sequence of states s(p, 0)...s(p, m),
e(p, 1..m) to denote the sequence of events e(p, 1)...e(po,m). A full-
path from a state s is an infinite path from s. A path p is initialised
if S(p, 0) = Sini-

Let F be the set of finite paths and R be the set of fullpaths. For
the diagnosis purpose, we may deploy a set of sensors in the system
to detect the occurrence of the events. Assume that O C E is a set
of events that are observable. We let f ¢ O, because otherwise the
failure can be detected directly by observations. Given a path p, we
use E(p) to denote the sequence of events that occur in that path
and O(p) the sequence of observable events that occur in that path.
Formally, we let E(sep) = eE(p), and

L0(p)
eO(p)

where the symbol L denotes the occurrence of an unobservable
event. We make one more assumption on the system M by re-
quiring a fairness constraint on the fullpaths about unobservable

ife¢ O
otherwise

O(sep) = {
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events, i.e., the system is not allowed to have cycles of unobserv-
able events. Formally, 3n € N : Vp 0,03 € R : E(p;) € (E\ O)" =
lo2| < n.

A probability space is a triple (W, J, 1) such that W is a set, called
the carrier, J C P(W) is a set of measurable sets in P(W), closed
under countable union and complementation, and u : J — [0, 1]
is a probability measure, such that u(W) = 1 and u(U U V) =
uU) + (V) if U NV = 0. As usual, we define the conditional
probability u(U|V) = u(U N V)/u(V) when u(V) # 0.

Let R, (resp. F) be the set of fullpaths (finite paths) that start
from state s. More specifically, R, (resp. Fy,,) is the set of ini-
tialised fullpaths (finite paths). Let p|,, be the prefix of p € R up to
time m. For any p € F, we let

Rip) =10 €R; | Pk =p, k=1pl - 1}

be the set of fullpaths in R, that have p as the prefix. We now
define probability spaces on R;, using a well-known construction
(e.g., that of [21]). Note that, R, is not a measurable set, because of
the nondeterminism of events from the states. To have a measurable
set of runs, a scheduler o is needed to resolve the nondeterminism.
Given an initialised finite path p, a scheduler o maps p to an event
e such that e is a legal event of the last state in p, i.e., o(p) = e
implies s : u(s(o, [ol — 1),e,s") > 0.

Given a state s and a scheduler o, the set RY is the set of fullpaths
in R, such that all nondeterminism are resolved by o. (One may
view this as a cone of fullpaths sharing the same prefix under the
scheduler o) For any p € F, we let

R{(p) = Ry(p) N R{.

Let JY be the minimal algebra with basis the sets WS = (J{R7(p) |
p prefixes some r € R}, i.e., J¢ is the set of all sets of fullpaths
that can be constructed from the basis by using countable union
and complement. We define the measure u{ on the basis sets by

Sini

lol=2
KIRT () = [ | utstp, i), e(p, i+ 1), s(p, i+ 1)), if R (p) # 0,
i=0

and u§(RJ(p)) = 0, otherwise. There is a unique extension of u¢
that satisfies the constraints on probability measures (i.e., countable
additivity and universality), and we also denote it by u{.

PROPOSITION 1. Given a system M, a scheduler o, and a state
s, the triple (W¢, J7, 1u7) defines a probability space.

In such a system M, the failure diagnosis is to determine if the
failure event has occurred, given the observable projections of the
sequences of events generated by M. Given a finite path p, we let

Flpl={p' € F|pp’ € F}
be the set of finite paths that serve as the continuations of p, and
Rsi,,,{P} = {PIPZ € Rs,',l,' |Pl €F, O(PI) = 0(p)}

be the set of initialised fullpaths with the same observation prefix
as that of p. Moreover, we let

X={peF,, leplpol-1)=f,VI<j<l|pl-1:e(p,j)# f}
be the set of initialised finite paths leading to the failure event, and
Y={peR,, |Fj=1:e(p,)) = f}

be the set of initialised fullpaths that containing the failure event.
The following is the definition of a diagnosability notion, adapted
from [17] for nondeterministic systems.



DEFINITION 1. (L-Diagnosability) A system M is L-diagnosable
if and only if

In e NVp e XVp' € Flp] : |p'| 2n = D(pp’) = 1 @))]
where D(p) = 1 if Vp’ € R, {p} : p' €Y.

Intuitively, a system is L-diagnosability if no failure events can
avoid detection: for every continuation of every finite path that con-
tains the event f, it is impossible to find an initialised fullpath that
has consistent observations and does not include the event f.

3. A LOGICOF KNOWLEDGE, TIME, AND
PROBABILITY

In this section, we introduce a logic PLTLK,, that combines the
temporal operator, the knowledge operator, and the probability mea-
sure. Let Agt be a set of agents. Its syntax is given by

¢ = pl-gléi Ay | Xp| U | Kigp | PT ¢

where p € Prop, i € Agt, =€ {<, <, >, >} is a relation symbol, and
d € [0, 1] is a rational constant. Intuitively, formula X¢ expresses
that ¢ holds at the next time, ¢, U¢, expresses that ¢; holds until ¢,
becomes true, K;¢ expresses that the agent i knows the fact ¢, and
Pr;’.‘"q& expresses that the agent i knows the fact ¢ with a probability
in relation > with constant d. Other operators can be obtained in
the usual way, e.g., F¢ = trueU¢, Gp = -~ F~¢, etc. Its semantics
extends the one for fully-probabilistic systems [8].

Time is represented discretely by using natural numbers. A run
isafunctionr : N — § X EX L; X...Xx L, from time to the system
states, events, and local states of agents. A pair (r,m) consisting
of a run r and time m is called a point, which may also be written
as r(m). If r(m) = (s,e,s1,...,s,) then we define s(r,m) = s,
e(r,m) = e, and s;(r,m) = s; for i € Agt. If r is a run and m a time,
we write s(r, 0..m) for the sequence s(r,0)... s(r, m), and e(r, 0..m)
for e(r,0)...e(r,m).

From each initialised fullpath p of a system M, one may define
a run pP* by defining each point (oP",m) with m € N as follows:
S(ppr,m) = S(ps m)s e(pprs m) = e(P9 m)s and Si(ppr’ m) = Obsi(plm)s
where Obs; is the observation projection of agent i on the paths.
Intuitively, s;(o°*, m) represents that the agent i remembers all its
observations up to time m. Here the pr represents perfect recall [3].

Let a system R be a set of runs, and we call R X N the set of
points of R. Relative to a system R, we define the set K;(r,m) =
{(r,m') e RXN|s;(r',m") = s;(r,m)} to be the set of points that
are, for player #, indistinguishable from the point (7, m).

For a system R of runs, we define a cell c to be a subset of runs
such that R. € R. R, corresponds with the set of runs that are
compatible with a scheduler o.. The set of indistinguishable points
for agentiin (r, m) assuming c is K (r, m) = Ki(r, m)0{(r',m’) | 7’ €
Re,m’ € N}

Let R(U) = {r € R|dm : (r,m) € U} be the set of runs in R
going through some point in the set U C R X N. The probability
information over c is P° = {PR; | i € Agt}, where PR is a func-
tion mapping each point (r,m) to a probability space PR{(r,m) =
(K (r,m), F{(r,m), ¢, ) such that F{(r,m) C P(K;(r,m)) and for
U € PKE(r.m)),

Hemi(U) = pe(RU) | R(K (r, m))).

c
rum,i

where

He(R(p)) = 1< (R ()
and R.(p) = {r € R.| s(r,0..k) = s(p,0..k), e(r, 1..k) = e(p, 1..k)} for
k = |p| — 1. Intuitively, at each point, each player has a probability
space in which the carrier is the set of points K (r, m).

A probabilistic interpreted system (P1S) is a tuple (R, C, {P}.cc, ),
where R is a system of runs, C is a set of cells in R such that
R = U{R. | ¢ € C}, {P}.ec is a set of probability information for all
cellsin C, and 7 : R X N — P(Prop) is an interpretation.

The semantics of the language in a PIS 7 is given by interpret-
ing formulas ¢ at points (r,m) of 7, using a satisfaction relation
I, (r,m) = ¢, which is defined inductively as follows.

e I.(r,m) E pfor p € Propif p € n(r,m),

o I.(rnm)E —~¢ifnotI,(r,m)E ¢

o I(rm)EdAYIf L, (rm)Edand I,(r,m) Ey
o I.(nm)EXpifI.(nm+1)E ¢.

o 1,(r,m) E ¢Uy if there exists m" > m such that I, (r,m’)
Yand I, (r,m"”) E ¢ for all m” withm <m” <m’

o I, (rrm)EKipif I,(r',m’)E ¢ for all (r,m) € Ki(r,m)
o I,(r,m) E Pr¢ if for all cells ¢ € [~/]c,

— either K (r,m) = 0,

— or for all (", m") € K (r,m), we have

My G W) L7, m") € KE(,mALL (77 m”) | ¢)) e d.

Intuitively, the knowledge formula K;¢ is satisfiable if ¢ holds on
all indistinguishable points of agent 7, and the probabilistic knowl-
edge formula Pr;“’ ¢ is satisfiable if in all consistent cells, the condi-
tional probability of ¢ being true, given the indistinguishable points
of agent i, is in a relation > to the constant d.

The system M gives us an interpretation 7 on its states, and we
may lift this to an interpretation on the points (r, m) of R by defining
n(r,m) = n(s(r,m)). Using the construction above, we then obtain
the probabilistic interpreted system 7 (M) = I(R, C, {P°(M)}.cc, 7).
We will be interested in the problem of model checking formulas
in this system. A formula ¢ is said to hold in M, written M E ¢,
if 7(M),(r,0) | ¢ for all »r € R. The model checking problem is
then to determine, given a concurrent probabilistic system M and a
formula ¢, whether M [ ¢.

We should note that K;¢ (sure knowledge) is not equivalent to
Prf'q,’z (almost sure knowledge, or knows with probability 1).

In the following, we will show that the L-diagnosability of a con-
current probabilistic system M can be redefined as a verification
problem M’ | ¢;. The system M’ = (S’ s ., E,u’, n’) is defined as

o §' =8 X{ss, 5.} 8ty = (Sinis S-f)s

o ' ((s,51),e,(s,57)) = u(s, e, s'), such that s = s, if s; = 55
and e = f, and s} = s; otherwise, and

o p; € '((s,57), pr ¢ 7'((s,5-f)), and for all p € Prop,
p €' ((s,s)) iff p € n(s).

Intuitively, in M’, once p turns True, it will stay True forever.
Note that, the size of M’ is quadratic over the size of M. We define
two agents (outside observers) on the system M’:

e Let A be the agent that can observe every event (including the
failure event f) occurring in the system, i.e., Obs, = E. The
view of A reflects the objective aspect of the system.

e Let B be the agent that can observe the occurrence of events
in O, i.e., Obsg = O



Figure 1: non-L, P, non-A, AA-diagnosable Figure 2: non-L, non-P, A, AA-diagnosable

Note that the definitions of projection functions E and O suggest
that the observers can observe the time.

THEOREM 1. Let M be a concurrent probabilistic system. The
following three statements are equivalent:

1. M is L-diagnosable
2. M'EG(ps = F Kg py)

4. DIAGNOSABILITY NOTIONS IN CON-
CURRENT PROBABILISTIC SYSTEMS

Theorem 1 gives the L-diagnosability two intuitive characteri-
sations from the subjective views of the outside observers B and
A. However, when working with concurrent probabilistic systems,
the O-1 nature of L-diagnosability may classify some reasonable
systems as non-diagnosable. In this section, we investigate several
proposals on the diagnosability in concurrent probabilistic systems
and discuss their relations.

First, consider the system as displayed in Figure 1. We use 7 to
denote an unobservable but not failure event, i.e., 7 € E \ O and
7 # f. From the initial state sy, the occurrence of failure event
f in the next step has probability 0.1 and the occurrence of unob-
servable event T has probability 0.9. After that, the failure path
will be trapped into an infinite loop and the non-failure path will
return to the initial state. This system is not L-diagnosable, as the
agent B can never have the sure knowledge that the failure event
has occurred: there exists a fullpath (sopas;7)*, containing no fail-
ure event, that is indistinguishable for the agent B with the fullpath
p = soasy f(s,as,47)*, containing a failure event. On the other hand,
the observer B has the almost sure knowledge about the failure, be-
cause lim,,e trms({(',m) | py € n(r',m), O@F’) = O(r)}) = 1 for
any run r such that O(r) = (al)".

Based on this observation, we introduce a new notion named P-
diagnosability. Intuitively, for a system to be P-diagnosable, the
observer need not have sure knowledge about the occurrence of
failure event. Instead, the observer is requested to almost surely
know the occurrence of failure event.

DEFINITION 2. (P-Diagnosability) A system M is P-diagnosable

if and only if
M’ & G(p; = F Pri'py)

As the L-diagnosability, the above statement can be rewritten as
M’ E G(p; = K, F Prz'p;) by considering the knowledge of the
agent A. It is not difficult to check that the system of Figure 1 is
P-diagnosable.

Now we move to the definitions of other two notions that re-
laxes the sure knowledge of agent A from L-diagnosability and P-
diagnosability. The motivation can be seen from the system in Fig-
ure 2. After the failure event f occurs in a finite path p = 50157,
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P-diagnosability A-diagnosability

o

AA-diagnosability
Figure 3: Relations

there exists an infinite sequence of events a...a such that the path
o s>(asy)* is possible to avoid the detection, i.e., there exists
a fullpath p, = so7si(as;)* such that O(p,) = O(pp’) = La* and
f ¢ p,. Furthermore, the observer B can not almost surely know
(and thus can not know) the occurrence of the failure event, be-
cause lim,,e trms({(r',m) | py € n(r',m), O@F’) = O(r)}) = 0 for
any run r such that O(r) = La".

However, we notice that the fullpath p” has the occurrence prob-
ability of 0. In other word, for the system in Figure 2, the agent
A has the almost sure knowledge, instead of the sure knowledge,
about the detectability of failure event by the observer B.

Therefore, we have the following two notions, which have the
same meanings as those from [19] for fully probabilistic systems.

DEFINITION 3. (A-Diagnosability) A system M is A-diagnosable
if and only if

M’ E G(ps = Prz! (F Kz py)).

Intuitively, a system is A-diagnosable if once the failure event
occurs, the agent A has almost sure knowledge that in the future the
agent B will know the occurrence of failure event. In other word, the
A-diagnosability relaxes from the L-diagnosability the “sureness”
on the agent A’s knowledge.

DEFINITION 4. (AA-Diagnosability) A system M is AA-diagnosable

if and only if
M' & G(p; = Pr3' (F Pri'py)).

Intuitively, a system is AA-diagnosable if once a failure event
occurs, the agent A almost surely knows that in the future the agent
B can almost surely know the occurrence of failure event. In other
word, the AA-diagnosability relaxes from the P-diagnosability the
“sureness"” of the agent A’s knowledge.

Before proceeding, let’s see the relations between the four no-
tions. Let Dy be the set of systems satisfying the X-diagnosability
for X € {L,P,A,AA}. We say that a diagnosability notion X is
stronger than the other one Y, denoted as X > Y, if for all proba-
bilistic systems M, we have that M € Dy implies M € Dy. Further-
more, X is strictly stronger than Y, denoted as X > Y, if X > ¥ and
there exists a system M such that M € Dy and M ¢ Dy. We write
X <> Yifneither X > Ynor ¥ > X.

The relations between the diagnosability notions are shown in
Figure 3, where the arrows denote the “strictly stronger than" rela-
tion between the tail notion and the head notion.

THEOREM 2. L>A > AA, L> P > AA, and A <> P.
The factthat L > A > AA and L > P > AA can be seen from their

definitions. The strictness of them can be seen by the examples in
Figure 1 and Figure 2.



S. COMPLEXITY OF VERIFYING
DIAGNOSABILITY NOTIONS

Given a system M and a notion X-diagnosability, the verifica-
tion problem of the diagnosability is to decide whether M is X-
diagnosable. Logic characterisations of the diagnosability notions
make it possible for us to borrow results from the area of model
checking. E.g., the formula (2) of Theorem 1 for the L-diagnosability
falls within the single player fragment of the temporal epistemic

logic LTLK,,, whose verification complexity is PSPACE-complete [2].

Therefore, the verification of L-diagnosability is in PSPACE.

However, the complexity bound obtained in this way is not tight.
In this section, we will give complexity results for three notions (L-,
P-, and A-diagnosability). The results and proofs can be interesting
by their own.

e The NL-complete of L-diagnosability shows that the above-
mentioned PSPACE-complete complexity for the verification
of single-player fragment of LTLK, logic can be lowered if
we consider a smaller fragment, in this case the positive frag-
ment with a single knowledge operator, and the model com-
plexity (that is, the complexity is measured by the size of
system model, by fixing the formula).

The proof of A-diagnosability can be adapted to show that
the model complexity, and thus the combined complexity
(measured by both the size of system model and the size of
the formula), of the verification of PCTL logic on MDPs [6]
has PTIME as its lower bound, which matches its current up-
per bound. This result is not unknown but does not appear in
the literature.

Before giving a PSPACE algorithm for the P-diagnosability,
we will show that the verification of the PLTLK, logic under
perfect recall interpretation is undecidable in general and for
its single player fragment.

5.1 L-Diagnosability

On verifying the L-diagnosability in nondeterministic systems,
[10] gives a polynomial time algorithm and [16] shows that the
problem is NL-complete (i.e., can be solved by a nondeterministic
Turing machine using a logarithmic amount of memory space). We
here show that the NL-completeness holds also in concurrent prob-
abilistic systems. The complexity class NL is included in the class
PTIME, but it is still open on the strictness.

The membership problem.

We reduce the verification problem on the system M to another
problem on the twin-plant G. The twin plant G of a concurrent
probabilistic system M = (S, s;;, E, 11, ) and a set of observable
events O C E is a tuple (S, s¢., E®, u®, n%) such that

ini’®

e SG=5x5,s°

G = (Sint Sini)s E© = EXE,

o 19((s1,2), (e1,€2), (57, 55)) = (u(s1, €1, 57), (52, €2, 55)), if
—e =e€0orie,en}NO=0,and
— u(sy, e, s7) > 0and u(sy, ez, 55) > 0,

o 7%((s1,52)) = (w(51), 7(52))-

Intuitively, G is the co-simulation of two copies of the origi-
nal system M such that the observable events are executed syn-
chronously. Furthermore, we let I1; be the function mapping a pair
(x,y) to its ith element for i € {1, 2}, and let

ui (s, e, ') = (s, e, 8), n7(s) = Mi(n(s))
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and G; = (89,58 E%, 1%, n%) for i € {1,2}. The following is a
direct observation from the definition that every path in the twin
plant G represents two paths in the original system that have the

same observation, and vice versa.

PROPOSITION 2. Let M be a probabilistic system and G the
twin plant of M. For all paths p© € RC, we have that O(I1, (0°)) =
O(I1,(p%)). Also, for every two paths in M such that O(p;) = O(p,),
there exists a path p° such that T1,(p%) = p; and T1,(p°) = p».

An event e = (ey, ;) of the twin plant G is a faulty event if e
f» and is an evidential event if e, = f. A path pC is a faulty path
if it contains a faulty event, and is an evidential path if it contains
an evidential event. As usual, the system size is measured by the
number of nodes plus the number of events, that is, |[M| = |S| +
|E|. The number of transitions in M is O(|S [*|E]). The size of G is
O(S | + |E|?) and the number of transitions in G is O(S |*|E]?).

A finite path p© = (s, 5p)...(s;, 52)...(5,, 5%) of the twin plant G
is undiagnosable if

o (sh,52) = (s;, 59 (cycle path),

e dl <i<k: f=TII(e’1i) (faulty event occurs before the
loop), and

o V1 <i<m:f#Ih(e(p®, i) (non-evidential path).

Intuitively, together with Proposition 2, the existence of an undiag-
nosable path in G indicates that, in the original system M, a fullpath
IT; (%) that contains the failure event can be simulated by another
one IT,(0%) that does not, without being distinguished by the agent
B.

Then we have that the system M is L-diagnosability if and only
if there exists no initialised undiagnosable path in the twin plant
G. To verify the later condition, we do a transformation on G by
removing all evidential events and their related transitions. Let G’
be the obtained twin plant. The size of G’ is linear with respect
to the size of G. We say that a state © is reachable from another
state s if there exist states 7, ..., s¢ such that s = s§, r = s¢, and
Je; € EC :,ulG(si, e,si.)>0foralll <i<k-1.

The L-diagnosability of the original system M can be decided by
the following algorithm.

ALGORITHM 1. Let G be the twin plant of the system M and
G’ be the one obtained by removing all evidential events from G.
We check on G’ the existence of a faulty event e® and three states
s?, sg, and sC, such that

G.e%,5) > 0,

1. p?(s] ,e

2. the reachability from sS.

G
ini to sl ’

3. the reachability from sg to ¢,
4. the reachability from sC to itself.

The algorithm returns False if the existence holds, and return True,
otherwise.

The membership of the verification of L-diagnosability in NL
complexity class can be done by a similar procedure as the one
in the Savitch’s theorem. Any of the above reachability problem
can be solved by a nondeterministic algorithm of logarithmic space
with respect to the twin plant G’. The existence of faulty event e©
and states s¢, 5§, and 5% can be done by a nondeterministic algo-
rithm of constant space. In total, the Algorithm 1 can be concretised
as a nondeterministic algorithm of logarithmic space with respect
to G’, which, transformed into the measurement of the original sys-
tem M, needs logarithmic space.



The hardness problem.

The NL-hardness can be seen by a reduction from st-connectivity
problem, a well-known NL-complete problem. The st-connectivity
problem determines if 7 is reachable from s, given that s and ¢ are
vertices of a directed graph G(V, Ed). A logarithmic space reduc-
tion proceeds by transforming G into a system M = (S, iy, E, 1),
such that § =V, s, = 5, E = {0, 7, f}, representing an observable
event, an unobservable event, and a failure event, respectively, and
u(u, 0,v) = 1iff Ed(u,v) forall u,v € S, and u(t, 7, u) = u(t, f,u) =
1 for some u € S. Then the reachability from s to 7 in G is equiva-
lent to the non-L-diagnosability of M.
Put them together, we have the following conclusion.

THEOREM 3. Verification of L-diagnosability is NL-complete.

5.2 A-Diagnosability

For the verification of A-diagnosability, an algorithm is recently
presented in [11] without a formal proof on its computational com-
plexity. In this section, we will show that this verification problem
is PTIME-complete (i.e., can be solved by a deterministic Turing
machine using a polynomial amount of computation time), which
indicates that the problem, unlike the L-diagnosability, can not be
solved by using only polylogarithmic space and does not admit ef-
ficient parallel algorithms: the problem is inherently sequential and
requires storing a polynomial number of intermediary results, un-
less NL=PTIME.

The membership problem.

A probabilistic directed graph is a tuple G = (V, E, ) such that V is
a set of vertices, E is a set of edges,and £ : VX E XV — [0,1] is
a probabilistic transition. A directed graph is strongly connected if
there is a path from each vertex in the graph to every other vertex.
The strongly connected components (SCCs) of a directed graph are
its maximal strongly connected subgraphs. Let 6 : U — E be a
function mapping vertices to the edges. A set U C V of vertices
are o-closed, if for all s € U, u(s,8(s),t) > 0 implies t € U. U is
an ¢-end component if U is d-closed and the underlying graph of U
and ¢ is an SCC. U is an end component if there exists a function §
such that U is an §-end component.

Recall that G, is obtained from the twin plant G by taking the
probabilistic transition relation and labelling function of the first
component. Let G| be the one obtained from G, by removing all
evidential events and their related transitions. A §-end component
in G| means that 1) from any of its state, all the future states will
remain in the end component by following the function 4, and 2)
any fullpath from any of its states suggests the undetectability of a
failure event (if any) by the agent B since then.

Then by definition, the system M is A-diagnosability if and only
if there exists no faulty path in G/ that leads to an end component.
The existence of such a path is equivalent to the non-zero proba-
bility of avoiding detection. Therefore, the A-diagnosability of a
system M can be decided by the following algorithm.

ALGORITHM 2. Let G be the twin plant of the system M and G
as defined before. The algorithm proceeds by doing the following
steps sequentially on G :

1. find all end components,

2. find a reachable faulty state such that it can reach a state of
any end component.

The algorithm returns False if the second step succeeds, and return
True, otherwise.
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The finding of all end components can be solved in PTIME, by tak-
ing a variant of Tarjan’s algorithm [18]. The finding of all reachable
faulty state can be solved in PTIME by enumerating all faulty states
and checking the reachability from the initial state. The reachability
from a faulty state to the states of end components can be decided
by enumerating all states in end components and then checking the
reachability between two states. Because st-connectivity problem
is in PTIME, this algorithm is also in PTIME.

Before proceeding, we make a remark that, the above algorithm
is substantially different with the one presented in [11], which in-
stead of utilising the end components, checks the existence of two
kinds of faulty cycles in the twin plant: @-recurrent faulty cycle and
m-total faulty cycle. Simply speaking, the a-recurrent faulty cycle
is a cycle of probability 1, and the m-total faulty cycle is a set of cy-
cles with the total probability 1. Their claim of polynomial time in
deciding the m-total faulty cycle is dubious. A subset construction
seems unavoidable, which will push the upper bound to PSAPCE.

The hardness problem.

Let s be a state and U be a sets of states. We use p < RY to denote
that p is a finite path that starts from state s and is consistent with
the scheduler o, or formally s(p, 0) = s and e(p, m+1) = o (p|,,) for
all 0 < m < |p| — 2. We define reach(s,U,o) = {p < R | s(p, k) €
UN0<m<k:s(p,m)¢ Uk = |p|— 1} to be the set of finite paths
that reach from state s to states in U under the scheduler 0. The
probability of reaching from s to U under o is then defined as

probReach(s, U, o) = g (reach(s, U, 0)).

We say that U is almost surely reachable from state s if there exists
a scheduler o such that probReach(s, U,o) = 1.

It’s not hard to see that the finding of end components can be
reduced to the finding of all states that are in end components. In
the remaining part of this section, we will prove the PTIME lower
bound on deciding if a state s is in an end component. The problem
can be decided by taking the following algorithm to see if o :
probReach(s, {s},o) = 1.

ALGORITHM 3. Let M = (S, s;ni, E, i, ) be a concurrent prob-
abilistic system and s, t be any two states. The following algorithm
decides if Ao : probReach(s, {t},o) = 1:

1. nondeterministically guess a set of states U, and then
2. verify the following two statements:

(a) do : probReach(s,U,o) =1,

(b) for all states s’ € U \ {s}, recursively taking this algo-
rithm to decide if Ao : probReach(s’,{t},o) = 1.

The algorithm has a recursion depth of O(log |S|) level, and needs
O(log |S) space to store the states s and ¢. The space can be reused
in different levels. Note that, we don’t need to store the set U.
Therefore, it reduces the problem of deciding if a state s is in an
end component to do : probReach(s, U,o) = 1 by taking a loga-
rithmic space.

Now we need only show that it is PTIME-hard to decide do :
probReach(s, U,8) = 1. The proof is done by encoding the mono-
tone circuit value problem, which is well-known to be PTIME-
complete (cf. [4]). A monotone boolean circuit C = (B, By, bo, T, 1)
is a directed acyclic graph, in which B is a set of gates, B; C Bis a
set of input gates, by is a single output gate, 7 : B — P(B) is a set
of directed connections between gates such that

e Vb e B, :{b € B|beT®b)} = 0 (the indegree of input
gates is zero),



by ba bo

Figure 4: The transformation from boolean circuit to concur-
rent probabilistic system

e T(bp) = 0 (the outdegree of the output gate is zero), and

e Vb e B\B;: {0/ € B|b e T(b')}| = 2 (the indegree of
non-input gates are 2).

and 7 : (B\ B;) — {A,V} is a labelling function mapping every
non-input gate to a boolean operator A or V. An input of the circuit
Cis an assignment « : B; — {0, 1} of boolean values to input gates.
The value of a non-input gate is computed as the result of boolean
operation (the one on its label) on the values of its ancestors. The
output value of the circuit v(C, @) is the value on the output gate. A
monotone circuit value problem (MCVP) takes as input a monotone
boolean circuit C and its input @, and decides if the output value
v(C,a)is 1.

Now we will show that the MCVP problem can be reduced to
the almost sure reachability problem. Let M¢ = (S, Sini» E, i, m¢)
be a concurrent probabilistic system such that S = B, s;,; = bo,
E = {left, right}, and

0.5 ifn(s) = A and e = left and s" = lanc(s)
, 0.5 ifn(s) = A ande = leftand s" = ranc(s)
His,e,s) = 1 if 7(s) = V and e = left and s = lanc(s)

1 if 7(s) = V and e = right and s’ = ranc(s)

where lanc(s) denotes the left ancestor of the gate s and ranc(s)
denotes the right ancestor of the gate s. Intuitively, we reverse the
direction of the connections in circuit C and do the transformation
for every gate as depicted in Figure 4. Let S; = {b | b € B}, a(b) =
1} be the set of states representing the input gates of value 1. We
have the following claim.

LEMMA 1. Given a monotone circuit C and an input , we can
construct a system Mc such that, v(C,a) = 1 if and only if do :
probReach(s;,i, Sy, 0) = 1in Mc.

Combining the membership and hardness results, we have the
following conclusion.

THEOREM 4. Verification of A-diagnosability is PTIME-complete.
5.3 P-Diagnosability

Now, we will show that the verification of P-diagnosability is
PSPACE-complete (i.e., can be solved by a Turing machine using
a polynomial amount of space). First of all, we show that the ver-
ification of PLTLK, logic is undecidable in general. Fortunately,
the definition of P-diagnosability makes its verification decidable
in PSPACE. The main reason is the special structure of M’.

The Verification of PLTLK, Logic is Undecidable

The undecidability result is obtained by a reduction from the value
one problem of probabilistic finite automata, which is a known
undecidable problem [5]. The following proof resembles the one

859

in [9] for the PATL* logic. A probabilistic automaton PA is a tuple
(Q,A, (M,)aea,q0, F ), where Q is a finite set of states and gy is the
initial state, ¥ C Q is a set of accepting states, A is the finite input
alphabet, and (M,).c4 is the set of transition matrix.

For each a € A, M, € [0, 1]2%2 defines transition probabilities,
such that given ¢q,q’ € O, M,(q, q’) is the probability that ¢ makes
a transition to ¢’ when a is the input. For every ¢ € Q and a € A,
we have 3, .o Mu(q,q’) = 1. Plainly, given a state g, an input a
makes a transition to a distribution on Q, and we further extend M,
to be a transformer from distributions to distributions. Given A €
D(Q), we write M,(A) for the distribution transformed from A by
a, such that for all q, € Q, Ma(A)(q,) = quSupp(A) A(‘I) : Ma(q’ q,)'
Givenw = a; -ap - ...-a, € A*, we write M,, for the function
M, oM, , o--- oM, (we assume function application is right
associative).

Given a probabilistic automaton PA and 4 € [0, 1], the (strict)
emptiness problem is to decide whether there exists a word w such
that M,,(go)(F) = (>)A, where A is called a cut-point. The above
problem is undecidable in general [14, 13, 12], and for the case of
value-one [5],i.e., A =1orAd=0.

We define a translation § mapping probabilistic automata to con-
current probabilistic systems. Let PA = (Q, A, (M) 4ea> g0, F ), de-
fine M = F(PA) = (S, Sini» E, 1, w), where

o 8§ =0, 58m=q0E=A,

e ( is the same as that of (M,),ea, i.e., u(q.a,q’) = M,(q.q")
forallge Q,¢' € Q,anda € A,

e pren(q)ifandonlyifge 7.

Moreover, the observable set is defined to be O = E. Given a proba-
bilistic automaton PA, there exists a word w such that M,,(go)(F) >
1 in PA iff M ¥ G Pry'p,. Therefore, we have the following con-
clusion.

THEOREM 5. The verification of PLTLK, logic is undecidable.

The verification of P-diagnosability is in PSPACE

Although the undecidability is pessimistic, the verification of P-
diagnosability can be strictly simpler because of the special struc-
ture of M” = (S’, s},., E, i, ") that once the atomic proposition ps
holds on a state s, it will hold on all its successor states.

Let Q € S be a set of states. We let

Q-e={teS"|seQ, ((s,e,t) > 0}
for e € O be the set of successor states of Q by taking event e, and
Q-7={teS'|s€eQ, Jec E\O : i (s,e,t) >0}

be the set of successor states of Q by taking an unobservable event.
Let M” =(S”, s}, E,u”,n"") be a system such that " = P(§"),
sy = {si,}, and p”(Q,e,Q) = 1,if Q" = Q-efore € O U {1},
and = 0, otherwise. Intuitively, the system M” is obtained from M’
by a subset construction as defined by . In system M", the full-
path QpQ;... captures the set of fullpaths in M” whose observation
projections are the same.

Let Q be a state of M”. We call Q a normal state if Vs € Q :
py ¢ n(s), a flaw state if As,t € Q : py € n(s) A py & n(t), and a
terminal state if Vs € Q : py € n(s). The special structure of M’
enables the following property of the system M”.

LEMMA 2. The system M" has and only has three kinds of end
components C: 1) all states in C are normal states, 2) all states are
flaw states, and 3) all states are terminal states.



It is straightforward that if from the initial state {s}, it can
only reach normal end components or terminal end components
then the system M is P-diagnosability. The case of flaw end com-
ponents is more involved. Assume that Q is a flaw state. Let
0" = {s € Q| ps ¢ n(s)} be the normal part of Q. A normal
end component suggests a set of fullpaths that never contain failure
event. Therefore, if Q; € Q" is in a normal end component then
we can find a subset of fullpaths starting from states in Q such that
it has a non-zero probability of not containing failure event.

Therefore, the P-diagnosability of a system M can be decided by
the following algorithm.

ALGORITHM 4. Let M = (S, sini, E, pt, ) be a concurrent prob-
abilistic system and M" as defined before. The algorithm proceeds
by doing the following steps sequentially on M" :

1. nondeterministically guess a flaw state Q, and then

2. verify the following two statements:

(a) Q is reachable from s,
(b) there exists 0 = Q, € Q" such that Q, is in a normal

end component.

The algorithm returns False if the second step succeeds, and return
True, otherwise.

As for the complexity, it’s not hard to see that the system M” is
of size exponential with respect to the system M’ but can be con-
structed on-the-fly. We can take a nondeterministic turing machine
to guess the sets Q and Q;, and then determine if Q; is in a normal
end component. All these can be done by using polynomial size of
spaces with respec to the number of states in M’. Therefore, it is in
NPSPACE=PSPACE.

THEOREM 6. Verification of P-diagnosability is in PSPACE.

6. CONCLUSIONS

In the paper, we investigate the diagnosability in concurrent prob-
abilistic systems. Four diagnosability notions are characterised by
formulas of a logic that combines knowledge, time, and probability.
The computational complexities of verifying them are studied.

We leave open several questions related to the complexity to the
future works: the lower bound of verifying P-diagnosability, and
the complexity for AA-diagnosability.

Moreover, it is meaningful to develop verification tools and con-
duct experiments on practical systems. In particular, it is interesting
to compare the performance between designated algorithms as de-
scribed in the paper and general algorithms for the PLTLK,, logic
and its fragments, generalised from [8, 7].
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