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ABSTRACT
The varying nature of qualities and costs of the crowdworkers makes
task allocation a non-trivial problem in almost all crowdsourcing
applications. If crowdworkers are strategic about their costs, the
problem becomes even more challenging. Interestingly, in sev-
eral crowdsourcing applications, for example, traffic monitoring,
air pollution monitoring, digital epidemiology, smart grids oper-
ations, etc., the structure of the tasks in space or time exhibits a
natural linear ordering. Motivated by the above observation, we
model the problem of task allocation to strategic crowdworkers as
an interval cover mechanism design problem. In this mechanism, a
planner (or task requester) needs to crowdsource labels for a set of
tasks in a cost effective manner and make a high quality inference.
We consider two different scenarios in this problem: homogeneous
and heterogeneous, based on the qualities of crowdworkers. We
show that the task allocation problem is polynomial time solvable
in the homogeneous case while it is NP-hard in the heterogeneous
case. When the crowdworkers are strategic about their costs, we
design truthful mechanisms for both the scenarios. In particular,
for the heterogeneous case, we propose a novel approximation al-
gorithm that is monotone, leading to a truthful interval cover mech-
anism via appropriate payments.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics; Theory; Algorithms

Keywords
Crowd Sourcing; Task Allocation; Mechanism Design; Truthful
Mechanisms

1. INTRODUCTION
Online crowdsourcing has emerged as an attractive and a cost effec-
tive way to access a sizable on-demand workforce for accomplish-
ing large tasks that are difficult to complete otherwise. Tasks for
which crowdsourcing has been shown to be useful include labeling
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large image collections [27], environmental sensing, and searching
for objects across a wide geographical area [22]. The success of
crowdsourcing can be attributed to many factors, including emer-
gence of low cost and easy to use platforms, ease of access to global
workers, and lack of internal expertise and resources for large en-
terprises. Popular online crowdsourcing platforms include Amazon
Mechanical Turk (AMT), Rent-A-Coder, oDesk, etc. AMT is one
of the early crowdsourcing platforms to emerge for Human Intelli-
gence Tasks (HITs). On AMT, a planner (or task requester) posts a
set of HITs and crowdworkers (or agents) complete different sub-
sets of these tasks. AMT follows posted price mechanisms, where
a planner posts a price that he is willing to pay.

The posted price mechanism is suitable for simple and commod-
ity tasks, where the cost to the crowdworker is quite insignificant
– for example, tagging a CAPTCHA 1 image with its string. These
mechanisms, however, are not ideal for other crowdsourcing appli-
cations that involve specialized tasks for which the planner hardly
has any idea about crowdworkers’ costs and/or qualities, for exam-
ple, tagging geographical regions with air pollution level or severity
level of Ebola like disease. For such situations, the planner might
be better off using a reverse auction mechanism instead of using a
posted price mechanism. In a reverse auction mechanism, crowd-
workers are asked to submit bids on their cost and/or quality for
completing bundles of tasks and then specific crowdworkers are
selected to execute tasks so as to minimize the total cost while en-
suring a threshold level of quality.

1.1 Interval Cover Mechanisms
In this paper, we address the problem of designing a reverse auc-

tion mechanism for a family of crowdsourcing applications that
have certain signature characteristics (discussed below). For rea-
sons that would be clear soon, we call these auction mechanisms as
interval cover mechanisms. In a subsequent section, we highlight a
couple of application scenarios having these characteristics.

Imagine a crowdsourcing application, where

1. Multiple tasks need to be executed and each task involves
acquiring a label about some underlying object. The label of
each object is binary, say 0 or 1. The true label of each object
is unknown to the planner. 2

2. Discovering the true labels of all the tasks is either prohibitively
expensive or time consuming for the planner, making crowd-
sourcing a natural option. The planner invites crowdworkers

1http://en.wikipedia.org/wiki/CAPTCHA
2We use the terms tasks and objects interchangeably but the mean-
ing should be clear from the context.
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to report the labels of chosen subsets of tasks. The crowd-
workers can have different qualities. The quality of a crowd-
worker corresponds to the probability of the worker labeling
a task correctly.

3. Unlike human intelligence tasks on Amazon Mechanical Turk,
the tasks are such that the execution of these tasks involves
significant cost on the part of the crowdworkers. We assume
that the planner knows the quality of each crowdworker but
is unsure about the true costs of the crowdworkers to execute
these tasks.

4. The underlying objects (and hence corresponding tasks) have
a natural linear ordering (for example, in either time or space).
Therefore, each crowdworker is naturally interested in ex-
ecuting a subset of tasks that are contiguous on this linear
scale. We refer to a subset of contiguous tasks an interval.

5. The crowdworkers could be strategic in terms of revealing
their cost of executing an interval of tasks and also the inter-
val itself.

6. The crowdworkers are single minded bidders in the sense that
they submit a take-it or leave-it bid for the corresponding
interval. This means that a crowdworker would either supply
the labels of all the tasks in an interval or nothing.

7. Given the fact that crowdworkers may be of low quality in
their labeling of the tasks, the planner provisions to acquire
labels from multiple crowdworkers for each task. The plan-
ner also wants to achieve a certain threshold on inference
quality for each task, so he specifies upfront a certain error
tolerance limit for each task.

For any such crowdsourcing application, a compelling option for
the planner is to conduct a reverse auction where he invites each
crowdworker to submit a bid on any interval of tasks. We call such
an auction mechanism as interval cover mechanism due to the bid
structures. An interval cover mechanism allocates each task to a
subset of crowdworkers, depending on their qualities and bids, such
that the overall cost is minimized and the error tolerance limit gets
satisfied for each task.

For any given set of bids (truthful or otherwise) in an interval
cover mechanism, computing a cost minimizing allocation of the
tasks to the crowdworkers is in general an NP-Hard problem (Theo-
rem 2). The problem, however, becomes polynomial time solvable
if the quality of all the crowdworkers is assumed to be the same
(Theorem 1). This motivates us to split our investigations into two
parts -homogeneous scenario and heterogeneous scenario depend-
ing on whether we assume the quality of all the crowdworkers to
be the same or different.

1.2 Motivating Crowdsourcing Applications
In this section, we provide a couple of important real world ap-

plications where interval cover mechanisms make perfect sense.
Mobile Pervasive Sensing: A typical goal of mobile pervasive

sensing [4, 9] is to provide real time information on urban pro-
cesses such as fine grained air quality data, traffic conditions along
heavily congested routes (e.g. an arterial road) in that urban area.
General wisdom suggests that the cost of sensing here can be re-
duced significantly by means of crowdsourcing, where daily com-
muters who travel alongside these routes act as crowdworkers and
sense the portion of the arterial road that falls in their daily com-
mute route [13, 28]. If we were to formulate an interval cover
mechanism for this application scenario, the intervals would cor-
respond to different contiguous patches on the arterial road, and

the bid of a crowdworker would primarily include the cost of in-
stalling and maintaining sensors (or applications on smartphones
[23]) and using a particular (possibly sub-optimal to her) spatial
commute. Each crowdworker bids for an interval of the route that
he is willing to sense, and this interval depends on the intersection
of the target arterial road with her daily commute route.

Demand Response in Smart Grids: In the context of smart
grids, the planner faces a time varying demand profile for electric-
ity. The planner can purchase electricity power from a wide vari-
ety of power suppliers. The planner asks these power suppliers to
submit their bids for time intervals when they can meet the power
demand. One can assume that each power supplier has a certain
reliability to meet its promised supply and this reliability score is
known to the planner based on past experience [2]. The goal of the
planner is to purchase power from a mix of suppliers to meet the
demand with a certain tolerance limit (or maximum probability of
failure) at each time point. This problem can be modeled as an in-
terval cover mechanism where intervals would correspond to time
intervals and power suppliers would correspond to the crowdwork-
ers. The label of a power supplier would correspond to whether it
can meet the power demand for a given time point. The goal of the
planner is to purchase electricity from a mix of suppliers to meet
demand with a certain tolerance limit (or maximum probability of
failure) at each time point under planning horizon.

In all of these (and many other) crowdsourcing situations, the
goal of the planner is to select winning bids and assign the task
of labeling corresponding subsets to the winning crowdworkers so
that the total cost of labeling is minimized and error tolerance limit
for each task is not violated.

1.3 Summary of Contributions
In this paper, we address the problem of designing interval cover

auction mechanisms for crowdsourcing application as described
earlier. We split our design problem along two dimensions de-
pending on characteristics of the crowdworkers - (i) strategic ver-
sus non-strategic crowdworkers, (ii) homogeneous versus heteroge-
neous crowdworkers. Homogeneous crowdworkers have the same
quality levels, whereas heterogeneous crowdworkers are in differ-
ent in terms of their quality levels. In what follows, we highlight
the design challenges and the novelty of our contributions for each
of these four splits.

1. In (non-strategic, homogeneous) scenario, we show that the
task allocation problem can be solved optimally in polyno-
mial time, due to totally unimodularity (TUM) property [18]
(Section 2.1).

2. For (non-strategic, heterogeneous) scenario, we first derive
a bound on minimum number of crowdworkers required to
achieve a certain inference quality. These bounds are based
on the assumption that for each task the planner aggregates
the label by majority voting method. Using these bounds, we
formulate an integer programming problem to allocate tasks
in a cost minimizing manner. We show that this problem
is similar to the problem considered by Chakaravarthy et al.
[3] and the 4-approximation factor algorithm proposed by
Chakaravarthy et al. [3] can be used for this scenario.

3. In (strategic, homogeneous) scenario, we show that because
the non-strategic counterpart of this scenario can be solved
in polynomial time, we can use the classical VCG payment
scheme [11] to design a truthful mechanism (Section 3.1).

4. We analyze the(strategic, heterogeneous) scenario in Section
3.2. It is known that an allocation algorithm leads to a truth-
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ful mechanism if it is monotone [15]. Interestingly, there is
no known monotone approximation algorithm for task allo-
cation in this scenario that runs in polynomial time. Moti-
vated by this observation, we propose an approximation al-
gorithm that runs in polynomial time and satisfies the mono-
tonicity property (Section 3.2). We also provide theoretical
guarantees on the approximation factor of our algorithm. Our
experiments in Section 4 suggest that for most practical sce-
narios, our algorithm performs better than the algorithm of
Chakaravarthy et al. [3] which is the best known (but non-
monotone) algorithm in literature. In Section 3.2, we show
that our proposed algorithm in conjunction with an appro-
priate payment rule yields a truthful and ex-post individual
rational crowdsourcing mechanism.

We believe this is the first paper to address the problem of de-
signing truthful interval cover auction mechanisms for crowdsourc-
ing applications where the crowdworkers may have heterogeneous
qualities. The underlying task allocation problem for this setting
turns out to be NP-hard for which we have proposed a (monotone)
approximation algorithm with provable approximation guarantees
and a truthful mechanism.

A non-trivial generalization of our approach is to consider bids
on arbitrary subsets of tasks. We emphasize that we stick to inter-
val mechanisms here to focus on the compelling applications and
obtain a firm grounding of the problem.

1.4 Related Work
The prior art on crowdsourcing can be classified into two broad

categories - one addressing fundamental research issues, with the
other addressing the research challenges encountered in specific ap-
plication scenarios such as mobile pervasive sensing. Our paper
can be classified more in the first category. While there are many
fundamental research questions that lie at the core of this area, our
work finds relevance to only a few of them - deriving inference
out of noisy reports of the crowdworkers, cost optimal selection of
crowdworkers, and strategic behavior of crowdworkers.

A vast majority of the literature in crowdsourcing area is dedi-
cated to address the fundamental problem of inference making from
noisy reports of crowdworkers. A wide variety of statistical infer-
encing techniques have been proposed for the same and they differ
in terms of their assumptions - see [17, 19, 25] for a comprehensive
survey.

Cost optimal allocation of tasks to crowdworkers is the next im-
portant issue after the previous one. Tran-Thanh et al. [24] have
proposed a task allocation algorithm for crowdsourcing systems
with interdependent tasks given a budget constraint. Kamar et al.
[7] have focused on consensus tasks and proposed a general system
that combines machine learning and decision-theoretic planning
to assign tasks to the crowdworkers. For crowdsensing of spatial
phenomena, Krause et al. [8] have proposed an scheme for crowd-
worker selection and fusion of reports from workers. Venanzi et al.
[26] learn the error models for crowdworkers’ reports of spatial ob-
servation. Our work differs from these approaches in the sense that
we focus on addressing the computational complexity of the under-
lying task allocation problem while simultaneously addressing the
strategic aspects of crowdworkers.

Incentivizing crowdworkers’ participation and truthful reporting
has garnered significant importance in recent times. Kamar and
Horvitz [6] have focused on consensus tasks and proposed a pay-
ment rule that incentivizes crowdworkers to report truthfully in
crowdsourcing. Work on peer prediction (Miller et al. [12]) studies
the problem of incentivizing truthful reporting when all agents ob-

serve the same phenomenon. The cost minimizing task allocation
problem, on the other hand, has not been addressed in these paper.

Finally, our work is related to and builds upon the work on ef-
ficient auction mechanisms, studied in modern computational eco-
nomics literature. Of particular relevance is Lehmann et al. [10]
which discusses truthful mechanisms when the allocation problem
is solved approximately instead of exactly. They identify a set of
properties to be satisfied by the approximate allocation algorithm
that yield a truthful mechanism. Rothkopf et al. [20] show that
combinatorial forward auctions with special structure can often be
solved in polynomial time. Archer et al. [1] devise a randomized
rounding technique for designing monotone approximation algo-
rithm for combinatorial auctions with single parameter agents. It
then gives a mechanism that is truthful with high probability and
in expectation. Our setting is different from those addressed above
since qualities are also involved. We give a monotone approxima-
tion algorithm for task allocation in our setting and design a domi-
nant strategy incentive compatible mechanism.

1.5 Notation
To formalize the problem, we introduce some notation first. Let
T = {1, 2, . . . ,m} denote the ordered set of labeling tasks. Let
A = {1, 2, . . . , N} denote the set of crowdworkers, where each
crowdworker is capable of, and interested in, solving an interval of
tasks. A bid submitted by crowdworker i is of the form ([si, ei], bi),
where the interval [si, ei] corresponds to the subset of tasks {si, si+
1, . . . , ei} and bi is crowdworker’s reported cost for executing the
tasks in this interval. When there is no confusion, we denote the
bid simply by bi. Let pi denote the quality of the labels provided
by crowdworker i. Recall that the quality of a crowdworker cor-
responds to the probability that the label reported by him is the
correct label. We assume the quality information for all the crowd-
workers in the set A to be known to the planner. Let εj denote the
error tolerance limit for the final label inferred by the planner for
the task j ∈ T . By error tolerance limit, we mean that the proba-
bility of the planner’s inferred label for task j being wrong should
be no more than εj .

2. NON-STRATEGIC SETTING
Often, in crowdsourcing scenarios, crowdworkers are motivated

by altruistic motives rather than monetary rewards and hence, bid
their costs truthfully for labeling the interval that interests them.
This setting is referred to as non-strategic setting. We consider
two different scenarios under this setting, based on worker quality,
namely homogeneous and heterogeneous.

2.1 Homogeneous Scenario
In this scenario, all the crowdworkers have the same quality, i.e.,

pi = p, ∀i ∈ A. In order to be within the required error tolerance
limit, the planner would require to allocate each task j ∈ T to
multiple, say nj , crowdworkers. In order to infer a final label for
each task, assume that the planner aggregates the reported labels
from multiple crowdworkers based on the majority voting rule. In
such a situation, a task j ∈ T gets labeled incorrectly if dnj/2e
or more reports (out of nj) for the task are wrong. Note that the
sum of nj reports is a Binomial random variable with mean p. The
probability that this sum is less than or equal to bnj/2c is given by

Perr =
∑bnj/2c

k=0

(
nj

k

)
pk(1− p)nj−k (1)

Using Chernoff-Hoeffding bound [14], we get

Perr ≤ exp (−nj D(1/2 ‖ p)) (2)
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where D(· ‖ ·) is the KL divergence function. Using expression
(2), the planner can determine the minimum number of crowdwork-
ers nj that he needs to select for task j.

For this scenario, the task allocation problem for the planner be-
comes an integer linear program (ILP) as given below.

Minimize
∑

i∈A bixi

subject to
∑

i∈A|si≤j≤ei

xi ≥ nj , ∀j ∈ T

xi ∈ {0, 1}, ∀i ∈ A

(3)

Here, the binary variable xi is equal to 1 when crowdworker i is
assigned his interval. Constraint (3) ensures that task j is allocated
to at least nj crowdworkers. We assume that the planner has access
to a large pool of crowdworkers so that above optimization problem
always has a feasible solution.

Note that constraint (3) can be written in matrix form as Mx ≥
n, where n = [n1, . . . , nm]ᵀ, M = [Mij ], and Mij = 1 if task j
is part of crowdworker i’s interval, and is 0 otherwise. The matrix
M has a property that in each column, the 1’s appear in a contigu-
ous sequence, i.e., M satisfies the consecutive-ones property and
hence M is a totally unimodular matrix (TUM). Because of TUM
property of matrix M , the LP relaxation of the above formulation
yields an optimal integer solution [18], and hence the following
theorem.

THEOREM 1. Task allocation in the homogeneous scenario can
be optimally solved in polynomial time.

2.2 Heterogeneous Scenario
Here, we assume that crowdworker i has quality pi and as usual,

task j ∈ T has a error tolerance limit εj . The task allocation prob-
lem for this scenario is also an ILP - similar to the one shown in
the homogeneous case - except that we cannot use the quality con-
straint (3) any more and instead, we need to develop its counterpart
for the current scenario.

Consider a task j having error tolerance limit εj . Let Zj
i be

an indicator random variable representing whether the reported la-
bel from crowdworker i who is allocated task j is correct. Thus,
P (Zj

i = 1) = pi and P (Zj
i = 0) = (1 − pi). Let pmin =

min{p1, . . . , pn} and pmax = max{p1, . . . , pn}. Let Aj be the
set of crowdworkers allocated for task j. Let nj = |Aj |. Let Z =∑

i∈Aj
Zj

i . Then, the probability that the label inferred for task j is
incorrect, while using majority voting rule, is: P (Z < nj/2). We
want to upper bound this quantity by εj . We use the multiplicative
form of Chernoff bound (see e.g. Theorem 4.2 in [14]), which says

P [Z ≤ (1− ν)µ] ≤ exp (−µν2/2)

where, µ = E[Z] =
∑

i∈Aj
pi, and 0 < ν < 1. By substituting

ν =
1

2µ

∑
i∈Aj

(2pi − 1)

we get the following bound

P (Z < nj/2) ≤ exp

(
− 1

8µ

∑
i∈Aj

(2pi − 1)2
)

For pi ≥ 2/3, we can simplify this bound as follows:

P (Z < nj/2) ≤ exp
(
−
∑

i∈Aj
(2pi − 1)/8

)
Upper bounding the above inequality by εj , we get∑

i∈Aj
(2pi − 1) ≥ 8 log(1/εj)

Now, we make use of this inequality to write down the task alloca-
tion ILP for the heterogeneous scenario as follows.

Minimize
∑

i∈A
bixi

subject to
∑

i∈A|si≤j≤ei

rixi ≥ dj , ∀j ∈ T

xi ∈ {0, 1}, ∀i ∈ A

(4)

where, ri = (2pi − 1)/(2pmin − 1), and dj = 8 log(1/εj)/(2pmin−
1). We refer to ri as the contribution of crowdworker i towards
task j and dj as the total demand of task j. Further, we define
rmax = max

i∈A
ri. Note, in the above formulation, we have divided

both the sides of the constraint by (2pmin − 1). This does not al-
ter the ILP in any way but it helps us make a crucial observation
(stated in Lemma 1) which is used in a subsequent section for the
development of the proposed algorithm.

LEMMA 1 (DEMAND COVERING (DC) LEMMA). In the het-
erogeneous scenario, every time the planner recruits a new worker
for task j ∈ T , the corresponding demand dj appearing in the
constraint (4) gets reduced by at least 1 unit and at most by rmax

units.

PROOF. This follows by observing that 1 ≤ ri ≤ rmax ∀i ∈ A
as defined above.

Note, unlike previous scenario, that the ILP (4) cannot be solved
in polynomial time as stated below.

THEOREM 2. The task allocation problem for heterogeneous
scenario is NP-hard even when |T | = 1.

PROOF. We prove it by showing a reduction from a restricted
Knapsack problem where the value of each item is bounded by 1.
Consider a finite set of items I = {1, 2, . . . , N}. Let bi and ri ≤ 1
denote the weight and the value, respectively, for the item i ∈ I .
Given two integers d and U , it is NP-hard to decide whether there
is a subset Ĩ ⊆ I such that

∑
i∈Ĩ ri ≥ d and

∑
i∈Ĩ bi ≤ U [5].

Note that the general knapsack problem can be reduced to the above
restricted knapsack problem by appropriate scaling of values of the
items and the knapsack size.

In our setup, we consider a special case where we haveN crowd-
workers and only one task. Let bi be the bid submitted by crowd-
worker i for solving this task and let (2pi − 1) be the weight as-
signed to the crowdworker i. Let d = 8 log(1/ε) be the demand
to cover the task. In view of the above ILP, it is easy to see that
the instance of the restricted Knapsack has a solution if and only if
there is a solution of cost at most U for this specific instance of our
problem.

We also make an observation that above heterogeneous scenario
is equivalent to (0, 1)-RESALL problem considered in [3]. The
(0, 1)-RESALL problem specifies time-varying demand for dis-
crete time-slots and a set of resources, each available for a cer-
tain duration. The goal of (0, 1)-RESALL problem is to decide a
minimum cost allocation of resources to satisfy the demand where
each resource has an associated capacity and cost. Our problem un-
der heterogeneous scenario can be mapped to the (0, 1)-RESALL
problem in following manner. Tasks in our scenario map to the time
slots, efforts required D = {d1, d2, . . . , dm} for the tasks map to
the demand profile d, and bids’ intervals from crowdworkers map
to the set of resources.

Given this mapping, we can always use the primal-dual approx-
imate algorithm, proposed by [3] for solving the (0, 1)-RESALL
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problem, to solve our problem as well under the heterogeneous
scenario. The primal dual algorithm of [3] relies on the notion of
ILP with flow-cover inequalities. Such an ILP is like an alternative
formulation of our original ILP. The flow-cover inequality based
primal-dual ILP of our problem are given in Appendix. We have
also customized the primal-dual approximate algorithm of [3] for
our scenario and have presented the details of this algorithm in Ap-
pendix. The result below directly follows from [3].

PROPOSITION 1. There exists a polynomial time 4-factor ap-
proximation algorithm for solving the task allocation problem in
the heterogeneous scenario.

3. STRATEGIC SETTING
In this section, we consider the strategic setting where crowdwork-
ers need not be truthful in terms of reporting their costs and/or the
interval. We address the problem of the planner who needs to de-
sign a task allocation rule and a payment rule such that (i) he allo-
cates crowdworkers to the tasks in an allocatively efficient manner,
(ii) crowdworkers are truthful, and (iii) he is individually rational.
Allocative efficiency here would mean an allocation for which the
sum of the bids of the winning crowdworkers is minimum. We call
these mechanisms as interval cover mechanisms. When we refer to
truthfulness, we mean Dominant Strategy Incentive Compatibility
(DSIC). That is, bidding truthfully is a weakly dominant strategy
for every crowdworker.

3.1 Homogeneous Scenario
As per Theorem 1, an efficient allocation can be determined in

polynomial time for this scenario. We can use this algorithm to
design VCG (Vickrey-Clarke-Groves) mechanism [11]. In fact,
the VCG mechanism here would satisfy all the desired properties,
that is, allocative efficiency, truthfulness, and individual rational-
ity. As per the VCG payment rule, the planner pays marginal con-
tribution C∗(A \ {i}) − C∗(A) to every crowdworker i, where
C∗(A) is the sum of winning bids in efficient allocation when set
of crowdworkers is A. Note that if crowdworker i is a winner
then we will have C∗(A) ≤ C∗(A \ {i}), otherwise we will have
C∗(A) = C∗(A \ {i}). This means the planner makes a non-
negative payment to the winning crowdworkers and zero payment
to rest of the crowdworkers. This shows the individual rationality
of this mechanism.

3.2 Heterogeneous Scenario
Now, we propose a truthful mechanism for the heterogeneous

scenario. Here, it is not practical to appeal to a VCG mechanism be-
cause the allocation problem is NP-hard (Theorem 2) and so com-
putation of the VCG payments could possibly involve solving as
many NP-hard problems as the number of winners plus one. To
overcome this, we need to design an allocation scheme which sat-
isfies monotonocity property as defined below.

DEFINITION 1 (MONOTONICITY). If a crowdworker i gets
allocated a task when he submits a bid ([si, ei], bi), then he will
also get allocated if he submits a bid ([s̃i, ẽi], b̃i), for any b̃i ≤ bi
and [s̃i, ẽi] ⊇ [si, ei], provided the bids of the other crowdworkers
remain the same.

It is easy to see that the Algorithm 3 (given in Appendix) does
not satisfy the monotonicity property due to delete phase of the
algorithm. The problem of designing a truthful mechanism for the
heterogeneous scenario critically depends on designing monotone
allocation algorithm.

In what follows, we propose a monotone approximation algo-
rithm (Algorithm 1) to solve the task allocation problem and design
a truthful mechanism using this algorithm. This is an iterative algo-
rithm, where we keep checking residual demand vector d̂t in each
iteration and continue iterations until d̂t hits zero at which point
our solution in hand, namely St, would have satisfied the quality
constraint (as given by the constraint in ILP (4)). In any iteration,
if there is non-zero residual demand for at least one task, we call
the subroutine Single-Unit Demand Cover() and supply the current
residual demand vector to this routine. This subroutine looks at the
current residual demand vector d̂t and returns an optimal cost so-
lution for covering at least one unit of demand for each task j that
has a non-zero residual demand in d̂t. This subroutine is like a dy-
namic programming algorithm to find a solution for interval cover.
After making a call to this subroutine, we update the residual de-
mand for each task and also the set of unallocated crowdworkers.
We repeat this procedure until all the demand dj for every task j
gets met.

ALGORITHM 1: Monotone task allocation algorithm for het-
erogeneous scenario

1 Algorithm Main()
Input :

bi, i ∈ A: bid submitted by crowdworker i (includes both
cost and interval of interest);
d = [d1, . . . , dm]: Total demand vector where dj is the
demand to be covered for task j;
ri: Contribution of crowdworker i towards each task that lies
in his bid interval

Output :
St: Set of crowdworkers allocated after iteration t;
C(St): Total cost of set St

Initialize: t← 0; St ← ∅; Residual demand vector after
iteration t := d̂t ← d; Unallocated crowdworker set
:= Ut ← A

2 while d̂t > 0 do
3 t← t+ 1

4 St ← Single-Unit Demand Cover(d̂t−1, Ut−1)

5 Update Ut and d̂t

6 end
1 Procedure Single-Unit Demand Cover(d̂, U)

Initialize: For each task, l, j such that l ≤ j, define
ulj := A crowdworker in U whose bid value is minimum
across all the crowdworkers in U having bid interval as [l, j]
(if required use dummy crowdworker D having sufficiently
high bid value);
C(ulj)← Bid of crowdworker ulj ;
If d̂z = 0 ∀l ≤ z ≤ j then ulj ← ∅, C(ulj)← 0;
S̃j := Set of crowdworkers in U that cover each of the tasks
{1, . . . , j} at least once;
S̃j ← u1j , C(S̃j)← C(u1j)∀j ∈ T

2 for j = 2→ m do
3 for l = 2→ j do
4 if C(S̃l−1) + C(ulj) ≤ C(S̃j) then
5 Set S̃j ← S̃l−1

⋃
{ulj}

6 end
7 end
8 for k = 1→ (j − 1) do
9 if C(S̃k) >= C(S̃j) then

10 Set S̃k ← S̃j

11 end
12 end
13 end
14 return S̃m
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3.2.1 Analysis of Algorithm 1
Let S∗ be the optimal solution to the ILP (4). Let S∗(1) ⊆ S∗ be

the cost minimizing set of crowdworkers such that such that each
non-zero demand task is covered by atleast by one crowdworker in
this set. Let C(S∗(1)) be the total cost of set S∗(1). Let d∗j (1) be
the demand covered by S∗(1) for task j ∈ T .

LEMMA 2. d∗1(1) ≤ rmax, d
∗
m(1) ≤ rmax, and d∗j (1) ≤ 2rmax;

∀j ∈ {2, 3, . . . ,m−1}, where rmax = (2pmax − 1)/(2pmin − 1).

PROOF. We make two key observations.

• No two crowdworkers in S∗(1) have the same starting point
or end point. To prove this, let us suppose two crowdworkers
i, î ∈ S∗(1) are such that, si = sî. WLOG assume ei ≤ eî.
Then removing crowdworker i from set S∗(1) will reduce
the cost of the cover. Hence, we have a contradiction.

• For any task j, at most two crowdworkers covering it can be
part of S∗(1). To prove this, let us suppose there are three
crowdworkers covering task j. It is easy to see that just by
keeping at most two crowdworkers (ones with earliest start-
ing id and last ending id) one can reduce the cost of cover.
Hence we have a contradiction.

Thus the start and end tasks will get covered by only one crowd-
worker and other intermediate tasks can get covered by at most two
bids in the set S∗(1). Also, maximum contribution by any single
bid is rmax. This proves the lemma.

LEMMA 3. Single-Unit Demand Cover() function in Algorithm
1 returns an optimal subset of crowdworkers in the set U to cover
all the tasks with non-zero demand at least once. Further, the time
complexity of this step is O(m2).

PROOF. The running time can be derived in a straightforward
way. To prove the lemma, we claim that Single-Unit Demand
Cover() maintains following invariant - at the end of every iteration
j, the set S̃j is an optimal set of crowdworkers within U satisfying
following two properties (i) it covers each task in the interval [1, j]
having non-zero demand at least once, (ii) the bid interval of every
member in S̃j is a subset of [i, j]. This invariance directly proves
the lemma. We prove this invariance by induction as follows.

• Base Case: For j = 1, the invariance holds true trivially due
to initialization step.

• Induction Hypothesis: Let us assume that for some ĵ < m
the invariance holds true.

• Induction Step: Assume j = (ĵ + 1) and we show that
invariance holds true for this j. Note, in the initialization
step, we find the crowdworker with minimum bid for inter-
val [1, j]. WLOG, let us analyze any intermediate iteration
where say l = 5 and ĵ > l. In step 4, we compare the to-
tal cost of optimal cover till (l − 1) and the lowest bid for
interval [l, j], with optimal cover cost computed till previous
iteration for the interval [1, j]. We choose the minimum of
these two values to finally get best cover for the interval [1, j]
tasks till this point. At the end of execution of for loop over l,
we will obtain optimal allocation S̃j and costC(S̃j). The for
loop over k, updates the cost of the subintervals [1, k], k < j,
computed till now, in case it happens to be higher than the re-
cently computed cost for the interval [1, j]. This will ensure
that at the end of iteration j, the cost of any such subinterval
is optimal over all crowdworkers in U whose bids lies within
interval [1, j].

This proves the invariance and hence the lemma.

LEMMA 4. Algorithm 1 produces an allocation that is mono-
tone.

PROOF. Consider a crowdworker i and fix the bids from all
other crowdworkers. Suppose crowdworker i’s bid is ([si, ei], bi)
and he gets allocated in iteration t. Let us now consider the allo-
cation when crowdworker i reduces his bid to ([s̃i, ẽi], b̃i). If the
crowdworker i gets allocated in iteration t′ < t then we are done.
Let us assume the worst case where he does not get allocated till
iteration t. So nothing changes till iteration t− 1.

In iteration t, as before, the residual demand profile and unal-
located bids are the same. By optimality of single-unit demand
cover routine in Algorithm 1 (Lemma 3), crowdworker i will get
allocated when his bid is b̃i. We have shown that the allocation
produced satisfies monotonicity.

THEOREM 3. Algorithm 1 is a polynomial time 2rmax factor
monotone approximation algorithm for solving the task allocation
problem in the heterogeneous scenario.

PROOF. Let S∗ ⊆ A be the optimal solution to the ILP (4). Set
S∗1 ← S∗ and A1 ← A. Let S∗(1) ⊆ S∗1 be the optimal set
of crowdworkers that covers all the non-zero demand tasks at least
once and C(S∗(1)) the corresponding cost.

Note, in view of Lemma 1 and Lemma 2, by making at most
2rmax successive calls to the subroutine Single-Unit Demand Cover()
starting from set A we would get a solution S2rmax that covers as
much demand for every task as covered by the solution S∗(1). Let
S2rmax = Y1 ∪ Y2 . . . ∪ Y2rmax where Yk is the solution set re-
turned by kth call to the subroutine. Let Yk = Xk∪X̂k be the set of
crowdworkers selected in iteration k and C(Yk) be the correspond-
ing cost, where Yk ∩ S∗(1) = Xk. At the end of iteration k, the
demand yet to be covered will be at most the demand covered by set
S∗(1)\ (X1 ∪X2 . . .∪Xk). By Lemma 3, optimality of our algo-
rithm at every step, we have,C(Yk+1) ≤ C(S∗(1)\(X1∪X2 . . .∪
Xk)) ≤ C(S∗(1)). Thus, C(S2rmax) ≤ 2rmaxC(S∗(1)). If
S2rmax covers the full demand covered by S∗ then we stop. If not,
we remove set S2rmax from S∗1 and A1 to get S∗2 and A2 and re-
peat this procedure. Note that at any point we are within 2rmax of
the optimal cost. Hence the claim.

Further, the time complexity of this algorithm is O(m2dmax +
n logn) where dmax = max

1≤j≤m
dj .

For this scenario, note that we have proposed a tractable, mono-
tone algorithm for task allocation. This algorithm outputs an ap-
proximately efficient allocation. In what follows, we suggest a pay-
ment rule, which when coupled with the allocation given by Algo-
rithm 2 provides a truthful mechanism which is 2rmax-approximate
allocative efficient and is also ex-post individually rational.

DEFINITION 2 (CRITICAL PAYMENT). The critical value of
a winning crowdworker is the maximum bid which he could have
reported and still be allocated his interval while the bids of all other
crowdworkers are kept fixed.

The computation of the critical value depends on the allocation rule
and in general it is hard to obtain a closed form expression unless
the allocation rule is simple enough. Mu’Alem and Nisan [16] sug-
gested a naive approach to compute critical value for any kind of al-
location rule using binary search. We compute the critical bid value
for crowdworker i, using binary search, by repeatedly running the
allocation rule with his bids varying in the interval of current bid
value and some appropriate high value.
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ALGORITHM 2: A 2rmax-approximate truthful mechanism

1 Allocate the tasks to the crowdworkers as per Algorithm 1.
2 Crowdworker i gets payment of zero if no task is allocated to

him
3 If crowdworker i is allocated his interval, he is rewarded with

his critical value (as per Definition 2)

THEOREM 4. The interval cover mechanism given by Algorithm
2 for heterogeneous scenario is 2rmax-approximately allocative ef-
ficient, truthful, and ex-post individual rational.

PROOF. Note that the approximation factor of 2rmax follows
from the fact that our allocation is given by Algorithm 1. Individ-
ual rationality is trivial by design of the mechanism itself. We just
need to show truthfulness. For this, we appeal to Theorem 4 in
[10], which says that if a mechanism satisfies monotone allocation,
exactness, ex-post individual rationality and critical payments then
it would be truthful. Ours is a reverse auction setting but similar
claims and proofs hold good with slight modifications as shown be-
low. Exactness here means that a crowdworker never gets allocated
his interval partially. In Algorithm 1, it is clear that the interval
for a crowdworker i is either completely allocated or not allocated.
Thus, the algorithm satisfies exactness property. The critical pay-
ment property comes from the design of the payment rule for the
mechanism. By Lemma 4, we know that the mechanism satisfies
monotonicity.

LEMMA 5. In a mechanism that satisfies exactness, monotonic-
ity, ex-post individual rationality, and critical payments, a crowd-
worker i having type ([si, ei], bi) is never better off reporting
([si, ei], b̂i) where b̂i 6= bi.

PROOF. By critical payment and ex-post individual rationality
property, utility of any crowdworker who reports his true type is
always non-negative. If i does not get allocated when he misreports
his type then his utility is zero. Thus, in this case, he is better-off
reporting his true type. Let us look at another scenario when i gets
allocated in both cases. His valuation and payment is the same
(critical payment) in both the cases. So the claim still holds. Last
scenario is when i is not allocated by reporting true type but only
when he misreports. This implies that b̂i < p̂ci < bi. Thus his
utility is non-positive. Hence the claim.

LEMMA 6. In a mechanism that satisfies exactness, monotonic-
ity, and critical payments, a crowdworker i having type ([si, ei], bi)
whose bid is allocated gets a payment pci that is at least the price p̂ci
that he would get as payment if he had reported type ([ŝi, êi], bi)
for any [ŝi, êi] ⊆ [si, ei].

PROOF. By monotonicity ([ŝi, êi], bi) would have been allo-
cated and by critical payment let p̂ci be paid to i such that: for
any x > p̂ci the bid ([ŝi, êi], x) would not have been granted. By
monotonicity, for any such x the bid ([si, ei], x) would not have
been granted. By critical Payment, for any x such that x < pci ,
the bid ([si, ei], x) would have been granted. This implies that
pci ≤ p̂ci .

LEMMA 7. If a mechanism satisfies exactness, monotonicity,
ex-post individual rationality, and critical payments then it is truth-
ful.

PROOF. Suppose i’s true type is ([si, ei], bi). We need to prove
that he will be never interested in misreporting his type as ([ŝi, êi], b̂i).

Suppose imisreports his type as ([ŝi, êi], b̂i). Assume that [si, ei] ⊂
[ŝi, êi] or [si, ei] * [ŝi, êi]. In this case if i gets allocated then his
valuation is−∞. But his payment is bounded. So his utility will be
negative. If he is not allocated then his utility is 0. So he is better
off reporting his true type. Assume then [ŝi, êi] ⊆ [si, ei]. Since
i’s cost for exploring [ŝi, êi] is same as that for [si, ei], by Lemma
6 i would be better off bidding ([si, ei], b̂i). Lemma 5 implies that
bidding ([si, ei], b̂i) cannot be better off than being truthful.

4. SIMULATION EXPERIMENTS
In this section, we evaluate the performance of our proposed in-

terval cover mechanism. We use the following metrics: empirical
approximation factor for the task allocation algorithm and overpay-
ment factor for the payment rule. Empirical approximation factor
of an algorithm is the ratio of the approximate solution computed
by the algorithm to the optimal solution. Overpayment factor is ra-
tio of the total payment (to the winning crowdworkers) to the social
cost where social cost is the total cost of all the winning crowd-
workers. It is an indicator of the cost paid by planner to ensure
truthful bids from the strategic crowdworkers.

The default values of various parameters used for simulations are
given in Table 1. The bids of crowdworkers are generated based on
i.i.d samples from two distributions: normal distribution (NORM)
and uniform distribution (UNIF).

Table 1: Simulation Parameter Settings
Parameter name Value
Number of crowdworkers, N [400, 2000]
Number of tasks, m [5, 20]
Crowdworker quality, pi (0.5, 0.99]
Mean bid value, E[bi] 100
Task error tolerance limit, εj [0.05, 0.5)

4.1 Evaluation of Proposed Allocation Algo-
rithm 1

In the previous sections, we have given theoretical upper-bounds
for the task allocation algorithm for the heterogeneous scenario.
Now, we also wish to examine its empirical performance. We ex-
perimentally compare the performance of our proposed algorithm
1 to two baselines. The first baseline is the primal-dual (PD) Al-
gorithm 3 which is the best known algorithm in the literature for
our scenario. The second baseline is a monotone version of the
PD algorithm obtained by dropping the reverse delete phase in the
algorithm. We compare the empirical approximation factor of our
proposed algorithm with these two baselines.

In the simulations, we draw crowdworker qualities from a uni-
form discrete distribution on [pmin, pmax]. The values of pmin

and pmax will decide the theoretical bound on the approximation
factor. All the other parameters are set as per Table 1. We solve
the task allocation problem optimally using the commercial soft-
ware ILOG CPLEX Optimization Studio. We run our proposed al-
gorithm and the two baseline algorithms to compute approximate
solutions to the task allocation problem. Empirical approximation
factors for all the three algorithms are plotted in Figure 1. Each
data point in the plot is the average of 20 independent runs under
the same parameter setting. The above procedure is repeated, for
different theoretical bound on the approximation factor, by varying
pmin and pmax.

Figure 1 clearly shows that in most cases our proposed algorithm
performs much better than the two baseline algorithms. Also, we
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Figure 1: Comparison of performance of our proposed algo-
rithm against benchmark algorithms

get much better empirical performance as compared to the theoret-
ical bounds.

4.2 Evaluation of Payment Rule
In our experiments, we have considered a competitive setting

where N � m, which generally holds true for crowdsourcing ap-
plications. Figure 2 plots the overpayment factor when the number
of crowdworkers changes from 400 to 2000 and number of tasks
varies from 5 to 20. The overpayment factor is always below 1.06
for both the distributions we have considered. We also observe that
the overpayment factor remains small even when the number of
tasks, m, is increased. This highlights an attractive aspect of our
mechanism in ensuring truthfulness with very low levels of addi-
tional payments. These results are consistent with the quantitative
bounds shown in [21] for multi-item auctions.

Figure 2: Overpayment factor for different cost functions

5. CONCLUSIONS AND FUTURE WORK
In this work, motivated by pervasive sensing and smart grids ap-

plications, we introduced the problem of allocating linearly ordered
tasks to crowdworkers bidding for intervals of contiguous tasks.
We provided tractable solutions for two different scenarios, homo-
geneous and heterogeneous, which are defined based on the crowd-
workers qualities. Our work also investigated the strategic version
of this problem where the crowdworkers have their costs and inter-
vals as private information. We proposed truthful and individually
rational mechanisms for both the scenarios. In particular, for the
heterogeneous scenario, we proposed a novel approximation algo-
rithm that is monotone, leading to a truthful interval cover mecha-
nism via appropriate payments.

The linear ordering of the tasks, so natural to the discussed appli-
cations, comes in handy to ground the problem leading to valuable
insights. Our approach here will facilitate a better understanding
of the general case of combinatorial bids and this is an immedi-
ate direction for future work. The work can be also be extended
to incorporate crowdworkers having different qualities for different
tasks.

APPENDIX
A Primal Dual Algorithm for Heterogeneous Sce-
nario
By making use of flow-cover inequality, the ILP (4) can be written
in an alternative manner as follows.

Minimize
∑
i∈A

bixi

subject to ∑
i∈A|si≤j≤ei;i/∈S

r(i, S)xi ≥ dj(S),

∀j ∈ T, S ⊆ A
xi ∈ {0, 1}, ∀i ∈ A

(5)

where, S ⊆ A can be viewed as a set of crowdworkers as if they
are already chosen. dj(S) = dj −

∑
i∈S|si≤j≤ei

ri is the residual
weight to be covered and d(i, S) = min{ri, dj(S)}. The dual of
the LP-relaxation of the above formulation is as follows.

Maximize
∑

(S,j)

dj(S)y(S, j)

subject to ∑
(S,j):si≤j≤ei;i/∈S

r(i, S)y(S, j) ≤ bi, ∀i ∈ A

y(S, j) ≥ 0, ∀(S, j) : S ⊆ A

ALGORITHM 3: Primal-dual task allocation approximation
algorithm for the heterogeneous scenario

1 S0 ← ∅
2 t← 0
3 Forward Phase:
4 repeat
5 t← t+ 1;
6 jt ← Task j having maximum value of dj(St−1);
7 Increase dual variable y(St−1, jt) till some dual

constraint becomes tight;
8 Let it be the primal variable corresponding to this

constraint;
9 Set xit = 1;

10 Set St = St−1 ∪ {it};
11 until maxj∈T dj(St−1) = 0;
12 Reverse Delete Phase:
13 Consider the crowdworkers in reverse order from set St

14 Delete a crowdworker if it retains the primal feasibility
15 Return minimum feasible solution after appropriate deletion
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