
Push and Rotate: Cooperative Multi-Agent Path Planning

Boris de Wilde, Adriaan W. ter Mors, and Cees Witteveen
Algorithmics Group, Delft University of Technology, Mekelweg 4, Delft, The Netherlands

boreus@gmail.com, {a.w.termors,c.witteveen}@tudelft.nl

ABSTRACT
In cooperative multi-agent path planning, agents must move be-
tween start and destination locations and avoid collisions with each
other. Many recent algorithms require some sort of restriction in
order to be complete, except for the Push and Swap algorithm [7],
which claims only to require two unoccupied locations in a con-
nected graph. Our analysis shows, however, that for certain types
of instances Push and Swap may fail to find a solution.

We present the Push and Rotate algorithm, an adaptation of the
Push and Swap algorithm, and prove that by fixing the latter’s short-
comings, we obtain an algorithm that is complete for the class of
instances with two unoccupied locations in a connected graph. In
addition, we provide experimental results that show our algorithm
to perform competitively on a set of benchmark problems from the
video game industry.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Routing and
Layout; I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

General Terms
Algorithms

Keywords
Planning, Distributed problem solving

1. INTRODUCTION
In cooperative multi-agent path planning, there is a set of of

agents each with a unique start and destination location, and the
goal is to find paths that are collision-free in space and time, while
optimizing a global quality measure such as total time, or total
number of steps taken. Cooperative multi-agent path planning
can be applied in domains like control of automated guided ve-
hicles [13], robotics [9], and video games (cf. [8]).

Finding optimal solutions to multi-agent path planning problems
is NP-hard (cf. [2]). Recent advances in optimal solving include
the work by Standley and Korf [11] and Yu and LaValle [17]. The
former propose operator decoupling, a technique that reduces the
branching factor of exhaustive search, while the latter present ILP

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito,
Jonker, Gini, and Shehory (eds.), May, 6–10, 2013, Saint Paul, Min-
nesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

formulations of a related multi-commodity flow problem, which
can be used to solve multi-agent pathfinding problems. Both papers
report experiments with up to 50 or 60 agents.

To tackle larger instances, decoupled approaches plan for each
agent separately, for instance by first planning a path for each agent,
and then coordinating the velocities such that two agents never
occupy the same location simultaneously [4]. The decoupled ap-
proach is not complete in general, and in congestion-prone domains
deadlocks would occur frequently. In video games, for example, it
is common that many agents must traverse maps with choke points
like bridges or narrow corridors, where quick passage through the
congested area is important.

A number of algorithms have appeared in recent years to tackle
these crowded domains, with varying degrees of completeness
guarantees. The WHCA* algorithm by Silver [10] is a prioritized
approach that takes other agents into account for a finite time hori-
zon. Within this horizon, an agent must plan around the reser-
vations of higher priority agents; beyond the horizon, the plan is
continued directly to the goal. At regular intervals, the horizon is
shifted forward and a new partial route is computed. It is possi-
ble that the algorithm ends up in a situation from which no further
progress will be made. In the FAR algorithm [14], agents utilize a
flow annotation on the map to plan their route, and try to break any
deadlocks that occur using heuristic procedures.

Several other algorithms are complete for restricted classes of
instances. The MAPP algorithm [15] works on problem instances
that are called SLIDABLE: these are instances in which for every
three consecutive vertices in an agent’s path to its destination, an
alternative path exists that does not make use of the ‘middle’ ver-
tex. In addition, SLIDABLE specifies minimal interference condi-
tions between the start and goal locations of the agents, and the
number of unoccupied vertices must be at least two. In [5], the
algorithm TASS (tree-based agent swapping strategy) is presented
that is complete for trees (and often works well on instances that are
close to trees, but loses its completeness in a tree-decomposition
step), whereas the BIBOX algorithm [12] is complete for bicon-
nected graphs (and two unoccupied locations).

The Push and Swap algorithm [7] is presented as complete for a
connected graph with at least two unoccupied locations. However,
there exist several classes of instances for which Push and Swap
may1 not find a solution, even if one exists. Our contribution in
this paper is to analyze these shortcomings of Push and Swap and
to prove that, by fixing these shortcomings, we obtain a complete
algorithm, which we call Push and Rotate.

This paper is organized as follows. In Section 2, we provide
some background on the problem and its definition, which finds

1For some problem instances, whether or not Push and Swap finds
a solution depends on the order in which the agents are planned.

87

its origins in the pebble motion literature. In Section 3, we describe
the Push and Swap algorithm, and demonstrate for which classes of
instances it may fail. Section 4 presents our Push and Rotate algo-
rithm, and we prove that our solutions to the shortcomings of Push
and Swap result in a complete algorithm. In Section 5 we present a
brief experimental validation of our algorithm, and in Section 6 we
conclude with some ideas for future work. Finally, the proofs of the
completeness and correctness of the algorithms are in the appendix.

2. BACKGROUND
The problem we consider in this paper was previously defined

as coordinating pebble motion on graphs by Kornhauser [6]: let G
be a graph with n vertices with k < n pebbles numbered 1, . . . ,k
on distinct vertices. A move consists of transferring a pebble to
an adjacent unoccupied vertex. Goldreich proved that finding the
shortest sequence of moves to reach one arrangement of pebbles
from another is NP-hard [2].

Kornhauser showed that determining reachability can be done
in polynomial time, and requires at most O(n3) moves. This re-
sult is based on the fact that a graph may be viewed as a tree of
biconnected (non-separable) components that are linked by chains
of vertices with degree 2 (called isthmuses). If two of these com-
ponents are linked by a chain that contains more vertices than the
number of unoccupied vertices minus two, then it is impossible for
an agent to cross this isthmus; see Section 3.2 for an example.

In this paper, we use the term agents rather than pebbles, and we
use the following notation: We consider a connected graph G =
(V,E), a set of agents R , an initial assignment of agents to vertices
S : R →V , and a goal assignment of agents to vertices T : R →V .
A sequence of assignments of length L, Π = [Π1,Π2, · · · ,ΠL], is
a solution of the instance when Π1 = S , ΠL = T , and each as-
signment Πk+1 differs from the previous assignment Πk such that
exactly one agent moves to an adjacent and unoccupied vertex for
each k ≥ 1.

3. PUSH AND SWAP
In this section, we first explain the ideas behind the Push and

Swap algorithm, and then show in which cases it may fail to find a
solution. The Push and Swap algorithm works by iteratively select-
ing agents in some unspecified priority order to move to their re-
spective destination locations. For one agent, the algorithm moves
it to its destination location along any shortest path. When other
agents are encountered along this path, the action to be taken de-
pends on the priority of the other agent. In case the other agent
has lower priority, the algorithm attempts to move it out of the way
with the push operation. This can be accomplished by pushing the
blocking agent forward along the shortest path (not containing any
higher-priority agents) to an empty vertex.

s r

v

Figure 1: Vertex v with degree 3 can be used to swap r and s.

In case the blocking agent has already been planned for (i.e., it
has higher priority and is already occupying its goal location), the

algorithm attempts to exchange their positions using the swap op-
eration2. A swap can be accomplished by moving both agents to a
part of the graph where there is enough room for them to exchange
positions. Figure 1 shows a location v that meets the requirements
for a swap: it has degree three, and it is adjacent to two unoccupied
locations. All vertices with a degree of at least three are eligible for
a swap in the Push and Swap algorithm, and they are tried in or-
der of proximity. To effect the swap, first the two swapping agents
are moved to the vertex with sufficient degree using a variant of
the push operation. Next, the clear operation is invoked that tries
to clear two neighbouring locations of agents. If successful, the
agents exchange position, and then all the moves made to enable
this exchange are reversed ensuring that only the positions of the
two swapping agents are affected.

After the swap operation has successfully completed, one agent
r may be moved off its goal position. To move it back, the resolve
operation is used. It is first attempted to push the agent s currently
occupying its goal position (with which r has just swapped) towards
the goal of s. If this is successful, the goal position of r is free and it
can move there. Otherwise, the swap operation is invoked to move
s towards its destination. If s thus reaches its destination without
freeing the goal location of r, a recursive call to resolve is made
to bring an agent s′, that is now occupying r’s goal, back to its goal.

In the next sections 3.1 to 3.4, we demonstrate the shortcomings
of the Push and Swap algorithm that render it incomplete, i.e., we
show that there exist instances for which Push and Swap fails to
find a solution, even if one exists.

3.1 Polygons
In the pebble motion literature, a polygon is defined as an in-

stance in which all vertices have degree 2. In Figure 2, the agents
r and s, in their initial locations, are occupying each other’s goal
locations. First note that this instance can be solved by moving
both agents either clockwise or counter-clockwise, one step for one
agent and four steps for the other agent. Without loss of general-
ity, suppose that agent r has the highest priority. Agent r will push
agent s out of the way and reach its destination location. When the
algorithm next plans for agent s, the shortest path to its goal loca-
tion is blocked by agent r. Since the push operation may not move
r, due to its higher priority, a swap between the agents is attempted.
However, no node with degree three or more exists in this graph,
and Push and Swap fails to solve the instance.

r s

Figure 2: Polygon instance (cycle) in which no swap operation
is possible.

3.2 Isthmuses
In [16, 6], it is shown that for a biconnected graph3 with two

unoccupied vertices, any arrangement of pebbles can be reached
from any other. In case two biconnected components are joined by

2The swap operation can also be invoked in case a lower-priority
agent cannot be pushed out of the way, for instance if the planning
agent has a goal location at the end of a cul-de-sac.
3A graph is biconnected if the graph remains connected after re-
moval of any vertex.

88

a chain of vertices of degree two, called a bridge or isthmus, then
reachability depends on the length of the bridge, and the number of
unoccupied vertices in the graph.

A

B

vv′
a1

a2 a3 a4

a5

Figure 3: An isthmus connects two subproblems5A and B; for
agents in subproblem A, no vertices beyond vertex v in subprob-
lem B can be reached.

The Push and Swap algorithm does not take the notion of isth-
muses into account, and can fail accordingly. In Figure 3, suppose
that a1’s destination is location v, and a4 and a5 are currently occu-
pying each other’s goal locations. To exchange position, they need
to use vertex v. If a1 is planned first, however, then it will occupy
v and cannot be moved away. First, a4 (or a5) will try a push, but
it is not allowed to push an agent with higher priority. Second, the
swap operation will fail, because a swap is impossible between a1
and a4, as that requires both agents to be at a vertex with degree
three or more, with two neighbours unoccupied. The only two ver-
tices of degree three or more that can be reached by both a1 at a4
are v and v′. With a1 at v, there is only one empty neighbour to the
left of v; if a1 moves back to its start location and a4 moves to v′,
then there is only one empty vertex to the right of v′. Hence, Push
and Swap fails if a1 is planned before a4 and a5.

3.3 Incomplete Clear
To execute a swap, two agents must be brought to a vertex of

degree three or higher, with two empty neighbours. The clear

operation attempts to clear two neighbouring vertices, basically by
distinguishing the various cases that the operation might encounter,
and dealing with them case by case. In the original description
in [7], however, the cases listed in Figure 4 have not been con-
sidered. When executing the clear operation, it first looks if any
neighbours are already unoccupied. If there are two or more unoc-
cupied neighbouring vertices, the clear operation does not need
to clear additional vertices and it returns true. In the case that there
is one unoccupied neighbour, this vertex is considered an obstacle
throughout the execution of the rest of the operation (vertex ε in
Figure 4). In Figure 4(a), a solution would be to move agent x to ε,
and then to push x away to clear ε again, but the clear operation
does not consider this option.

With regard to Figure 4(b), Luna and Bekris [7] state that it is
unnecessary to consider the case of clearing node n by pushing it
along the path (v,v′), but they did not consider the possibility of
moving y to v′ along the edge (n,v′). To clear vertex n in Fig-
ure 4(b), agent r should move to ε, and agent s into v.

3.4 Recursive Resolve
When a planning agent s encounters a higher-priority agent r that

is already at its goal location, a swap operation is used to exchange
the position of the agents. As a result, agent r is moved off its goal
location, and to move back there the resolve operation is invoked.

5In Algorithm 1, Section 4.1, we show how to construct subprob-
lems, which are parts of the graph within which agents assigned to
the subproblem can exchange positions.

s r x

v′ v n

ε

(a) push through empty neighbour ε

s r

y

v′ v ε

n

(b) push through adjacent neighbour

Figure 4: Cases that the original clear does not solve.

1 9

210 3 4

5 8 6 11

12 7

(a) a8 is the next agent to
plan

1 11

109 2 4

5 6 3 8

12 7

(b) a10 is about to swap with
a6

Figure 5: Instance in which recursive calls to resolve result in
an invalid state.

A problem arises when a swap operation is invoked on an agent
that is already resolving, as is the case in Figure 5. In Figure 5(a),
the agents that are already at their destination are indicated with
a double circle, while a dotted arc indicates the destination of an
agent not at its destination. The next agent to plan is a8, at the pink
vertex. Push and Swap starts by swapping a8 with a6, and then
with a11, leaving a8 at its destination, a6 at the start location of
a8, and a11, which the resolve operation will now send forward
to its goal, occupying the goal location of a6. After a number of
steps, the following situation will be reached (Figure 5(b)): there
are three resolving agents a2,a3,a6 (yellow vertices), and the plan-
ning agent is a10. Now agent a10 will swap with agent a6, and since
T [a6]∈U, resolve will be invoked with s= a6 and r = a10, while
agent a6 is two steps away from its destination. Lines 4 (“move s
from A [s] to T [s]”) and 7 (“ps←{A [s],T [s]}”) of the resolve al-
gorithm [7] clearly require agent s to be on a vertex that is adjacent
to its destination vertex, hence an illegal state has been reached.

4. PUSH AND ROTATE
In this section, we present Push and Rotate, and show how it

solves Push and Swap’s problems listed in the previous section.
The case of polygon graphs are treated in the main algorithm (al-

89

gorithm 4 in Section 4.2) by selecting, for the next planning agent
r, a shortest path to its goal that does not encounter any finished
agents. The problems with recursive resolve are dealt with by the
rotate operation in Lemma 4.3, in case there is a cycle among re-
solving agents. The extended clear operation is similar to the one
described in Luna and Bekris [7], extended with the cases described
in Section 3.3, and here we do not discuss it in further detail.

First, in Section 4.1, we show how to decompose the problem
into subproblems, such that agents within a subproblem can ex-
change positions, but agents between subproblems cannot, and that
by prioritizing subproblems we can ensure that our algorithm finds
a solution if one exists. This solves the isthmus problem.

4.1 Problem decomposition
The problem decomposition we discuss in this section consists of

three stages. In the first stage we identify disjoint parts of the graph
that we call subproblems, the second stage is to assign agents to the
subproblems, and the third stage is to define a priority ordering be-
tween the subproblems, such that agents assigned to higher-priority
subproblems must move first in order for a solution to be found.

Due to [16], we know that for a biconnected graph with two un-
occupied vertices, any arrangement of agents can be reached from
any other. In case two biconnected components are connected by an
isthmus, it depends on the length of the isthmus and on the number
of unoccupied vertices, whether agents from one component can
reach all locations in the other. In algorithm 1, we are interested
in finding subproblems of the graph, such that agents assigned to
the same subproblem can exchange locations (using the swap op-
eration). In algorithm 1, let m = |V | − |R | denote the number of
unoccupied vertices.

Algorithm 1 Division into subproblems
1: C ← all nontrivial biconnected components in G
2: C ← C ∪{v ∈V | degree(v)≥ 3∧ v 6∈ C}
3: while ∃Ci,C j ∈ C | (minv∈Ci,u∈C j d(v,u))≤ m−2 do
4: Ck = Ci∪C j ∪{v′ ∈ shortest_path(u,v)}
5: C ← (C \{Ci,C j})∪{Ck}

In line 1 of algorithm 1, we first find all non-trivial (i.e., of size
at least three) biconnected components, which can be done in time
O(|V |+ |E|) [3]. Next, all remaining vertices of degree three or
higher are added as components of size 1. In while loop starting on
line 3, all pairs of components that have distance less than or equal
to m−2 (in line 3, where d(v,u) denotes the length of the shortest
path between v and u) are then joined into one subproblem6. The
value of m− 2 was found by Kornhauser [6] to be the maximum
distance between biconnected components such that agents in one
can still swap with agents in another (and later rediscovered by
Khorshid to hold for trees — [5], Tree Solvability Condition 3).

Algorithm 2 assigns agents to subproblems. The idea is that an
agent is part of a subproblem if it can reach the subproblem and
there are enough empty vertices near the subproblem to be able
to swap with other agents from the subproblem. The algorithm
iterates over all vertices in all subproblems, and decides whether
an agent occupying a vertex should be assigned to the subproblem.
In case an agent is on a vertex v inside a subproblem Ci that is not
connected to any vertex outside the subproblem, then this agent is
assigned to Ci (line 10). In case v is connected to a u 6∈ Ci, then in
line 4, the value of m′ indicates the number of unoccupied vertices

6Note that by component, we mean a biconnected component in
the graph, and by subproblem a construct consisting of one or more
components, to which we assign the agents.

Algorithm 2 Assigning agents to subproblems
1: for all Ci ∈ C do
2: for all v ∈ Ci do
3: for all u /∈ Ci for which (u,v) ∈ G do
4: m′← number of unoccupied vertices reachable from v

in G\{u}
5: m′′ ← number of unoccupied vertices reachable from

Ci in G\{v}
6: if (m′ ≥ 1∧m′ < m)∨m′′ ≥ 1 then
7: Assign agent on position v to Ci (if any)
8: Follow path from u away from v and assign the first

m′−1 agents on this path to Ci
9: if {u /∈ Ci for which (u,v) ∈ G}= /0 then

10: Assign agent on position v to Ci (if any)
11: return Assignment of agents to C

that can be reached if the edge (u,v) is not followed. If m′ ≥ 1,
the agent on v can be assigned to Ci (line 7), unless all unoccupied
vertices are outside the subproblem (m′ = m, line 6); in Figure 6,
for instance, if v is the vertex containing a8, and u is either of the
vertices holding a9 and a10, then all unoccupied vertices are left of
the subproblem (m′ = m), and a8 is not assigned to subproblem C.

In addition to agents inside the subproblem, the first m′ − 1
agents encountered on a path away from the subproblem are also
added to the subproblem, since these agents are able to enter
the subproblem while leaving one unoccupied vertex available for
movement (line 8). For the vertices v and u in Figure 6, m′ equals
3, so both agents a7 and a8 are assigned to the subproblem B. Note
that all agents {a5, . . . ,a8} are assigned to subproblem B, and can
exchange positions within, but not all can occupy a vertex in the
subproblem simultaneously.

In case m′=m, an agent occupying vertex v is only assigned to Ci
if it is possible to move an unoccupied vertex into the subproblem
without moving the agent out of the subproblem. Hence, if m′′ ≥ 1
(at least one vertex is reachable from component Ci, if we do not
use the agent’s current vertex v), such agents are also assigned to
the subproblem (lines 5, 7).

Algorithm 3 Priority relation between subproblems
1: for all Ci ∈ C do
2: for all v ∈ Ci do
3: for all u /∈ Ci for which (u,v) ∈ G do
4: Vertex u should be the first vertex on the path from Ci

to another subproblem C j, otherwise continue with the
next u

5: v′← v
6: while r← T −1[v′] | r does not belong to Ci do
7: if Agent r belongs to C j then
8: Ci ≺ C j
9: Continue with next u (line 3)

10: v′← next vertex on path from Ci to C j
11: return The priority relation “≺”

The third stage of the decomposition process, listed in algo-
rithm 3, is to assign priorities to agents based on their member-
ship to subproblems (agents assigned to the same subproblem re-
ceive the same priority). Given two subproblems Ci and C j, and an
agent r assigned to C j with goal position T [r], the priority relation
Ci ≺ C j is added in either of the following two cases:

1. T [r] is on the edge of subproblem Ci.

2. Agent r at T [r] locks an unassigned agent on the edge of Ci.

90

A B

C

a1

a2a3

a4

a6

a5 a7 a8

a9

a10

v u

Figure 6: Decomposition of a problem: the agents assigned to subproblem B are a5, a6, a7 and a8.

A

C

D

B

vu

a1 a2

a3

a4 a5 a11

a6

a7

a8

a9

a10

Figure 7: If agent a5 is assigned a higher priority than agents
a8 and a9, then a swap between the latter two is impossible.

As an example of the second case, consider the instance of Figure 7,
in which for all agents their start location equals their destination
location, except for agents a8 and a9, which want to exchange po-
sitions. Note that agent a11 is not assigned to any subproblem by
Algorithm 2. If agent a5 has high priority, then it will lock agent
a11 and agents a8 and a9 in their positions. Algorithm 3, when
considering (v,u) as named in the figure, will first find, on line 6,
that agent a11 does not belong to D on, and in the next iteration, on
line 7, find that agent a5 belongs to C. Hence the relation D≺C is
added on line 8. Note that the unassigned agents (in the example
only a11) always have lowest priority.

4.2 The solve Operation
The Push and Rotate algorithm continues by calling operation

solve (algorithm 4). Like Push and Swap, it plans the agents one
by one. The while loop In line 6 iterates until the set F of agents
that have been planned for equals the set of agents R . In line 8, we
randomly select a non-finished agent with (equal) highest priority,
and determine an arbitrary shortest path in line 12 (or a shortest path
avoiding finished agents, in case the graph is a polygon (line 10)).
The while loop from line 13 to line 21 moves agent r forward one
step at a time. The basic procedure is to try a push, in line 18, and
if that fails to try a swap, in line 19. If swap fails, then the instance
has no solution (Theorem 1), and the algorithm returns false.

In line 21, the latest vertex v is added to the path q, which records
the path traversed by agent r. Before we explain lines 15 and 16,
we first show how q is processed, in lines 24 to 32. In line 27,
it is checked whether in the trail of agent r, there exists an agent
s ∈ F that has been moved off its goal location. In case it is not
possible to move s to its goal location, then we assign to r the agent
occupying its goal location, and return to the loop from line 6. If it
is detected, in line 15, that q forms a cycle, then all agents on that
cycle are rotated one step, using the rotate operation (see Figure 8
and Lemma 4.3).

4.3 Correctness and Completeness
We now present the main results for the correctness and the com-

pleteness of Push and Rotate; the proofs are in the appendix.

Algorithm 4 solve(G ,R ,S ,T)

1: Π← [], q← []
2: A ← S
3: F ← /0

4: r← empty

5: c←∀v ∈V : degree(v) = 2
6: while F 6= R do
7: if r = empty then
8: r← next agent in R \F
9: if c then

10: p← shortest_path(G ,A [r],T [r],A [F])
11: else
12: p← shortest_path(G ,A [r],T [r], /0)
13: while A [r] 6= T [r] do
14: v← vertex after A [r] on p
15: if v ∈ q then
16: rotate(Π,G ,A ,q,v)
17: else
18: if push(Π,G ,A ,r,v,A [F]) = false then
19: if swap(Π,G ,A ,r,A−1[v]) = false then
20: return false
21: q← append(q,v)
22: F ← F ∪{r}
23: r← empty

24: while |q|> 0 do
25: v← the last vertex on q
26: s← A−1(v)
27: if s ∈ F ∧A [s] 6= T [s] then
28: if r← A−1(T [s]) = empty then
29: move(Π,A , agent s to vertex T [s])
30: else
31: Break inner loop, continue outer loop
32: remove v from q
33: return Π

THEOREM 1. Push and Rotate is complete for the class of
multi-agent path planning problems in which there are two or more
unoccupied vertices in each connected component.

Push and Rotate works by calling algorithms 1 to 4 in order. The
idea behind the proof is as follows:

1. In each iteration of solve, an agent is added to F .

2. In case a finished agent has been moved off its goal location,
then its current location is on a path q.

3. After a finite number of iterations, all vertices on q have been
processed, restoring out-of-position agents in F to their goal
location.

To prove and state the correctness and completeness results, we
use the following function and predicates:

91

|R | 100 500 1000 1500 2000
P & R 9151.3 45494.9 90194.4 137208.3 184471.9
MAPP 9209.7 54458.9 154304.2 310645.4 497610.6

Table 1: MAPP and P & R on map 411.

c(r) the subproblem to which agent r is assigned.

blocked(r,s) agent s occupies the next location on the path of
agent r.

push(r,s) if blocked(r,s), then the push operation can push agent
s away from the next vertex on the path of r.

swap(r,s) if r and s are adjacent (i.e. (A [r],A [s]) ∈ G), then there
is a sequence of moves for which only agents r and s swap
positions.

The next two lemmas show that either the push or the swap oper-
ation, when called from Algorithm 4 on a solvable instance, will
succeed in moving an agent a step closer to its goal.

LEMMA 4.1. ¬push(r,s)→ c(r) = c(s)

LEMMA 4.2. c(r) = c(s) ⇐⇒ swap(r,s)

It follows immediately from Lemma 4.2 that an agent not as-
signed to a subproblem cannot swap with an agent assigned to some
subproblem. Corollary 4.1 shows that also in case two agents are
not assigned to any subproblem, no swap is possible.

COROLLARY 4.1. An agent that is not assigned to any sub-
problem cannot swap with any agent.

In the proofs of Lemma 4.1 and Lemma 4.2, we make use of
the fact that the assignment of an agent to a subproblem does not
change as the agent moves around the graph:

THEOREM 2. If assignment A ′ can be reached from assignment
A , the assignment of agents to subproblems is equal for A and A ′.

Finally, we demonstrate the correctness of the rotate operation,
as illustrated in Figure 8. Vertex v′ is first cleared to allow r to
step out of the cycle. The empty vertex created in the cycle allows
agents to rotate, but first agent r′ moves into v′, and r and r′ swap
positions. Then each agent in the cycle will move one step forward,
and finally r′ steps back into the cycle at v′.

LEMMA 4.3. The rotate operation, when invoked by solve,
moves all agents in a cycle forward by one step.

5. EMPIRICAL VALIDATION
We tested our algorithm on a set of benchmark problems from

the video game industry7, and compared the results with those of
the MAPP algorithm. Table 1 shows a sample of this comparison,
and clearly Push and Rotate produces significantly fewer moves
than MAPP as the congestion on the map increases.

Figure 9 shows map 411, in which locations and agents are ex-
actly one pixel wide, so although there are some narrow passages,
there are no isthmuses. For this map, there are benchmark in-
stances with up to 2000 agents, while the total number of locations
is 14098.
7The maps can be downloaded from movingai.com/benchmarks.
To compare with the exact same set of start and destination loca-
tions, we downloaded the scenarios provided by Wang and Botea at
http://users.rsise.anu.edu.au/~cwang/scenarios.zip.

a3

a4

a5

a6

a7

a8

r′
v′′

r

v′

ax ay · · ·

(a) vertex v′ must be cleared

a3

a4

a5

a6

a7

a8

v′′

r′
v′

r ax · · ·

(b) agents r and r′ must swap positions

Figure 8: Illustration of the rotate operation.

Figure 10 in [15] also shows the performance of the incomplete
WHCA* [10] and FAR [14] algorithms; the latter produces much
better plans than MAPP, though still worse than Push and Rotate.
To allow the reader to compare our approach to the aforementioned,
Figure 10 shows the number of moves and CPU times produced by
Push and Rotate on map 411. The computation times of MAPP,
FAR, and WHCA* are shown in Figure 12 of [15]. For 1000 agents,
FAR, MAPP and WHCA* require, respectively, 1, 10, and 60 sec-
onds (P&R 4s.); for 1600 agents, the algorithms require 5, 80, and
320 seconds (P&R 7s.)8.

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented Push and Rotate, a complete algo-

rithm for the cooperative multi-agent path planning problem, by
overcoming the shortcomings we identified in Luna and Bekris’s
Push and Swap [7]. For the complete specifications of all opera-
tions push, swap, rotate, and clear, we refer the reader to [1].

Our empirical validation showed that Push and Rotate finds
shorter plans than MAPP, while being applicable to a larger class
of instances. Push and Rotate also produced better plans than the
incomplete FAR and WHCA* algorithms, and its running times are
competitive with FAR, the fastest of the algorithms tested in [15].

An area for future work is to try to improve both the speed of the
algorithm and the quality of the produced solutions through the use
of heuristics. In [1], preliminary investigations showed that choos-
ing shortest paths that avoid finished agents could improve both
run time and solution quality. Heuristically determining the rela-
tive priorities of agents within subproblems is another possibility.

7. ACKNOWELDEMENTS
This research was sponsored by the SUPPORT project from the

Dutch Ministry of Economic Affairs.
8MAPP, FAR, and WHCA* were run on a 2.8 GHz Intel Core 2
Duo iMac with 2GB of RAM; Push and Rotate was programmed
in Java and ran on an Intel i7 870 at 2.93 GHz with 8GB of RAM.

92

Figure 9: Map 411 of Baldur’s Gate II.

8. REFERENCES
[1] Boris de Wilde. Cooperative multi-agent path planning.

Master’s thesis, Delft University of Technology, The
Netherlands, August 2012.

[2] Oded Goldreich. Finding the shortest move-sequence in the
graph-generalized 15-puzzle is np-hard. In Oded Goldreich,
editor, Studies in Complexity and Cryptography. Miscellanea
on the Interplay between Randomness and Computation,
volume 6650 of Lecture Notes in Computer Science, pages
1–5. Springer Berlin / Heidelberg, 2011. Original version
published in 1984.

[3] J. E. Hopcroft and R. E. Tarjan. Algorithm 447: efficient
algorithms for graph manipulation. Commun. ACM,
16(6):372–378, June 1973.

[4] K. Kant and S. W. Zucker. Toward efficient trajectory
planning: The path-velocity decomposition. The
International Journal of Robotics Research, 5(3):72–89, Fall
1986.

[5] M. M. Khorshid, R. C. Holte, and N. R. Sturtevant. A
polynomial-time algorithm for non-optimal multi-agent
pathfinding. In Symposium on Combinatorial Search
(SoCS-2011), AAAI Fourth Annual, pages 76–83, 2011.

[6] D. Kornhauser, G. Miller, and P. Spirakis. Coordinating
pebble motion on graphs, the diameter of permutation
groups, and applications. In 25th Annual Symposium on
Foundations of Computer Science, pages 241–250, 1984.

[7] R. Luna and K. E. Bekris. Efficient and complete centralized
multi-robot path planning. In Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on, pages
3268 –3275, sept. 2011.

[8] D. Nieuwenhuisen, A. Kamphuis, and M.H. Overmars. High
quality navigation in computer games. Science of Computer
Programming, 67(1):91 – 104, 2007. Special Issue on
Aspects of Game Programming.

[9] M. R. K. Ryan. Exploiting subgraph structure in multi-robot
path planning. Journal of Artificial Intelligence Research,
31(1), 2008.

[10] D. Silver. Cooperative pathfinding. In The 1st Conference on
Artificial Intelligence and Interactive Digital Entertainment

Figure 10: Number of moves and CPU time for map 411.

(AIIDE’05), pages 23–28, 2005.

[11] Trevor Standley and Richard Korf. Complete algorithms for
cooperative pathfinding problems. In Proceedings of the
Twenty-Second international joint conference on Artificial
Intelligence - Volume Volume One, IJCAI’11, pages
668–673. AAAI Press, 2011.

[12] P. Surynek. A novel approach to path planning for multiple
robots in bi-connected graphs. In Robotics and Automation,
2009. ICRA ’09. IEEE International Conference on, pages
3613–3619, May 2009.

[13] I. F. A. Vis. Survey of research in the design and control of
automated guided vehicle systems. European Journal of
Operational Research, 170(3):677–709, May 2006.

[14] K.-H. C. Wang and A. Botea. Fast and memory-efficient
multi-agent pathfinding. In Internationl Conference on
Automated Planning and Scheduling ICAPS, pages 380–387,
2008.

[15] K.-H. C. Wang and A. Botea. MAPP: a Scalable Multi-Agent
Path Planning Algorithm with Tractability and Completeness
Guarantees. Journal of Artificial Intelligence Research JAIR,
42:55–90, 2011.

[16] R. M. Wilson. Graph puzzles, homotopy, and the alternating
group. Journal of Combinatorial Theory, Series B,
16(1):86–96, 1974.

[17] Jingjin Yu and Steven M. LaValle. Planning optimal paths for
multi-agent systems on graphs. CoRR, abs/1204.3830, 2012.

APPENDIX

PROOF OF THEOREM 1. Let r be the next agent in the while-
loop of line 6. First a shortest path is determined to its goal. If the
graph is a polygon (c = true, line 5), then a shortest path is found in
the graph G \A [F]. In each iteration of the while-loop in line 13,
agent r is moved to v, the next vertex on p:

• If v ∈ q, then there is a cycle C in q, as q is constructed
from vertices that have already been visited (line 21). The
rotate operation will move any agents on C one step for-

93

ward. Lemma 4.3 shows that this rotate operation is possible.
The result of the rotate is that all agents in F ∩A−1(C) are
returned to their goal positions (since a swap has moved these
agents one step backwards along q) and agent r moves to v.
Also, q will now be updated such that the cycle is removed.

• If push(r,s), then agent s will be pushed out of the way, and
agent r moves to v.

• Otherwise the swap operation will be executed.
¬push(r,s) → c(r) = c(s) (Lemma 4.1), and
c(r) = c(s) ↔ swap(r,s) (Lemma 4.2), hence agents r
and s will be swapped successfully.

If an agent s has been moved off its goal position T [s], then in
line 28 we assign to r the agent occupying the goal position of s.
If there is no such agent, we can return s to its goal position using
a single move (note that s is at most one location removed from
its goal; as soon as a vertex on q is encountered a second time, a
rotate is performed). Otherwise, we break the loop that iterates
over q, and start a new iteration of the loop from line 6, for the
agent r on T [s], extending q from that location.

Once all agents in the current subproblem are in F , there will be
no more agents r occupying T [s] in line 28 (since they are occupy-
ing T [r]), and all out-of-position agents in F can be moved back
to their goal locations.

PROOF OF LEMMA 4.1. We will prove the equivalent

c(r) 6= c(s)→ push(r,s)

If r is not assigned to any subproblem, then it cannot swap with
positions with any other agent (Corollary 4.1), so a push succeeds
if the instance has a solution.

Otherwise, r is assigned to some component c(r). Since c(r) 6=
c(s), the blocking agent s can, at most, reach a vertex on the edge
of c(r). Suppose that s is on the edge of c(r); then, due to Algo-
rithm 3, c(r)≺ c(s). Hence, it is not possible that s, or any agents
in subproblems ‘behind it’, are in F . Therefore, push succeeds in
case the instance is solvable.

In case s is not on the edge of c(r), then the goal location of r
must be on an isthmus between c(r) and c(s). Again, the agents
cannot swap (Lemma 4.2), so only a push can succeed. In its goal
position, agent r is also assigned to c(r) (Theorem 2), and in Algo-
rithm 2, line 8, we can see that there are sufficient empty vertices
to reach its goal position. Finally, note that s 6∈ F ; if s is at its goal
position, then c(r)≺ c(s) due to lines 6–8.

PROOF OF LEMMA 4.2. First we show swap(r,s) → c(r) =
c(s). After a successful swap, the only change in the assignment
are the positions of agents r and s. Now consider the assignments
A and A ′, which have the positions of agents r and s swapped:

A ′(a) =

A(s) if a = r
A(r) if a = s
A(a) otherwise

By Theorem 2, the assignment to subproblems according to A is
equal to the assignment to subproblems according to A ′, since there
is a sequence of moves (the swap) leading from A to A ′.

For the proof of c(r) = c(s)→ swap(r,s), we refer the reader
to [1]. Here, we briefly sketch the idea behind three possible cases:

1. Both agents are inside a biconnected component. From each
vertex in the biconnected component, there are two paths to
each of the empty vertices in G that are vertex disjunct within
the biconnected component; if r and s move to such a vertex
to swap, they can block at most one path, so two neighbours
of the vertex can be cleared.

2. Both agents are between two biconnected components, on an
isthmus of length≤m−2 (see algorithm 1, line 3). This max-
imum isthmus length guarantees that at least one of the ver-
tices of degree 3 or higher at the endpoints of the isthmus can
be reached by the agents, while leaving sufficient unoccupied
vertices available to swap there.

3. Both agents are on an isthmus connected to the subproblem.
The assignment criteria for agents to subproblems (at most
m′−1 agents on the isthmus are assigned, Algorithm 2 line 8)
ensure that it is always possible for any agent to enter the sub-
problem while an unoccupied vertex remains in the subprob-
lem, which allows the swap.

PROOF OF COROLLARY 4.1. From Algorithm 1, it is clear that
all vertices of degree 3 or higher are part of a subproblem. From
line 8 in Algorithm 2, it follows that an agent that is not assigned
to a subproblem cannot reach a vertex assigned to the subproblem
such that it still contains an empty vertex. Hence, it cannot reach a
vertex v of degree 3 with two of v’s neighbours unoccupied.

PROOF OF THEOREM 2. We show that a single move of agent
r from vertex vx to vertex vy (or the other way around), does not
change the assignment of agent r. From Algorithm 2, we can infer
that the assignment of an agent to a subproblem depends on the
reachability of empty vertices (specifically, on m′ and m′′ in lines
4 and 5) from the subproblem (and on the total number of empty
vertices m). The idea behind this proof is that this reachability is
not affected by any single move, since an agent move leaves behind
an empty vertex.

In particular, we show that for each case of membership of vx
and vy to some subproblem Ci, moving between vx and vy will not
alter the assignment of agent r in Algorithm 2.

case vx,vy ∈ Ci: agent r is assigned to Ci; w.l.o.g., let vx = v in
line 2. If ∃u /∈ Ci for which (u,v) ∈ G , then both m′ ≥ 1 and
m′′ ≥ 1 because vy is empty, so r is assigned to Ci in line 7. If
such a u does not exist, then r is assigned to Ci due to line 10.

case vx ∈ Ci,vy 6∈ Ci: suppose that agent r is at v (u and v as in
line 3). Note that m′ < m, because the vertex u is empty.

case m′ ≥ 1: r is assigned to Ci in line 7; if r is at u, then
m′ ≥ 2, since v is now unoccupied, and r will be assigned
to Ci in line 8.

case m′ = 0: note that m′′ ≤ m′, (always, not just in this
case), so r is not assigned to Ci; if r is at u, then m′ = 1,
but in line 8, only the first m′− 1 agents are assigned to
Ci, so r is not.

case ∀i, j vx 6∈ Ci,vy 6∈ C j: if neither vertex is in a subproblem,
then r’s membership to a subproblem Ci depends on whether
it is within the first m′−1 agents on the path from subproblem
Ci (line 8). Agent r will not exchange position with another
agent by moving between vx and vy, so whether or not it is
among the first m′−1 agents from Ci does not change.

PROOF OF LEMMA 4.3. Consider Figure 8; to see that, for a
solvable instance, the rotate operation will always succeed, note
the following:

• Because there are at least two empty vertices in G , we can
find a path p from v′ to an empty vertex. The moves that clear
v′ will be reversed at the end of the rotate operation.

• All agents in the cycle are assigned to the same subproblem,
since any agent not assigned to this subproblem would have
been pushed away (Lemma 4.1). This means that agents r and
r′ can swap (Lemma 4.2).

94

