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ABSTRACT
We consider AC electrical systems where each electrical device has
a power demand expressed as a complex number, and there is a
limit on the magnitude of total power supply. Motivated by this
scenario, we introduce the complex-demand knapsack problem (C-
KP), a new variation of the traditional knapsack problem, where
each item is associated with a demand as a complex number, rather
than a real number often interpreted as weight or size of the item.
While keeping the same goal as to maximize the sum of values of
the selected items, we put the capacity limit on the magnitude of
the sum of satisfied demands.

For C-KP, we prove its inapproximability by FPTAS (unless P
= NP), as well as presenting a (1/2− ε)-approximation algorithm.
Furthermore, we investigate the selfish multi-agent setting where
each agent is in charge of one item, and an agent may misreport
the demand and value of his item for his own interest. We show a
simple way to adapt our approximation algorithm to be monotone,
which is sufficient for the existence of incentive compatible pay-
ments such that no agent has an incentive to misreport. Our results
shed insight on the design of multi-agent systems for smart grid.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity

General Terms
Algorithms, Theory

Keywords
knapsack problem, approximation algorithm, FPTAS, incentive com-
patibility, truthfulness, AC electrical system, smart grid

1. INTRODUCTION
Most studies of power allocation only consider devices without
minimum power requirements; we focus on those with such re-
quirements, such as electric vehicles (EVs) charging, which will
not produce any value unless it is charged enough to travel a thresh-
old distance. Gerding et al. [4] studies online electric vehicle
charging by expressing power demands as real numbers. However,

in alternating current (AC) electrical systems, alternating power is
provided. In this paper, we study electrical devices with a power
demand expressed as a complex number d = dR + idI. Although
dI = 0 for purely resistive appliances; devices with capacitive or
inductive components have non-zero imaginary part dI [5].

In power allocation, due to the constraint of power generation,
there is a limit C on the magnitude of the total power supply, i.e.,
the magnitude of the sum of satisfied demands should not exceed
C. Since only a limited number of devices can be served and dif-
ferent devices produce different values when they receive enough
power to work, there arises a natural allocation problem: we want
to select a subset of devices to provide power subject to the power
limit constraint such that the total value produced is maximized.

Moreover, in a multi-agent setting (e.g., in future smart grid,
where intelligent devices are automatically controlled by agents),
the demand and value of each device are private knowledge of an
individual agent. The power allocation algorithm collects the input
information from each agent, and based on that, computes which
subset of demands to satisfy. Depending on the (publicly known)
algorithm, each selfish agent may misreport his demand or value to
the algorithm in order to get selected.

Naturally, to guarantee a good realization of our optimization
goal (here, maximizing social welfare, the total value of selected
items), we would like to design the algorithm in a way that incen-
tivizes all agents to report their true information. This falls into
the study of Algorithmic mechanism design [9, 10], a burgeoning
research area that deals with designing algorithms (called mech-
anisms here) for settings where inputs are controlled by selfish
agents. Each agent is modeled to strategize so as to maximize his
utility, a quantity that indicates his overall benefit. A mechanism
is incentive compatible, or simply truthful, if no agent has an in-
centive to misreport. A general approach in mechanism design is
to enforce payment on each agent to adjust his utility so that truth-
telling always maximizes his utility.

Now formally, we have the following mechanism design prob-
lem: we have a set K of distinct agents where each agent k ∈ K
owns an item with a positive value vk and a complex-valued de-
mand dk = dRk + idIk. Given capacity C > 0, our task is to choose
a subset S ⊆ K of agents to satisfy their demands and assign each
agent k a nonnegative payment pk. The goal is to elicit true inputs
and maximize the total value of selected items subject to the con-
straint that |

∑
k∈S dk| ≤ C. Here we limit our attention to the

case where dRk , d
I
k ≥ 0 for all k. This assumption is reasonable,

since, although demands do not necessarily lie in the first quadrant
of the complex plane, they are recommended1 to stay within the re-

1NEC NFPA 70-2005 (a standard for electrical systems and appli-
ances) suggests that high-consumption appliances should conform
to restricted power factor, which implies dRk ≥ |dIk|.
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gion dR ≥ |dI|, which can be obtained by rotating the first quadrant
by π/4.

Usually, the design of a truthful mechanism is composed of two
steps: first, we solve the pure algorithmic problem; second, we
identify certain condition that guarantees the existence of incentive
compatible payments and make it satisfied by our algorithm.

We follow this path for our problem. Our algorithmic prob-
lem is a winner determination optimization problem; we call it the
complex-demand knapsack problem (C-KP), as it turns out to be
an interesting new variation of the traditional knapsack problem
[6]. In the original one-dimensional knapsack problem (1-KP), the
demand of an item is simply a nonnegative real number, often inter-
preted as the weight or size of the item. The "knapsack", with fixed
real-valued capacity to hold the items, represents the limited re-
source. The multi-dimensional generalization, the m-dimensional
knapsack problem (m-KP), captures the settings where there are
m independent resource constraints on the m dimensions (inde-
pendent features) of the demands. 1-KP can model the power al-
location in direct current (DC) electrical systems, where power
demands can be expressed as real numbers, but fails for AC sys-
tems, where each demand is a two-dimensional vector. Our prob-
lem is also different from 2-KP since our capacity constraint is a
quadratic one (on the magnitude of the total satisfiable demand),
rather than two independent linear constraints in 2-KP. Moreover,
it is natural to modify our problem by including these two linear
constraints (on the real and imaginary part of the total satisfiable
demand respectively), and thus introduce the generalized complex-
demand knapsack problem (GC-KP). In fact, many power genera-
tors do have all three constraints of GC-KP.

It is well-known that 1-KP is NP-hard, and our complex-demand
variations include it as a special case when we set all dIk = 0.
Hence we are interested in good polynomial-time approximation
algorithms. In this work, we present an algorithm with constant
1/2− ε approximation ratio for both C-KP and GC-KP, and show
the inapproximability of C-KP by FPTAS (unless P = NP), based
on its connections to well-studied 1-KP, 2-KP and 3-KP. There is
still a gap to close, and we conjecture that C-KP admits a PTAS.

As to the incentive part, the difficulty lies in the following: VCG
mechanisms [9] are both social welfare maximizing and truthful;
however, they become computationally infeasible when computing
optimal social welfare is computationally hard, as in our setting.
Worse still, using algorithms approximating maximum social wel-
fare may not preserve truthfulness. To obtain truthful and efficient
mechanisms with a good approximation ratio, a leading approach
is through "monotonization": First prove that a certain notion of
monotonicity suffices for the existence of incentive compatible pay-
ments and then design or adapt an existing algorithm to be mono-
tone. This has been successfully applied to problem settings with
single-parameter [1] and single-minded agents [8], with efficiently
computable payments specified; in fact, for the former, monotonic-
ity is necessary as well, which justifies the necessity of monotoniza-
tion. An additional nice property of the specified payments is that
they guarantee nonnegative utilities for all agents, which, in mech-
anism design, is an important desired property called individual
rationality ensuring voluntary participation of the agents.

For the knapsack problem, if both demand and value of an item
are private information, which is the case we investigate here, we do
not have single-parameter agents. However, all variations we con-
sider are special cases of single-minded agents, each has a single
object dk in mind, gets value vk if he is assigned an object no worse
than dk and 0 otherwise. For example, in our power system setting,
the power demand dk is the single object the kth agent desires,
and the value vk is produced as long as the power he receives is

≥ dk (according to comparisons between complex numbers). The
monotonicity property for single-minded agents looks natural and
reasonable: If an agent is selected with certain demand and value,
he should remain selected with a lower demand and a higher value,
while the inputs of other agents are fixed. Although this property
easily holds for exact optimization, it may not hold for approxi-
mation algorithms. For C-KP, we succeed in monotonizing our
constant approximation algorithm, based on an existing monotone
FPTAS for 1-KP in [2], and thus achieving incentive compatibility.

Related Work The knapsack problem has many variations with
respect to divisibility of items, copies of items, dimensions of con-
straints, etc [6]. In this work, we restrict our attention to the NP-
hard one-dimensional knapsack problem (1-KP) where each indi-
visible item has only one single copy, and its multi-dimensional
generalization, the m-dimensional knapsack problem (m-KP).

For 1-KP, there is a pseudo-polynomial time algorithm using
dynamic programming achieving exact optimization when all item
values are integers. There is a simple fully polynomial-time approx-
imation scheme (FPTAS), which scales and rounds the item values
and then applies the pseudo-polynomial time algorithm on small
integer values [6]. However, this FPTAS is not monotone, since
the scale factor involves the maximum item value. Briest et al. [2]
monotonized it, by performing the same procedure with a series of
different scaling factors irrelevant to item values and taking the best
solution out of them. Hence 1-KP admits an incentive compatible
FPTAS.

As tom-KP withm ≥ 2, there is a polynomial-time approxima-
tion scheme (PTAS) by Frieze and Clarke [3] based on the integer
programming formulation, but it is not evident to see whether it is
monotone. On the other hand, 2-KP is already inapproximable by
FPTAS unless P = NP, by a reduction from EQUIPARTITION [6].
In fact, there is no efficient polynomial-time approximation scheme
(EPTAS) for 2-KP unless W[1] = FPT (See [7]).

Our Results We initiate the study of the complex-demand knap-
sack problem (C-KP) and its hybrid with 2-KP, the generalized
complex-demand knapsack problem (GC-KP).

In Section 3, we present an approximation algorithm for C-KP,
which projects all demand vectors onto the π/4 line and uses an
approximation algorithm for 1-KP as a subroutine. Since 1-KP ad-
mits an FPTAS, we achieve approximation ratio 1/2 − ε for any
ε > 0, with running time polynomial in 1/ε and the size of the
input. Moreover, the algorithm can be monotonized, as shown in
Section 4, due to the existence of the monotone FPTAS for 1-KP.

On the other hand, in Section 5, we complete our study of C-KP
by providing an inapproximability result. We prove that there is
no FPTAS for C-KP unless P = NP, through a modification of the
reduction from EQUIPARTITION for 2-KP.

Finally, for GC-KP, the inapproximability result is inherited since
it includes C-KP as a special case. We also come up with an ap-
proximation algorithm by applying the same idea as for C-KP, but
we have to use a PTAS for 3-KP as a subroutine (Section 6). Again
we achieve approximation ratio 1/2 − ε for any ε > 0, but the
running time is only guaranteed to be polynomial in the size of the
input. Regarding monotonization, a similar trick as in Section 4
would work for GC-KP, if we could find a good monotone ap-
proximation algorithm for 3-KP.

2. PRELIMINARIES

2.1 The Knapsack Problems
Here we give the integer programming formulation of the knapsack
problems discussed in this paper. The decision of an allocation

974



algorithm is specified by indicator variables xk ∈ {0, 1} for item
k ∈ K, which has a simple correspondence to the selected subset of
items: S = {k ∈ K : xk = 1}. We will switch back to the subset
representation in later sections for convenience of illustration.

The one-dimensional knapsack problem (1-KP) is defined as:

(1-KP) max
∑
k∈K

xkvk

subject to ∑
k∈K

xkdk ≤ C

where

• K is a set of items;

• vk is the positive value of item k if its demand is satisfied;

• dk is the nonnegative real-valued demand of item k;

• C is the positive real-valued capacity on the total satisfiable
demand;

• xk indicates whether item k is selected: xk = 1 means that
the demand of item k is satisfied, and 0 otherwise.

1-KP can be generalized to multi-dimensions. Them-dimensional
knapsack problem (m-KP) is defined as:

(m-KP) max
∑
k∈K

xkvk

subject to m independent inequalities∑
k∈K

xkd
j
k ≤ C

j

for j = 1, . . . ,m, where

• djk is the nonnegative real-valued demand of item k in di-
mension j;

• Cj is the positive real-valued capacity on the total satisfiable
demand in dimension j.

Each m-KP is a linear integer program, and m-KP is a special case
of (m + 1)-KP for all m. We are especially interested in 1-KP, 2-
KP and 3-KP, whose previous results will be used to achieve ours.
In particular, the two-dimensional knapsack problem (2-KP) can
also be formulated in terms of complex-valued demands:

(2-KP) max
∑
k∈K

xkvk

subject to ∑
k∈K

xkd
R
k ≤ CR and

∑
k∈K

xkd
I
k ≤ CI

where

• dRk , dIk are the nonnegative real part and imaginary part re-
spectively of the complex-valued demand dk of item k;

• CR, CI are the positive real-valued capacities on the real
part and imaginary part respectively of the total satisfiable
demand.

Our study concerns the capacity constraint on the magnitude of
the total satisfiable demand, which is no longer linear. We formu-
late the complex-demand knapsack problem (C-KP) as follows:

(C-KP) max
∑
k∈K

xkvk

subject to ∣∣∣ ∑
k∈K

xkdk

∣∣∣ ≤ C
where

• dk = dRk + idIk is the complex-valued demand of item k
where dRk , d

I
k are both nonnegative;

• C is the positive real-valued capacity on the magnitude of
the total satisfiable demand.

Combining the constraints of C-KP and 2-KP results in the fol-
lowing generalized complex-valued knapsack problem (GC-KP):

(GC-KP) max
∑
k∈K

xkvk

subject to∣∣∣ ∑
k∈K

xkdk

∣∣∣ ≤ C and
∑
k∈K

xkd
R
k ≤ CR and

∑
k∈K

xkd
I
k ≤ CI.

2.2 Approximation Algorithm
For knapsack problems, given a solution represented by the se-
lected subset of items S ⊆ K, we denote the total value of selected
items by v(S) =

∑
k∈S vk. Let S∗ denote an optimal solution.

For our value maximization objective, an algorithm is called a
ρ-approximation, if on each input, the output S of the algorithm
satisfies v(S) ≥ ρ · v(S∗). Since the knapsack problems con-
sidered in this paper are NP-hard, one looks for polynomial-time
algorithms with good approximation ratio ρ.

It is desirable to find constant approximation algorithms with ρ
as close to 1 as possible; stronger than that are algorithms whose
approximation ratio can be arbitrarily close to 1:

One such candidate is a polynomial-time approximation scheme
(PTAS), which is a (1 − ε)-approximation algorithm for any ε >
0. The running time of a PTAS is polynomial in the input size
for every fixed ε, but the exponent of the polynomial might de-
pend on 1/ε. One way of addressing this is to define the efficient
polynomial-time approximation scheme (EPTAS), whose running
time is the multiplication of a function in 1/ε and a polynomial in
the input size independent of ε. An even stronger notion is a fully
polynomial-time approximation scheme (FPTAS), which requires
the running time to be polynomial in both the input size and 1/ε.

In this work, we design constant 1/2 − ε approximation algo-
rithms for C-KP and GC-KP based on the FPTAS for 1-KP and
PTAS for 3-KP respectively.

2.3 Incentive Compatibility
In this subsection, we give a formal model of mechanism design
with single-minded agents based on our C-KP problem setting,
state the monotonicity condition, and specify the incentive compat-
ible payments under it. Single-minded agents are first introduced
by Lehmann et al. [8], and here we essentially present the model
described in [2]. Readers can refer to [9, 10] for a formal definition
of the general setting of mechanism design.

We are given a set K of agents, where agent k controls item k.
The demand and value of item k is agent k’s private information,
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which is called his type, denoted by tk = (dk, vk). Each agent k
is single-minded: he has the single demand dk in mind, and enjoys
value vk if and only if his demand is satisfied.

Here, with selfish behaviors, satisfying the demand of an agent
is no longer the same as selecting an agent, since an agent may
get selected by reporting a lower demand, but the assignment he
receives is only guaranteed to cover his reported demand, which
may not be enough for his true demand. Therefore, we need to
modify an outcome o of an allocation algorithm from the indicator
variable xk ∈ {0, 1} for each agent k to a specific assignment ok
agent k receives (clearly ok = 0 when xk = 0). Let C+ denote
all complex numbers in the first quadrant of the complex plane, we
have ok ∈ C+ and o ∈ CK+ .

Now we are able to represent the value agent k derives from
an outcome o by his valuation function: tk(o) = vk if dk ≤ ok
and 0 otherwise. Conventionally we abuse the notation and use
tk : CK+ → R to denote the valuation function associated with
type tk. The comparison dk ≤ ok interprets the condition that
the assignment meets the demand. For C-KP, it conforms to the
partial order between complex numbers: z1 ≤ z2 iff zR1 ≤ zR2 and
zI1 ≤ zI2. It can also be generalized to settings where the outcome
set admits a partial order and a minimum element. As required
in the general model of mechanism design, our valuation function
only depends on the outcomes, which also justifies the necessity to
change our representation of outcomes.

For ease of notation, we let t denote an input, a list of all agents’
types ((dk, vk) : k ∈ K) and denote the input except that of agent
k by t−k. Clearly t = (tk, t−k).2

A mechanismM = (A, p) consists of an allocation algorithmA
computing an allocation solutionA(t) ∈ CK+ for each input t and a
|K|-tuple p(t) for each t where pk(t) ∈ R is the payment enforced
on agent k. If dk ≤ A(t)k, we say that agent k is selected, i.e., he
receives an assignment that meets his input demand. We represent
the set of selected agents as S(A(t)). Given the mechanism, the
utility, the overall benefit of agent k, when his true type is tk, equals
his valuation minus the payment: uk(t) = tk(A(t))− pk(t).

As mentioned in Section 1, given the mechanism, each agent
may not report his true type for his own benefit. Suppose agent
k has true type tk = (dk, vk) and reports t′k = (d′k, v

′
k). Here

the outcome of the algorithm A is A(t′k, t−k), but his valuation
function remains tk, so he obtains valuation tk(A(t′k, t−k)), and
his utility is uk(t′k, t−k) = tk(A(t′k, t−k)) − pk(t′k, t−k). On the
other hand, if he reports his true type, his utility is uk(tk, t−k) =
tk(A(tk, t−k)) − pk(tk, t−k). Each selfish agent intends to max-
imize his utility, so he will choose to misreport t′k if it results in
higher utility, assuming other agents do not change their input,
i.e., uk(t′k, t−k) > uk(tk, t−k). Therefore, a mechanism is in-
centive compatible, or truthful, if and only if this can not hap-
pen, which is equivalent to saying that, for any agent k, any t−k
and any true type tk, truth-telling maximizes agent k’s utility, i.e.,
uk(tk, t−k) ≥ uk(t′k, t−k) for any possible t′k.

A sufficient condition to ensure truthfulness for single-minded
agents is monotonicity, specified as follows in our setting:

DEFINITION 2.1. An allocation algorithmA is monotone if k ∈
S(A(tk, t−k)) implies k ∈ S(A(t′k, t−k)) for any tk = (dk, vk)
and t′k = (d′k, v

′
k) with v′k ≥ vk, d′k ≤ dk.

Intuitively, in a monotone algorithm, if agent k is selected with
demand dk and value vk, he should be also selected when he has
smaller demand d′k and larger value v′k.3 The following theorem
states the sufficiency of monotonicity [2, 8]:
2Unless specified as the true type, tk may denote any reported type.
3Note that in this definition, the specific assignments ok are irrele-

THEOREM 2.2. Let A be a monotone and exact algorithm for
single-minded agents. Then there exists payment pA such that
MA = (A, pA) is incentive compatible.

We call a mechanism exact if for all inputs t = ((dk, vk) : k ∈
K) and all agents k, A(t)k is either dk or 0, i.e., either the exact
demand is satisfied or nothing is assigned. Without exactness, an
agent may benefit from underreporting his demand. It is not diffi-
cult to see that we can always modify a truthful mechanism to be
exact. After all, exactness is a reasonable assumption since it is
undesirable to waste resource in our allocation.

The incentive compatible payment pA is specified as follows:
Given a monotone algorithm A, if we fix dk and t−k for agent k,
then A defines a critical value θk(dk, t−k), such that when vk is
above the critical value, k is selected; and when vk is below the
critical value, k is not selected. Then we can define a payment
function pA(t), where each selected agent pays the critical value:

pAk (t) =

{
θk(dk, t−k) if agent k is selected
0 otherwise

By Theorem 2.2, if we are able to design a monotone algorithm,
we can transform it into a truthful mechanism. Moreover, the criti-
cal value for a given input can be computed in polynomial time by
a binary search on interval [0, vk] for each agent k during which
we repeatedly test if k is satisfied by running algorithm A. There-
fore, a monotone polynomial time allocation algorithm A implies
a polynomial time truthful mechanism.

In addition, the payment function pA(t) guarantees that all agents
receive nonnegative utilities. This property, called individual ratio-
nality, ensures voluntary participation of the agents, thus is also an
important desired property in mechanism design.

Therefore, the monotone polynomial time algorithm for C-KP
we will present in Section 4 implies a polynomial time mechanism
that is both individually rational and incentive compatible.

We need to point out that the mechanism requires the item val-
ues {vk} to be integers, because of the binary search needed in
the payment computation. This is a reasonable assumption, since
values are usually rounded up to the nearest cent or dollar. The ap-
proximation algorithm in Section 3 does not need this assumption,
since the FPTAS for 1-KP rounds the item values.

3. APPROXIMATION ALGORITHM FOR
C-KP

We present a polynomial-time ( 1
2
−ε)-approximation algorithm for

C-KP, which relies on a polynomial-time approximation algorithm
for 1-KP as a subroutine.

3.1 Basic Idea
Graphically, each demand dk = dRk + idIk of item k is a vector
in the first quadrant. A feasible solution of our problem is a sub-
set of items whose sum of demands lies in region D, the 1/4 disk
of radius C in the first quadrant. As shown in Fig. 1, D is di-
vided by chord PQ into a closed triangleD1 and a circular segment
D2 = D − D1. The π

4
line intersects chord PQ at point R. Since

we may preprocess the demands and eliminate those whose magni-
tude exceeds capacity C, without loss of generality, we assume all
|dk| ≤ C.

If we project all demands onto the π
4

line, i.e.,

d̃k , (dRk + dIk)/
√
2,

vant, so in Section 4, we can stay with our original problem formu-
lation when we argue about the monotonicity of our algorithm.
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Figure 1: Graphical picture for C-KP.

we make all demands one-dimensional. Now a subset of demands
has sum

∑
d̃k ≤ C/

√
2 (i.e., the sum vector does not go beyond

point R on the π
4

line) if and only if its original sum vector
∑
dk

lies inside the triangle D1. This is because that, the sum of projec-
tions,

∑
d̃k, is the projection of

∑
dk on the π

4
line. Therefore, the

subproblem on feasible region D1 can be solved by an approxima-
tion algorithm for 1-KP with demands changed to d̃k and capacity
to C/

√
2.

On the other hand, the subproblem on feasible region D1 is al-
most the whole story: First, evidently an optimal solution in D can
contain at most one demand in D2; second, if an optimal solution
consists of more than one demand, its sum can be broken into ei-
ther two separate subsums lying inD1, or, the sum of a vector inD2

and a subsum in D1. Our algorithm takes the maximum between
an approximate solution for the subproblem on feasible region D1

and an optimal solution on input demands lying in D2. This only
reduces the approximation ratio by at most a factor of 2.

3.2 Approximation Algorithm
We let Alga[(dk, vk : k ∈ K), C] be our algorithm for C-KP,
where (dk, vk : k ∈ K) are the complex-valued demands and val-
ues of items andC is the capacity. Moreover, we let Alg1d[(dk, vk :
k ∈ K), C] be a polynomial-time approximation algorithm for 1-
KP, where each demand is real-valued. We describe our algorithm
as follows:

Algorithm 1 Alga[(dk, vk : k ∈ K), C]

1: for k ∈ K do
2: Set d̃k =

dRk +dIk√
2

3: end for
4: Set S1 = Alg1d[(d̃k, vk : k ∈ K), C√

2
]

5: Set S2 = {argmaxk∈K:dk∈D2
vk}

6: Set S = argmaxS1,S2{v(S1), v(S2)}
7: Output S

In Alga, we first project all demands onto the π
4

line, and use an
approximation algorithm Alg1d for 1-KP to compute an allocation
(denoted by S1) considering the projected demands and capacity
C/
√
2. Then we look at all demands lying in regionD2 and choose

one with maximum value as solution S2. Note that S2 only consists
of a single item. Finally, we compare the total value of solutions
S1 and S2 and pick the larger one. All ties are broken arbitrarily.

3.3 Analysis
It is evident that our algorithm outputs a feasible solution in poly-
nomial time. For the approximation ratio, our main result is:

THEOREM 3.1. If Alg1d is a ρ-approximation algorithm for 1-
KP, then Alga is a ρ

2
-approximation algorithm for C-KP.

COROLLARY 3.2. Since 1-KP has an FPTAS [2, 6], there is a
( 1
2
−ε)-approximation algorithm for C-KP that runs in polynomial-

time in the size of input and 1/ε, for any ε > 0.

Now we prove Theorem 3.1.

PROOF. Let S∗ be an optimal solution to C-KP, for which the
feasible region is D. Let S∗1 , S∗2 be an optimal solution for the
subproblem on feasible region D1 and D2 respectively. By our
observation in Subsection 4.1, S∗1 is an optimal solution to 1-KP
on projected demands and capacity C/

√
2. Since Alg1d is a ρ-

approximation algorithm to 1-KP, we have v(S1) ≥ ρ · v(S∗1 ). It
is also evident that v(S∗2 ) = v(S2).

Next, we analyze the approximation ratio of Alga in three cases.
Here for a subset S ⊆ K, we define

d(S) ,
∑
k∈S

dk =
∑
k∈S

dRk + i
∑
k∈S

dIk

Case (1): (ρ-approximation) We consider an optimal solution S∗,
such that its sum of demands d(S∗) ∈ D1.

This is an easy case where v(S∗) = v(S∗1 ). We have v(S) ≥
v(S1) ≥ ρ · v(S∗1 ) = ρ · v(S∗).

Case (2): ( ρ
1+ρ

-approximation) We consider an optimal solution
S∗, such that d(S∗) ∈ D2, and there exists an item j ∈ S∗ whose
demand dj ∈ D2.

Let z ,
∑
k∈S∗\{j} dk. Thus, d(S∗) = dj + z, i.e., the sum

of demands of S∗ can be written as the sum of a single demand dj
and a subset sum z.4 Note that dj ∈ D2 and z ∈ D1. Otherwise,
the projection of d(S∗) = dj + z on the π

4
line would exceed

2 · C/
√
2 > C.

Moreover, we have v(S∗ \ {j}) ≤ v(S∗1 ), because S∗1 is an opti-
mal solution for feasible regionD1. On the other hand, vj ≤ v(S2)
since item j with dj ∈ D2 is a candidate for S2 in our algorithm.
We obtain:

v(S∗) = vj + v(S∗ \ {j}) ≤ v(S2) + v(S∗1 )

By the description of our algorithm, the total value of the output
solution v(S) = max(v(S1), v(S2)) ≥ max(ρ · v(S∗1 ), v(S2)) =
max(ρ · v(S∗1 ), v(S∗2 )). Now it remains to show that it is further
≥ ρ

1+ρ
(v(S2) + v(S∗1 )).

If ρ · v(S∗1 ) ≥ v(S2), we have that v(S) is at least

ρ · v(S∗1 ) =
ρ

1 + ρ
(ρ · v(S∗1 )+ v(S∗1 )) ≥

ρ

1 + ρ
(v(S2)+ v(S

∗
1 ));

otherwise, v(S) is at least

v(S2) =
ρ

1 + ρ
(v(S2) +

1

ρ
v(S2)) ≥

ρ

1 + ρ
(v(S2) + v(S∗1 )).

Case (3): ( ρ
2

-approximation) We consider an optimal solution
S∗, such that d(S∗) ∈ D2, and dk ∈ D1 for every item k ∈ S∗.

First, we let d̃(S) ,
∑
k∈S d̃k. The condition on S∗ is equiva-

lent to the following condition on projected demands on the π
4

line:
C/
√
2 < d̃(S∗) ≤ C, and d̃k ≤ C/

√
2 for every item k ∈ S∗.

We use Lemma 3.3 to show that d(S∗) ∈ D2 can be written as
the sum of two demand subset sums in D1. Lemma 3.3 is essen-
tially an equivalent statement of this on the projected demands, and
will be proved later in this subsection.

LEMMA 3.3. For a set of n positive real numbers a1, ..., an sat-
isfying

∑n
i=1 ai ≤ C, ai ≤ C′ for all i and C′ ≥ C/

√
2, there

4It is possible that S∗ only consists of a single item j, in which
case our algorithm obviously produces the optimal answer.
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exists a subset T ⊆ {1, ..., n} such that∑
i∈T

ai ≤ C′ and
∑

i∈{1,...,n}\T

ai ≤ C′.

By Lemma 3.3, we have d̃(T ) and d̃(S∗ \ T ) ≤ C/
√
2 for some

subset T ⊆ S∗. That is, d(T ) ∈ D1 and d(S∗ \ T ) ∈ D1.
Thus, v(T ) ≤ v(S∗1 ) and v(S∗ \ T ) ≤ v(S∗1 ). Moreover, since

v(S∗) = v(T ) + v(S∗ \ T ), we have v(S∗) ≤ 2v(S∗1 ). Hence

v(S) ≥ v(S1) ≥ ρ · v(S∗1 ) ≥
ρ

2
v(S∗).

Combining Cases (1)-(3): min{ρ, ρ/(1 + ρ), ρ/2} = ρ/2, we
complete the proof of the approximation ratio of Alga as ρ/2.

Finally, we prove Lemma 3.3:

PROOF. The case
∑n
i=1 ai ≤ C′ is trivial. Otherwise, let j

be the smallest index such that the partial sum exceeds C′, i.e.,∑j−1
i=1 ai ≤ C′ and

∑j
i=1 ai > C′. Clearly j ≥ 2 since all ai ≤

C′.
Let x =

∑j−1
i=1 ai, z = aj and y =

∑n
i=j+1 ai.

Note that
∑n
i=1 ai = x+ y + z. We already have

x ≤ C′, z ≤ C′, x+ y + z > C′ and x+ z > C′

The lemma holds if y + z ≤ C′, because we can set T =
{1, ..., j − 1}.

If y + z > C′, then we obtain:

x+ y = 2(x+ y + z)− (x+ z)− (y + z)

< 2C − 2C′ ≤ (2−
√
2)C <

C√
2
≤ C′

because x+ y+ z ≤ C. Hence, we can set T = {1, ..., j − 1, j +
1, ..., n}.

4. MONOTONE APPROXIMATION ALGO-
RITHM FOR C-KP

As mentioned in Subsection 2.3, a monotone polynomial time al-
gorithm for C-KP implies an incentive compatible polynomial time
mechanism. However, our approximation algorithm Alga presented
in Section 3 does not seem to have an easy proof for monotonicity.
In this section, we give a slight modification of Alga, for which
monotonicity becomes immediate and the approximation ratio is
preserved.

4.1 Basic Idea
In Alga, monotonicity is not guaranteed due to the comparison be-
tween v(S1) and v(S2), the total value of solution S1 and S2. Al-
though we assume Alg1d for 1-KP is monotone, v(S1) can fluctu-
ate since S1 is an approximate solution. Our trick here is to trans-
form each solution candidate for S2, a single item k with demand
dk ∈ D2, to be a solution candidate for S1: an item of the same
value whose demand is exactly the capacity limit C/

√
2 for Alg1d.

These new items will not combine with each other or with any orig-
inal items to form new solution candidates for S1. Then our new
algorithm Algb only needs to run Alg1d on the modified set of items
to produce a solution for C-KP.

4.2 Approximation Algorithm
Recall that we assume every demand dk lies in D (|dk| ≤ C). The

preprocessing d̃k = min{ d
R
k +dIk√

2
, C√

2
} does exactly the transfor-

mation mentioned above: For dk ∈ D1, we simply do the projec-
tion onto the π

4
line; otherwise, dk ∈ D2, its projection is larger

Algorithm 2 Algb[(dk, vk : k ∈ K), C]

1: for k ∈ K do
2: Set d̃k = min{ d

R
k +dIk√

2
, C√

2
}

3: end for
4: Set S = Alg1d[(d̃k, vk : k ∈ K), C√

2
]

5: Output S

than C/
√
2, and we cut it off to C/

√
2. Then we run Alg1d on the

modified projected demands and outputs the answer.
The following theorem states that our modification of the algo-

rithm does not change the approximation ratio:

THEOREM 4.1. If Alg1d is a ρ-approximation algorithm for 1-
KP, then Algb is a ρ

2
-approximation algorithm for C-KP.

The proof of Theorem 4.1 is essentially the same as that of The-
orem 3.1. The main difference is that, now instead of an explicit
comparison between the solutions S1 and S2 to the two subprob-
lems on region D1 and D2 respectively, our algorithm make it im-
plicit inside the execution of Alg1d. Therefore, in the formal proof
below, we have to define the two subproblems explicitly and show
that the total value of our output v(S) ≥ ρ ·max{v(S∗1 ), v(S∗2 )}.

The case analysis is easy given this inequality. Although Alga

has a better approximation guarantee in terms of the inequality
v(S) ≥ max{ρ · v(S∗1 ), v(S∗2 )}, overall, we achieve the same ap-
proximation ratio of ρ/2. Just for case (2), we can only prove an
approximation ratio of ρ/2, instead of ρ/(1 + ρ) for Alga.

PROOF. We partition K into two disjoint sets K1 and K2, such
that K1 , {k ∈ K : dk ∈ D1} and K2 , {k ∈ K : dk ∈ D2}.
Note that the projection of any demand in K1 onto the π

4
line is at

most C/
√
2, whereas that in K2 is larger than C/

√
2.

Let S1 be the output of Algb, when the input is K1. Let S2 be
the output of Algb, when the input is K2. Let S∗1 and S∗2 be their
corresponding optimal solutions. S∗1 is an optimal solution to 1-KP
on projected demands within capacity C/

√
2, hence is an optimal

solution to C-KP on feasible region D1. On the other hand, since
each demand in K2 is changed to one exactly equal to the capacity
limit of 1-KP, only one of them can be satisfied. Hence S∗2 chooses
the one with maximum value S∗2 = {argmaxk∈K2 vk}.

Since any demand in K2 will not combine with any in K1 to
form new feasible solutions to 1-KP, Algb outputs either a solution
whose sum vector lies in D1 or a singleton set of a demand in K2,
which is evidently a feasible solution to C-KP.

Optimally Alg1d would output argmax{v(S∗1 ), v(S∗2 )}. Since
Alg1d is a ρ-approximation algorithm to 1-KP, we have v(S) ≥
ρ ·max{v(S∗1 ), v(S∗2 )}.

Based on this inequality, it is easy to go through the case analysis
in the proof of Theorem 3.1 (with slight modifications), hence we
omit the rest of the proof here.

On the other hand, our new algorithm is monotone according to
Definition 2.1.

THEOREM 4.2. If Alg1d is a monotone algorithm for 1-KP,
then Algb is a monotone algorithm for C-KP.

PROOF. We need to show that, if item k is selected by Algb

with demand dk and value vk, k is also selected with demand d′k
and value v′k, where v′k ≥ vk and d′k ≤ dk (i.e., d′Rk ≤ dRk and
d′

I
k ≤ dIk), while all inputs of other agents do not change.
Item k is selected by Algb on d′k and v′k if and only if it is se-

lected by Alg1d on d̃′k and v′k. Since d̃k = min{ d
R
k +dIk√

2
, C√

2
},
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d′
R
k ≤ dRk and d′Ik ≤ dIk implies d̃′k ≤ d̃k. Then from the mono-

tonicity of Alg1d, k is selected by Alg1d, and hence by Algb.

Combining Theorem 4.1, Theorem 4.2 with Theorem 2.2 gives:5

COROLLARY 4.3. Since 1-KP has a monotone FPTAS [2], there
is an incentive compatible ( 1

2
− ε)-approximation algorithm for C-

KP that runs in polynomial-time in the size of input and 1/ε, for
any ε > 0.

5. INAPPROXIMABILITY FOR C-KP
In this section, we complete the study of C-KP by providing an
inapproximability result. We show that C-KP does not admit an
FPTAS, unless P = NP.

We remark that it is known there is no FPTAS for 2-KP (see
[6]), which does not have direct implications for C-KP. However,
our proof is an extension of the basic idea in the proof for 2-KP.

As in the reduction for 2-KP, we reduce the EQUIPARTITION
problem to C-KP:

DEFINITION 5.1. (EQUIPARTITION Problem): Given a set of
positive integers {wk : k ∈ K}, with |K| = n where n is even, we
determine if there is a subset of items S ⊆ K such that

|S| = n

2
and

∑
k∈S

wk =
∑
k/∈S

wk

It is well-known that EQUIPARTITION is NP-complete.

THEOREM 5.2. There is no FPTAS for C-KP, unless P = NP.

PROOF. We define a decision version of C-KP with a cardinal-
ity objective: given {wk : k ∈ K}, a capacity bound C and a
cardinality bound M , we determine if there is a subset of items S
such that

|S| ≥M, and
∣∣∣∑
k∈S

dk

∣∣∣ ≤ C
Now we map every instance of EQUIPARTITION to an instance

of the C-KP decision problem that always yields the same answer.
Given {wk : k ∈ K} from EQUIPARTITION, define

M = n/2, dRk = wk, dIk = β(wmax − wk),

C =

√(W
2

)2
+ β2

(nwmax

2
− W

2

)2
where W ,

∑n
k=1 wk, wmax , max{wk : k ∈ K}. Note that in

our reduction, dIk ≥ 0.
As shown in Fig. 2, the feasible regionD for C-KP is the 1

4
disk

of radius C in the first quadrant. Since for any subset S ⊆ K,∑
k∈S d

I
k = β(|S| ·wmax −

∑
k∈S d

R
k ), the cardinality constraint

|S| ≥ n
2

imposes all solutions to have its sum vector in the half-
plane H : dI ≥ β(nwmax

2
− dR). The dividing line of H goes

through point P :
(
W
2
, β(nwmax

2
− W

2
)
)

. Our main idea is to set
β > 0 such that the dividing line of H coincides with the tangent
line at P . Thus we make the intersection of H and D exactly P ,
which implies |S| = n

2
and

∑
k∈S wj =

W
2

for any solution S to
our reduced C-KP decision problem instance.

On the other hand, it is clear that each subset S satisfying condi-
tions of EQUIPARTITION also satisfies conditions of the reduced C-
KP decision problem. Therefore, the solution of the reduced C-KP
decision problem is equivalent to the solution of EQUIPARTITION.
5Note that algorithms are exact under this problem formulation
where a solution is specified as the selection of a subset of items.

�

�

�(
����	

�
−

�

�
)

dI ≥ �(
����

2
− dR)

P
D

H

dR

dI

O

Figure 2: Reduction of inapproximability.

To determine a proper β, since the dividing line of halfplane H
goes through P , it coincides with the tangent line at P if and only
if they have the same slope, i.e.,

−
W
2

β(nwmax
2
− W

2
)
= −β.

Solving the above equation, we obtain

β =

√
W

nwmax −W
,

which is > 0 unless all weights are equal. In this case, we set
β = 0, and it is trivially a "yes" instance for both EQUIPARTITION
and our C-KP decision problem.

So far we have shown the NP-hardness of the C-KP decision
problem. So its maximization version, where |S| ≥ M is replaced
by max |S|, is NP-hard. We use the standard technique to prove the
inapproximability of the maximization version by FPTAS. Suppose
that there exists an FPTAS for any ε > 0 in time polynomial in n
and 1/ε. Then we choose ε = 1

n+1
. Let the optimal solution be

z∗ > 0 and that of the approximation solution produced by FPTAS
be zA. We obtain:

zA ≥ (1− ε)z∗ > z∗ − z∗/n ≥ z∗ − 1

because z∗ ≤ n. Moreover, since z∗ is an integer, this implies
that the FPTAS can solve the problem exactly in polynomial time,
contradicting the NP-hardness of the problem.

Finally, since the maximization version of C-KP decision prob-
lem is a special case of the original C-KP with all vk = 1, there is
no FPTAS to C-KP.

6. APPROXIMATION ALGORITHM FOR
GC-KP

We are also able to solve the generalized problem GC-KP, by
changing our approximation algorithm Alga in Section 3. Now,
instead of an approximation algorithm Alg1d for 1-KP as a sub-
routine, we rely on an approximation algorithm for 3-KP (three-
dimensional knapsack problem) as a subroutine.

6.1 Basic Idea
Now a feasible solution of our problem is a subset of items whose
sum of demands lies in the intersection of halfplanes dR ≤ CR,
dI ≤ CI, and the 1/4 disk of radius C in the first quadrant. In the
most general case (CR, CI < C), both halfplanes cut the circle,
which also cut the original regionsD1 andD2 defined in Section 3.
Fig. 3 shows the new D1 (polygon PSTQO) and D2. Clearly, the
feasible region D is the disjoint union of D1 and D2.

Recall that OR is perpendicular to ST and the length of OR is
C/
√
2. If we denote the projection of a demand dk onto line OR
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Figure 3: Graphical Picture for GC-KP.

by d̃k, the regionD1 corresponds to 3-dimensional linear constraint∑
k∈K xkd̃k ≤ C/

√
2,
∑
k∈K xkd

R
k ≤ CR and

∑
k∈K xkd

I
k ≤

CI. Thus the subproblem on feasible region D1 can be solved by a
3-dimensional knapsack algorithm.

On the other hand, the solutions in polygon D1 is almost the
whole story by the same reason as in Section 3. Again our al-
gorithm takes the maximum between an optimal solution for the
subproblem on feasible regionD1 and an optimal solution on input
demands lying in D2. This reduces the approximation ratio by at
most a factor of 2.

The degenerate cases (CR ≥ C or CI ≥ C or both) can be
treated easily by setting T,Q to be the intersection point of the
circle and the dR-axis, or setting P, S to be the intersection point
of the circle and the dI-axis, or both.

6.2 Approximation Algorithm
Let Algc[(dk, vk : k ∈ K), C, CR, CI] be our approximation algo-
rithm for GC-KP, whereC,CR, CI are the capacity on magnitude,
real part and imaginary part of total satisfiable demand respectively.
Let Alg3d[((d1k, d

2
k, d

3
k), vk : k ∈ K), C1, C2, C3] be an approxi-

mation algorithm for 3-KP (e.g., from [3] or [6]). We describe our
approximation algorithm to GC-KP as follows:

Algorithm 3 Algc[(dk, vk : k ∈ K), C, CR, CI]

1: for k ∈ K do
2: Set d̃k =

dRk +dIk√
2

3: end for
4: Set S1 = Alg3d[((d̃k, d

R
k , d

I
k), vk : k ∈ K), C√

2
, CR, CI]

5: Set S2 = {argmaxk∈K:dk∈D2
vk}

6: Set S = argmaxS1,S2{v(S1), v(S2)}
7: Output S

Our Algc follows the same structure as Alga for C-KP. The dif-
ference is that, for GC-KP, the subproblem on feasible region D1

is equivalent to an instance of 3-KP, since D1 is defined by three
halfplanes. And to check if a demand dk lies in regionD2, we need
to check four inequalities: |dk| ≤ C, d̃k > C/

√
2, dRk ≤ CR and

dIk ≤ CI.

THEOREM 6.1. If Alg3d is a ρ-approximation algorithm for 3-
KP, Algc is a ρ

2
-approximation algorithm for GC-KP.

COROLLARY 6.2. Since 3-KP has a PTAS [3], there is a ( 1
2
−

ε)-approximation algorithm for GC-KP that runs in polynomial-
time in the size of input, for any ε > 0.

We omit the proof of Theorem 6.1 here since it is essentially the
same as that of Theorem 3.1 for C-KP.

7. CONCLUSIONS AND FUTURE WORK
The knapsack problem has been one of the most popular algorith-
mic problems since it is a simple abstraction that captures the trade-
off between limited resource and value maximization in resource
allocation. In this paper, motivated by the need to model AC elec-
trical systems, where power demands have to be represented as
complex numbers, we initiate the study of a new variation called
the complex-demand knapsack problem (C-KP).

By investigating its relationship with multi-dimensional knap-
sack problems (m-KP), we provide ( 1

2
− ε)-approximation algo-

rithms for C-KP and its generalization GC-KP; on the other hand,
we also show its inapproximability by FPTAS unless P = NP. Fur-
thermore, our approximation algorithm for C-KP can be mono-
tonized, which implies the existence of a mechanism/algorithm of
the same approximation ratio that is incentive compatible, individ-
ually rational, and computationally efficient.

Our results provide basic insights on efficient power allocation
in AC electrical systems, which is a fundamental problem in the
design of multi-agent systems for smart grid. Still, there are inter-
esting directions to continue in the future: First, we hope to find
a PTAS for C-KP, closing the gap between constant approximation
and FPTAS, and a monotone algorithm for GC-KP. Second, we will
extend the problem to an electrical network setting, where there is
an underlying network connecting different devices with links of
different capacities on the magnitude of transmitted power. For
mechanism design, we may require an additional property called
cancellability: the total payment to be collected from the agents
should always cover the cost to generate the power supply, given
a cost function of power generation. We are not aware of any pre-
vious work related to this property in mechanism design, and we
expect new insights and techniques coming out of the study on it.
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