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ABSTRACT
We propose a new representation setting for hedonic games, where
each agent partitions the set of other agents into friends, enemies,
and neutral agents, with friends and enemies being ranked. Under
the assumption that preferences are monotonic (respectively, anti-
monotonic) with respect to the addition of friends (respectively, en-
emies), we propose a bipolar extension of the Bossong–Schweigert
extension principle, and use this principle to derive the (partial)
preferences of agents over coalitions. Then, for a number of solu-
tion concepts, we characterize partitions that necessarily (respec-
tively, possibly) satisfy them, and identify the computational com-
plexity of the associated decision problems. Alternatively, we sug-
gest cardinal comparability functions in order to extend to com-
plete preference orders consistent with the generalized Bossong–
Schweigert order.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent Systems; J.4 [Computer Applications]: Social and Be-
havioral Sciences—Economics

General Terms
Economics, Theory

Keywords
Computational Social Choice, Coalition Formation, Game Theory

1. INTRODUCTION
Hedonic games are strategic games where agents, from a set

A, are free to form coalitions. Each agent has a preference rela-
tion over the set of all coalitions containing her; various solution
concepts—such as individual rationality, Nash stability, individual
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contractual stability, core stability, and so on—have been proposed
and studied. However, an important bottleneck is how the agents’
preferences over all coalitions that contain them are expressed. As
there are exponentially many coalitions containing agent i, it is un-
reasonable to expect that agent i should express explicitly a ranking
(or a utility function) over all these coalitions. This issue is often
addressed by assuming that only a small part of the preference re-
lation is expressed by the agent, and that this small part is then ex-
tended into a complete preference relation over coalitions. Various
assumptions about the nature of the input (what the agents express)
and the preference extension have been made in the literature (for
a survey, see Woeginger [23]):

1. The individually rational encoding [4]: Each agent ranks
only the coalitions she prefers to herself being alone.

2. The additive encoding [21, 22, 3, 24]: Each agent gives a
valuation (positive or negative) of each other agent; prefer-
ences are additively separable, and the extension principle is
that the valuation of a set of agents, for agent i, is the sum
of the valuations i gives to the agents in the set (and then the
preference relation is derived from this valuation function).

3. The “friends and enemies” encoding [15, 21]: Each agent
partitions the set of other agents into two sets (her friends
and her enemies); under the friend-oriented preference ex-
tension, coalition X is preferred to coalition Y if X contains
more friends than Y , or as many friends as Y and fewer ene-
mies than Y ; under the enemy-oriented preference extension,
X is preferred to Y if X contains fewer enemies than Y , or as
many enemies as Y and more friends than Y .

4. The singleton encoding [12, 10, 11]: Each agent ranks only
single agents; under the optimistic (respectively, pessimistic)
extension, X is preferred to Y if the best (respectively, worst)
agent in X is preferred to the best (respectively, worst) agent
in Y .

5. The anonymous encoding [4, 13]: Each agent specifies only a
preference relation over the number of agents in her coalition
(and does not care about the identities of these agents).
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6. Hedonic coalition nets [16]: Each agent specifies her utility
function over the set of all coalitions via (more or less) a set
of weighted logical formulas.

7. Fractional hedonic games [2]: Each agent assigns a value
to each other agent (and 0 to herself); an agent’s utility of a
coalition is the average value she assigns to the members of
the coalition. A coalition X is preferred to Y if the utility of
X is greater than that of Y .

Naturally, compact representation either does not avoid exponen-
tial-size representations in the worst case (Case 1 and, to a lesser
extent, Case 6), or comes with a loss of expressivity, corresponding
to a demanding domain restriction, such as separable preferences
(Cases 2 and 4), anonymous preferences (Case 5), or other domain
restrictions that do not bear a specific name (Case 3).

In Cases 2 and 6, preferences are expressed numerically: Agents
do explicitly express numbers. In all other cases, they are expressed
ordinally. Advantages of ordinal preferences in social choice have
been discussed many times and we want to stick here to ordinality.
We do not want to make the very demanding anonymity assump-
tion, which does not allow to distinguish between agents. The in-
dividually rational encoding is not compact in general. So there re-
main only the “friends and enemies” and singleton encodings. The
problem with “friends and enemies” is that an agent cannot express
preferences inside the friend set nor inside the enemy set: Pref-
erences over individual agents are dichotomous (but preferences
between coalitions are not, because they depend on the number of
friends and enemies). The problem with the singleton encoding is
that having simply a rank �i for each agent i does not tell us which
agents i would like to see in her coalitions and which agents she
would like not to: For instance, if �1 is 2�1 3�1 4, we know that
1 prefers 2 to 3 and 3 to 4, but nothing tells us whether 1 prefers to
be with 2 (respectively, 3 and 4) to being alone, that is, if the abso-
lute desirability of 2,3, and 4 is positive or negative (of course, if it
is negative for 3, it is also negative for 4, etc.). So, both ways are
insufficiently informative: Specifying only a partition into positive
and negative agents (“friends” and “enemies”) does not tell which
of her friends i prefers to which other agents, and which of her en-
emies she wants to avoid most. On the other hand, specifying a
ranking over agents does not say which agents i prefers to be with
rather than being alone. Here we propose a model that integrates
the models of Cases 1, 3, and 4: Each agent i first subdivides the
other agents into three groups, her friends, her enemies, and an in-
termediate type of agents on which she has neither a positive nor
a negative opinion and then specifies a ranking of her friends and
enemies. Based on this representation, we consider a natural exten-
sion to a player’s preference, the generalized Bossong–Schweigert
extension (see [8, 14]), which is a partial order over coalitions con-
taining the player. A related model can be found in the context
of matching theory: Responsive preferences are studied in bipar-
tite many-to-one matching markets and consider the comparison of
one participant to another,1 although not in distinction of friends or
enemies (see, e.g., [19, 20]). In the following, we consider differ-
ent ways of how to deal with incomparabilities within these partial
orders. A first approach is to leave incomparabilities open and de-
fine notions such as “possible” and “necessary” stability concepts.
A second approach is to define comparability functions in order to
determine the relation between incomparable coalitions that extend

1In the context of many-to-one matching markets, an agent on
the one side has responsive preferences over assignments of the
agents on the other side if, for any two assignments that differ in
only one agent, the assignment containing the most preferred agent
is preferred.

the generalized Bossong–Schweigert extension to a total preference
order for each player. Questions of interest include appropriate
characterizations of stability concepts and a computational study
of the related problems.

2. PRELIMINARIES
Generally, a hedonic game is a tuple (A,P) consisting of a set

of players (or agents) A = {1,2, . . . ,n} and a profile of prefer-
ence relations P=(�1,�2, . . . ,�n) defining for each player a weak
preference order over all possible coalitions C ⊆ A containing the
player herself. For two coalitions C,D⊆A, both containing player i,
we say that i weakly prefers C to D if C �i D; i prefers C to D, de-
noted by C �i D, if C �i D, but not D �i C; and i is indifferent
between C and D, denoted by C ∼i D, if both C �i D, and D�i C.
A coalition structure Γ for a given game (A,P) is a partition of A
into disjoint coalitions, and for each player i ∈ A, Γ(i) denotes the
unique coalition in Γ containing i.

An important solution concept for the study of hedonic games
is the notion of stability of a coalition structure. There are several
known such stability concepts [7, 3, 1]. In this paper we focus on
concepts that deal with avoiding a player to deviate to another (pos-
sibly empty) existing coalition. Relatedly, other commonly studied
concepts consider group deviations, such as core stability with the
goal that there is no blocking coalition. A third group of stability
concepts, such as Pareto optimality and popularity, is based on a re-
lation comparing different coalition structures. Further restrictions
of games as well as properties can be found amongst others in [5].

A coalition structure Γ is called

• perfect if each player i weakly prefers Γ(i) to every other
coalition containing i,

• individually rational if each player i ∈ A weakly prefers Γ(i)
to being alone in {i},

• Nash stable if for each player i∈ A, Γ(i)�i A′∪{i} holds for
each coalition A′ ∈ Γ∪ /0,

• individually stable if for each player i∈ A and for each coali-
tion A′ ∈ Γ∪ /0, it holds that Γ(i)�i A′∪{i} or there exists a
player j ∈ A′ such that A′ � j A′∪{i},

• contractually individually stable if for each player i ∈ A and
for each coalition A′ ∈ Γ∪ /0, it holds that Γ(i)�i A′∪{i}, or
there exists a player j ∈ A′ such that A′ � j A′ ∪{i}, or there
exists a player j′ ∈ Γ(i) such that Γ(i)� j′ Γ(i)r{i}.

3. DERIVING PREFERENCES OVER COALI-
TIONS FROM PREFERENCES OVER SIN-
GLE FRIENDS AND ENEMIES

We define a new representation of preferences combining ordi-
nal rankings with friend and enemy sets. We suggest deriving a
player’s preference over coalitions by generalizing the Bossong–
Schweigert extension principle.

3.1 Ordinal Preferences with Thresholds

DEFINITION 1. Let A = {1,2, . . . ,n} be a set of agents. For
each i ∈ A, a weak ranking with double threshold for agent i, de-
noted by �+0−

i , consists of a partition of Ar{i} into three sets:

• A+
i (i’s friends), together with a weak order �+

i over A+
i ,

• A−i (i’s enemies), together with a weak order �−i over A−i ,
and
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• A0
i (the neutral agents, i.e., the agents i does not care about).

We also write �+0−
i as (�+

i | j1 · · · jk |�−i ) for A0
i = { j1, . . . , jk}.

Not having an order of the neutral agents can be interpreted as
being indifferent about them all: ja ∼i jb for all ja, jb ∈A0

i . Agent i
strictly prefers all her friends to her neutral agents, and those to her
enemies. The weak order induced by �+0−

i is therefore defined via
f �i j, for each f ∈ A+

i and j ∈ A0
i , j1 ∼i j2 ∼i · · · ∼i jk, and j�i e,

for each j ∈ A0
i and e ∈ A−i .

EXAMPLE 2. Let A = {1,2, . . . ,11}. Then,

�+0−
1 = (2�1 3∼1 4 |567 |8�1 9∼1 10�1 11)

means that 1 likes 2, 3, and 4 (and prefers 2 to both 3 and 4, and
is indifferent between 3 and 4); 1 does not care about 5, 6, and
7 (and is indifferent between them); and 1 does not like 8, 9, 10,
and 11 (but still prefers 8 to 9 and 10, is indifferent between 9 and
10, and prefers 9 and 10 to 11). The weak order �1 induced by
�+0−

1 is 2�1 3 ∼1 4�1 5 ∼1 6 ∼1 7�1 8�1 9 ∼1 10�1 11. Note
that here the preference between a friend and a neutral player is
strict, because we assume below that a coalition containing a friend
instead of a neutral player is preferred. Analogously, the preference
between a neutral player and an enemy is strict, because a player
does not care about having a neutral player in a coalition but is
less happy with having an enemy in the coalition instead.

3.2 Generalizing Bossong–Schweigert Exten-
sions

DEFINITION 3. Let �+0−
i be a weak ranking with double thresh-

old for agent i. The extended order�+0−
i is defined as follows: For

every X ,Y ⊆ A, X �+0−
i Y if and only if the following two condi-

tions hold:

1. There is an injective function σ from Y ∩A+
i to X ∩A+

i such
that for every y ∈ Y ∩A+

i , we have σ(y)�i y.

2. There is an injective function θ from X ∩A−i to Y ∩A−i such
that for every x ∈ X ∩A−i , we have x�i θ(x).

Finally, X �+0−
i Y if and only if X �+0−

i Y and not (Y �+0−
i X).

Intuitively speaking, for a fixed coalition C adding a further friend
makes the coalition strictly more valuable while adding an enemy
causes the opposite. When exchanging two friends, the valua-
tion of the coalition changes depending on the relation between
the exchanged players (the same holds when two enemies are ex-
changed). When both a friend and an enemy are added or are both
removed, the original and the new coalition are incomparable with
respect to the Bossong–Schweigert extension principle.

Thus, to construct the generalized Bossong–Schweigert exten-
sion (GBS-extension, for short) for a player i, we start with the
coalition containing i and her set of friends (which is the most pre-
ferred coalition) and then construct all directly comparable coali-
tions by adding enemies, removing friends, or exchanging enemies
or friends. For each newly obtained coalition we repeat this pro-
cedure until we reach the least preferred coalition containing all of
i’s enemies. Note that the elements of A0

i are disregarded as their
adding to or removing from a coalition does not change the value
of a coalition. The following examples illustrate the just presented
extension principle.

EXAMPLE 4. For A = {1,2, . . . ,6}, consider

�+0−
1 = (2�1 3∼1 4 | |5�1 6).

The graph in Figure 1 shows the generalized Bossong–Schweigert
extension of this preference, where an arc from coalition X to coali-
tion Y implies that X �+0−

1 Y . Hence, any path leading from X ′ to
Y ′ implies X ′ �+0−

1 Y ′, whereas coalitions that are not connected
by a path, such as {1,2,3} and {1,2,3,4,5}, are incomparable.

{1,2,3,4}

{1,2,3} ∼1 {1,2,4}

{1,2} {1,3,4}

{1,3} ∼1 {1,4}

{1}

{1,2,3,4,5}

{1,2,3,5} ∼1 {1,2,4,5}

{1,2,5} {1,3,4,5}

{1,3,5} ∼1 {1,4,5}

{1,5}

{1,2,3,4,6}

{1,2,3,6} ∼1 {1,2,4,6}

{1,2,6} {1,3,4,6}

{1,3,6} ∼1 {1,4,6}

{1,6}

{1,2,3,4,5,6}

{1,2,3,5,6} ∼1 {1,2,4,5,6}

{1,2,5,6} {1,3,4,5,6}

{1,3,5,6} ∼1 {1,4,5,6}

{1,5,6}

Figure 1: The generalized Bossong–Schweigert extension of
�+0−

1 = (2�1 3∼1 4 | |5�1 6).

Note that if there were additional players j > 6 in A considered
as neutral by player 1, the general picture would be the same with
indifferences at each level, for any C ⊆ {2, . . . ,6}, between each
{1}∪C∪N for N ⊆ Ar{1, . . . ,6}.

EXAMPLE 5. Consider A = {1,2,3,4,5} and the first players’
preference �+0−

1 =(2�1 3 | | 4�1 5). The graph in Figure 2 shows
the generalized Bossong–Schweigert extension of this preference
using the same notation as in Example 4.

Using the generalized Bossong–Schweigert extension principle,
we can extend the given preferences of the players to a prefer-
ence over the possible coalitions. However, this preference over
the coalitions might be incomplete; there are coalitions that remain
incomparable. We consider two possibilities to deal with these in-
comparabilities: Leave them open and consider every possible ex-
tension that does not conflict with transitivity; alternatively, deter-
mine the relation between incomparable coalitions by adapting the
Borda scoring rule, which is well-known from voting theory.
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{1,2,3}

{1,2}

{1,3}

{1}

{1,2,3,4}

{1,2,4}

{1,3,4}

{1,4}

{1,2,3,5}

{1,2,5}

{1,3,5}

{1,5}

{1,2,3,4,5}

{1,2,4,5}

{1,3,4,5}

{1,4,5}

Figure 2: The generalized Bossong–Schweigert order of
�+0−

1 = (2�1 3 | |4�1 5).

Intuitively, the relation between two coalitions C and D (C �i D,
D�i C, C ∼i D, or undecided) from player i’s point of view can be
determined by the following characterizations. These characteriza-
tions are inspired by Bouveret et al. [9] who show characterizations
for the original Bossong–Schweigert order in the context of fair di-
vision.

PROPOSITION 6. 1. Let �+0−
i be a weak ranking with dou-

ble threshold for agent i, and let C and C′ be two coali-
tions containing i. Consider the orders f1 �i f2 �i · · ·�i fµ

with { f1, f2, . . . , fµ}=C∩A+
i and f ′1 �i f ′2 �i · · ·�i f ′

µ ′ with
{ f ′1, f ′2, . . . , f ′

µ ′} = C′ ∩A+
i , as well as e1 �i e2 �i · · ·�i eν

with {e1,e2, . . . ,eν}=C∩A−i and e′1 �i e′2 �i · · ·�i e′
ν ′ with

{e′1,e′2, . . . ,e′ν ′}=C′∩A−i . Then, C �+0−
i C′ if and only if

(a) µ ≥ µ ′ and ν ≤ ν ′,
(b) for each k, 1≤ k ≤ µ ′, it holds that fk �i f ′k, and
(c) for each `, 1≤ `≤ ν , it holds that eν−`+1 �i e′

ν ′−`+1.

2. Say that wi : A→ R is compatible with �+0−
i if and only if

• for each j ∈ A+
i , we have wi( j)> 0;

• for each j ∈ A−i , we have wi( j)< 0;

• for each j ∈ A0
i , we have wi( j) = 0; and

• for all j,k ∈ A+
i ∪ A−i , we have j �i k if and only if

wi( j)> wi(k).

Then, C �+0−
i C′ if and only if for any wi compatible with

�+0−
i , we have ∑ j∈C wi( j)> ∑ j′∈C′ wi( j′).

PROOF. 1. Obviously, if (a) to (c) hold, the two injective
functions σ : C′ ∩A+

i →C∩A+
i , and θ : C∩A−i →C′ ∩A−i

mapping f ′k 7→ fk for each k, 1 ≤ k ≤ µ ′, and eν−`+1 7→
e′

ν ′−`+1 for each `, 1≤ `≤ ν , satisfy σ( f ′k)�i f ′k and eν−`+1
�i θ(eν−`+1), for the same range of k and `. On the other
hand, if there are two injective functions with the desired re-
quirements, (a) holds. If there was a k with f ′k �i fk (or an
` with e′

ν ′−`+1 �i eν−`+1), this would imply σ( f ′k) = f j for
a j < k (or θ(eν−`+1) = e′

ν− j+1 with j > `, respectively).
This, however, implies that either a requirement is violated
for f ′1 (or eν ), or that σ (or θ ) is not injective, a contradic-
tion.

2. Assume that C�+0−
i C′, that is, C�+0−

i C′ and not C′ �+0−
i

C. For the set of friends A+
i , with F =C∩A+

i and F ′ =C′∩
A+

i , it follows that there is an injective function σ : F ′ → F
such that for each y ∈ F ′, we have σ(y)�i y. Hence, for each
compatible wi, wi(σ(y))≥ wi(y). Thus, since σ is injective,

∑
j∈F

wi( j) ≥ ∑
j∈σ(F ′)⊆F

wi( j) = ∑
j′∈F ′

wi(σ( j′))

≥ ∑
j′∈F ′

wi( j′). (1)

Similarly, for A−i , with E =C∩A−i and E ′ =C′∩A−i , and θ

injective, it holds that

0 ≥ ∑
j∈E

wi( j)≥ ∑
j∈E

wi(θ( j)) = ∑
j′∈θ(E)⊆E ′

wi( j′)

≥ ∑
j′∈E ′

wi( j′). (2)

Since C′ �+0−
i C does not hold, at least one of the inequal-

ities (1) and (2) is strict, since one preference (σ( j′)�i j′

or j�i θ( j)) or one inclusion (σ(F ′) ⊂ F or θ(E) ⊂ E ′) is
strict. For each player j ∈ A0

i , we have wi( j) = 0; therefore,
in total,

∑
j∈C

w j > ∑
j′∈C′

w j′ . (3)

Now assume that for each compatible wi, (3) holds. Thus,

∑
j∈F

wi( j)− ∑
j′∈E ′

wi( j′)> ∑
j′∈F ′

wi( j′)− ∑
j∈E

wi( j).

Assume there were no injective function mapping from each
summand from the right-hand side to one at least as large
on the left hand side; then, there exists an assignment to the
values of wi compatible with �+0−

i that does not satisfy the
inequality, a contradiction. Hence, such a function must ex-
ist, and this function induces the mappings σ and θ , showing
C �+0−

i C′. Additionally, because the inequality is strict in
(3), C′ �+0−

i C does not hold, which completes the proof.
This completes the proof. q

4. POSSIBLE/NECESSARY STABILITY
As we have seen above, the generalized Bossong–Schweigert ex-

tension can leave uncertainties between two coalitions in a player’s
preference order.

DEFINITION 7. A complete preference relation�i over all coali-
tions containing i extends �+0−

i if and only if it contains it; that is,
if C�+0−

i D implies C�i D for all coalitions C,D. Let Ext(�+0−
i )

be the set of all complete preference relations extending �+0−
i .

Now we can define games where each player has friends, ene-
mies, and neutral co-players, and preferences over the former two
sets such that we can derive each player’s preference relation as
introduced in the previous section.

DEFINITION 8. An FEN-hedonic game is a tuple H = 〈A,
�+0−

1 , . . . ,�+0−
n 〉, where A = {1,2, . . . ,n} is a set of players, and

�+0−
i gives the ordinal preferences with thresholds of player i ∈ A

as defined in Definition 1.
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DEFINITION 9. Let α be a stability concept for hedonic games,
〈A,�+0−

1 , . . . ,�+0−
n 〉 be an FEN-hedonic game and Γ be a coali-

tion structure. Γ satisfies possible α if and only if there exists a pro-
file 〈�1, . . . ,�n〉 in ×n

i=1Ext(�+0−
i ) such that 〈A,�1, . . . ,�n〉 sat-

isfies α . Γ satisfies necessary α if and only if for each 〈�1, . . . ,�n〉
in ×n

i=1Ext(�+0−
i ), 〈A,�1, . . . ,�n〉 satisfies α .

EXAMPLE 10. Let A= {1,2,3}, �+0−
1 = (2�1 3 | | ), �+0−

2 =

(3 | | 1), and �+0−
3 = (1 | 2 | ).

The generalized Bossong–Schweigert orders are

{1,2,3} �+0−
1 {1,2} �+0−

1 {1,3} �+0−
1 {1}

for player 1,

{2,3}

{2}
�+0−

2

{1,2,3}
�+0−

2

{1,2}
�+0−

2 �+0−
2

for player 2, and for player 3

{1,3} ∼+0−
3 {1,2,3} �+0−

3 {3} ∼+0−
3 {2,3}.

So, two preferences are already complete, and there are three com-
plete preferences extending�+0−

2 , one setting {2}�2 {1,2,3}, an-
other setting {2}∼2 {1,2,3}, and the third setting {1,2,3}�2 {2},
leaving all other relations the same.

4.1 Properties and Characterizations
Observe first that there always exists a necessarily individually

rational coalition structure (namely, the coalition structure where
every agent is alone).

PROPOSITION 11. Consider an FEN-hedonic game 〈A,�+0−
1 ,

. . . ,�+0−
n 〉.

1. A coalition structure Γ is (necessarily and possibly) perfect if
and only if for each player i, A+

i ⊆ Γ(i) and A−i ∩Γ(i) = /0.2

2. A coalition structure Γ is possibly individually rational if and
only if for each i ∈ A, Γ(i) contains at least a friend of i’s or
only neutral agents.

3. A coalition structure Γ is necessarily individually rational if
and only if for each i ∈ A, Γ(i) does not contain any enemies
of i’s.

4. A coalition structure Γ is necessarily individually stable if
and only if it is necessarily individually rational and no player
i can join a coalition that she would possibly prefer and the
members of which do not see her as an enemy.

PROOF. 1. A coalition structure is perfect if and only if each
player is in one of her favorite coalitions, that is, each player
is together with all her friends and no enemies.

2. For each i ∈ A, i necessarily prefers {i} to Γ(i) if and only if
Γ(i) contains no friend and at least one enemy of i’s.

3. For each i ∈ A, i possibly prefers {i} to Γ(i) if and only if
Γ(i) contains an enemy of i′s.

2As a consequence, a possibly perfect coalition structure in an
FEN-hedonic game is always necessarily perfect.

4. Note that a player j possibly prefers a coalition C to C∪{i}
if and only if j necessarily prefers C to C∪{i} if and only
if i is an enemy of j’s. Assume that Γ is necessarily individ-
ually stable. Then, for each i ∈ A , if i prefers to move to
another (possibly empty) coalition C in Γ, there is a player
in C that prefers player i not being in the coalition. If C is
empty, there is no such player, thus, Γ has to be individually
rational. Hence, C is nonempty and there has to be a player
in C that sees i as an enemy. Now assume that Γ is not in-
dividually stable, that is, there is a player i and a coalition
C ∈ Γ∪{ /0} such that i prefers C∪{i} to Γ(i) and, for each
j ∈ C, C ∪ {i} � j C. If C = /0, then Γ is not individually
rational. Otherwise, each j does not see i as an enemy.

This completes the proof. q

Note that a similar characterization holds for contractually indi-
vidual stability, where additionally to the conditions of individual
stability, it is required that no j in Γ(i) considers i a friend.

EXAMPLE 12. Consider the FEN-hedonic game from Exam-
ple 10. Observe that there does not exist a (possibly) perfect coali-
tion structure. While {{1,2,3}} is possibly Nash stable, there does
not exist a necessarily Nash stable coalition structure, as in each of
five cases, player 1 or player 2, at least possibly, wants to move to
another coalition. Coalition structure {{1,2,3}} is possibly indi-
vidually rational, but not necessarily due to player 2; {{1,2},{3}}
is not possibly individually rational; the other three coalition struc-
tures are necessarily individual rational.

For {{1,3},{2}} it holds that player 2 possibly wants to move
to {1,3} and 1 and 2 do not see 2 as an enemy, thus necessary
individual stability is not satisfied. Also, since in {2} there is no
other player who considers 2 a friend, contractually individual sta-
bility is not satisfied either. Observe that this coalition structure is,
however, possibly individually stable.

Coalition structure {{1},{2,3}} is not necessarily individually
stable, as player 3 wants to move to {1,3} where 1 welcomes him.
Player 2, however, considers 3 a friend, thus, as 2 does not want to
move, and 1 is considered an enemy by 2 when moving to {2,3},
this coalition structure is contractually individually stable.

4.2 Complexity of Possible and Necessary Sta-
bility Problems

We are interested in axiomatic properties and characterizations
of stability concepts in FEN-hedonic games. However, for some
concepts no general statements can be made as to whether there
exists a coalition structure satisfying a stability concept α (possi-
bly or necessarily). In these cases we ask how hard it is to decide
whether for a given FEN-hedonic game a given coalition structure
possibly or necessarily satisfies α , and to decide whether there ex-
ists a coalition structure in a given FEN-hedonic game that possibly
or necessarily satisfies α . Similar questions are often analyzed in
the context of hedonic games [24, 3, 18]. Here, we redefine the
verification and existence problems to the notions of possible and
necessary existence.

Note that two interpretations of necessary existence can be dis-
tinguished, the first one asking whether there always exists a coali-
tion structure that satisfies α , while the second one is asking whether
a particular coalition structure necessarily satisfies α . Intuitively
this distinction makes sense, since in the first case the setting might
provide a central authority with partial knowledge of the agents’
preferences and require the knowledge that whatever the possible
preferences are, there is always some coalition structure satisfying
α; in the second case, the choice of coalition structure is indepen-
dent of the agents’ possible preferences.
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EXAMPLE 13. For example, consider the following game with
three players, A = {1,2,3}, with �+0−

1 = (2 | 3 | ), �+0−
2 =

(1 | 3 | ), and �+0−
3 = (1 | | 2). We obtain the following gener-

alized Bossong–Schweigert orders: {1,2} ∼1 {1,2,3} �1 {1} ∼1
{1,3}, {1,2} ∼2 {1,2,3} �2 {2} ∼2 {2,3}, and {1,3} �3 {3} �3
{2,3} and {1,3} �3 {1,2,3} �3 {2,3}, while 3 is undecided be-
tween {3} and {1,2,3}. Any coalition structure in which players 1
and 2 are not in the same coalition cannot possibly be Nash stable.
On the one hand, {{1,2},{3}} is Nash stable if and only if an ex-
tension provides {3} �3 {1,2,3}. On the other hand, {{1,2,3}} is
Nash stable if and only if {1,2,3} �3 {3} in an extension. Thus,
for every extension, there certainly exists a Nash stable coalition
structure. However, there is no necessarily Nash stable coalition
structure.

Here, we focus on the second interpretation. Possible existence
is unambiguous, asking whether there is some coalition structure
satisfying α for some extension.

PROPOSITION 14. All problems regarding perfection are in P.

PROOF. Verfication of whether a coalition structure is possibly
and necessarily perfect is easy by Proposition 11.

Existence can be decided by, e.g., the following algorithm: Start
with player 1 and let Γ(1) := {1}∪A+

1 . Sequentially, for each i ∈
Γ(1), add A+

i to Γ(1) until there are no further possible changes.
Check whether, for each i ∈ Γ(1), A−i ∩Γ(1) = /0. If not, output
“there is no perfect coalition structure”; if so, start over with Ar
Γ(1). It might be the case that a friend cannot be added, because he
is already assigned to another coalition. If he is on his own, add him
anyway; otherwise, output “there is no perfect coalition structure.”
Continue until each player is allocated to a coalition. Then, output
“there is a perfect coalition structure.”

Note that this algorithm works in polynomial time. q

All problems regarding individual rationality are in P by the char-
acterizations in Proposition 11 and the observation preceding it.

Proposition 11 does not provide a characterization of Nash sta-
bility. Nevertheless, it can be verified in polynomial time whether
a given coalition structure in a given FEN-hedonic game is neces-
sarily Nash stable.

LEMMA 15. The verification problem for possible Nash stabil-
ity is in P.

PROOF. Given an FEN-hedonic game and a coalition structure Γ,
verify the following steps for each i ∈ A: For each (of at most n
coalitions) C ∈ Γ∪{ /0}, C 6= Γ(i), determine the relation between
Γ(i) and C∪{i}. This can be done in polynomial time by Propo-
sition 6.1. If C∪{i} �i Γ(i), output “Γ is not Nash stable.” If the
relation is undecided, output “Γ is possibly not Nash stable.” Other-
wise, if this is not true for any player or coalition in Γ∪{ /0}, output
“Γ is necessarily Nash stable.” q

By the characterizations in Proposition 11, similar algorithms
work for individual and contractually individual stability. Note that
this cannot easily be transferred to possible Nash stability, since
resolving an undecided relation might influence another relation
for the same player.

THEOREM 16. The problem of whether there exists a possibly
Nash stable coalition structure in a given FEN-hedonic game is
NP-complete.

PROOF. The problem belongs to NP, since it is enough to check
whether there exists a coalition structure of A and an extension per-
suing the GBS-extension such that for each player i ∈ A and each

coalition C ∈ Γ, Γ(i) �i C∪{i}. The latter can be tested in time
polynomial in n = ‖A‖, since there are at most n coalitions in Γ

and the relation between two coalitions from a common player’s
perspective can be decided in polynomial time by Proposition 6.1.

NP-hardness can be shown via a polynomial-time many-one re-
duction from EXACT-COVER-BY-THREE-SETS (X3C, see [17]):
Given a set R with 3m elements and a family S of subsets s ⊆ R
with ‖s‖ = 3, is there an exact cover of R in S , that is, is there a
subset S ⊆S such that ∪s∈Ss = R and ‖S‖ = m? Without loss of
generality it can be assumed that m ≥ 2 and each element in R oc-
curs at most three times in a set in S . Given such an X3C instance,
we construct the following game. This construction is inspired by
the construction of the proof that it is NP-hard to decide whether
there exists a Nash stable coalition structure in an additively separa-
ble hedonic game [22, Theorem 3]. Here, however, several adjust-
ments have to be made in order to guarantee necessary preferences
over coalitions.3 Let

A = {αi | 1≤ i≤ 3m−1}∪{βr | r ∈ R}
∪{ζs,k | s ∈S ,1≤ k ≤ 3m−2}

and let the players’ preferences be defined as follows, where in
player i’s preference and for a set X = {a1,a2, . . . ,ax}, X∼ denotes
a1 ∼i a2 ∼i · · · ∼i ax

• �+0−
αi

=
(
αi+1

∣∣ {α j : i 6= j 6= i+1}∼
∣∣ {other players}∼

)
,

for each i, 1≤ i≤ 3m−2,

�+0−
α3m−1

=
( ∣∣ {α j : j 6= 3m−1}∼

∣∣ {other players}∼
)
,

• �+0−
βr

=
(
{αi : 1≤ i≤ 3m−1}∼�βr

⋃
r∈s Qs∼

�βr
{βr′ : r′ 6= r}∼

∣∣ ∣∣ {other players}∼
)
, for each r ∈ R,

• �+0−
ζs,k

=
(
ζs,k+1

∣∣ {ζs,k′ : k 6= k′ 6= k+1}∪{βr : r ∈ s}∼
| {other players}∼), for each s∈S , and k, 1≤ k≤ 3m−3,

�+0−
ζs,3m−2

=
( ∣∣ {ζs,k′ : k′ 6= 3m−2}∪{βr : r ∈ s}∼

| {other players}∼), for each s ∈S

where Qs = {ζs,k | 1≤ k ≤ 3m−2} for each s ∈S . Moreover, let
Ps = {βr | r ∈ s}∪Qs. This profile can be constructed in polyno-
mial time, since there are n≤ 3m+3m+3m · (3m−2) players, and
each player’s preference can be written in linear time in n.

We now show that (R,S ) is a positive instance for X3C if and
only if there exists a possibly Nash stable coalition structure in the
GBS-extension of the constructed game.

Only if: Assume there exists a solution S for (R,S ). Consider
the coalition structure

Γ = {{αi | 1≤ i≤ 3m−1}}∪{Ps | s ∈ S}∪{Qs | s /∈ S}.
3Consider, e.g., a coalition {i, f ,e} where player i has a posi-

tive value for f , and a negative value for e. In comparison to {i}
this coalition is preferred by player i if f has a greater absolute
value than e in the additively separable representation, is consid-
ered indifferent if f and e have the same absolute value, and is less
preferred otherwise. If we do not provide values but ordinal prefer-
ences and thresholds and consider f as a friend and e as an enemy
of i’s, {i, f ,e} and {i} are incomparable from i’s perspective; thus,
all three scenarios are possible in an extension persuing GBS.
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By a close look at all possibly empty coalitions in Γ it can be seen
that no αi, 1≤ i≤ 3m−1, and no ζs,k, s∈S , 1≤ k≤ 3m−2, wants
to move, and each βr, r ∈ R, possibly does not want wo move, thus,
Γ is possibly Nash stable.

If: Assume there is a possibly Nash stable coalition structure
Γ. Ruling out, one by one, coalitions that cannot be contained
in Γ, it can be shown that for each r ∈ R, there exists an s ∈ S
such that Γ(βr) = Ps, which means that there is an exact cover of R
in S . q

By similar, but not trivially the same methods we can show that
the problem of necessary Nash stable existence is NP-complete.

5. CHALLENGES
In order to give a prospect to future work we provide initial

thoughts on further stability concepts as well as comparability func-
tions in order to deal with incomparabilities.

5.1 Further Stability Concepts
So far we have focused on single-player deviations. In this sec-

tion, we give a prospect to other stability concepts such as group de-
viations, Pareto optimality, and popularity. A coalition structure Γ

is called core stable if for each coalition A′⊆A, there exists a player
i ∈ A′ such that Γ(i)�i A′. A coalition structure Γ is called Pareto-
optimal if for each coalition structure ∆, there exists a player i ∈ A
such that Γ(i) �i ∆(i), or for each player j ∈ A, Γ( j) ∼ j ∆( j). A
coalition structure Γ is called popular if for each coalition struc-
ture ∆, the number of players i with Γ(i)�i ∆(i) is at least as large
as the number of players j with ∆( j) � j Γ( j). We furthermore in-
troduce the notion of strict popularity. A coalition structure Γ is
called strictly popular if it beats each other coalition structure ∆ in
pairwise comparison,4 that is,

‖{i ∈ A | Γ(i)�i ∆(i)}‖> ‖{ j ∈ A | ∆( j)� j Γ( j)}‖.

For each extension there exists a Pareto-optimal coalition struc-
ture (perhaps a different one for different extensions). Observe that
if there exists a necessarily strictly popular coalition structure, it is
unique, whereas there can be more than one possibly strictly popu-
lar coalition structure.

If there exists a necessarily strictly popular coalition structure, it
is necessarily Pareto optimal. If there exist possibly strictly pop-
ular coalition structures, each of them is possibly Pareto-optimal.
A necessarily strictly popular coalition structure does not need to
be possibly individually rational. Even if the possible core is non-
empty, a necessarily strictly popular coalition structure does not
need to be possibly core stable. The same holds for the concepts of
Nash stability, individual stability, contractual individual stability,
and strict core stability. If there exists a unique perfect partition, it
is necessarily the unique necessarily strictly popular coalition struc-
ture.

With techniques related to those in the proof of Theorem 16, we
can show that the questions of whether a given coalition structure
is possibly strictly popular or popular or Pareto-optimal are coNP-
hard, necessarily strictly popular or popular or Pareto-optimal are
coNP-complete, and it is coNP-hard to decide whether there exists
a strictly popular coalition structure, for both, the possible and the
necessary case.

Moreover, coNP-hardness of the problems of whether a given
coalition structure is core stable or strictly core stable can be shown

4This notion is adapted from the voting-theoretic term of Con-
dorcet winner: Such a candidate wins an election if and only if she
beats each other candidate in pairwise comparison.

with help of the reduction from CLIQUE to the core stability veri-
fication problem in the enemy-based representation [21]. Note that
this representation is a special case of the representation with or-
dinal preferences and thresholds, where there are no neutral agents
and only indifferences between all friends and between all enemies
in a player’s preference. Furthermore, note that the enemy-based-
extension [15] is a possible extension in ×n

i=1Ext(�+0−
i ). While

a “clique” of friends is necessarily preferred by all members to a
coalition containing fewer friends or even more enemies, there is
not necessarily a blocking coalition in the construction if there is
no such clique (for example, there is no blocking coalition in the
enemy-based extension).

5.2 Breaking Incomparabilities with Borda-
Like Scoring Vectors

In this section, we present a mechanism for determining the re-
lation between coalitions that are not comparable via the ordering
that the Bossong–Schweigert extension induces.

Every player has to evaluate a total preference order over all pos-
sible coalitions she might be part of, so we define a so-called com-
parability function (short CF) for a fixed player, say i ∈ A. One
possibility to do so is to use scoring vectors that assign values to
the players in Ar {i} depending on the position they have in the
weak ranking with double threshold of player i. In particular, for
the notions presented in Definition 1, we define the following vari-
ants of Borda-like scoring vectors.

We define scoring vectors wi : A → Z assigning points to the
players in the sets of friends, neutral agents, and enemies of agent i,
according to their positions in ranking �+0−

i , compatible with �+0−
i

as in Proposition 6. In more detail, we propose the following possi-
bilities, distinguishing between an “optimistic” and a “pessimistic”
case (see also the optimistic and pessimistic scoring model for mod-
ified Borda voting, due to Baumeister et al. [6]), and for each we
have a regular and a strong variant. Recall that we have n agents in
total. Suppose that i’s friends, A+

i , are ordered as follows: �+
i =

A+
i,1 �

+
i A+

i,2 �
+
i · · ·�

+
i A+

i,`, where each A+
i, j contains some agents i

is indifferent about. Similarly, suppose that i’s enemies, A−i , are or-
dered as follows: �−i =A−i,1�

−
i A−i,2�

−
i · · ·�

−
i A−i,m, where each A−i, j

contains agents i is indifferent about. Here, we do not explicitly de-
fine all 16 combinations of (strictly) friend/enemy-optimistic/pessi-
mistic scoring vectors. For instance, consider the cases of a strongly
friend-optimistic and a strongly enemy-pessimistic setting.

DEFINITION 17. Let A be a set of players and �+0−
i be player

i’s preference relation. Let wi : A→ Z, compatible with �+0−
i ,

assign n points to each agent in A+
i,1, n−1 points to each agent in

A+
i,2, . . . , and n− `+ 1 points to each agent in A+

i,`. Moreover, let
each agent in A−i,m get −n points, each agent in A−i,m−1 get −n+ 1
points, . . . , and each agent in A−i,1 get−(n−m+1) points. Then, we
call wi strongly friend-optimistic and strongly enemy-pessimistic.

We now define a numerical comparability function that captures
the notion of Borda-like scoring.

DEFINITION 18. For each fixed agent i ∈ A and for every fixed
choice of scoring vectors wi, the Borda-like CF

f i
Borda : {C ⊆ A | i ∈C}→ Z

maps every coalition C containing i to the sum of the scores the
agents in C obtain from wi. The value of a coalition C⊆A is defined
as FBorda(C) = ∑i∈C f i

Borda(C).
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{1,2,3,4} {1,2,3} ∼ {1,2,4} {1,2,3,4,5}
v1 16 11 11

Table 1: Values of some coalitions in player 1’s view for the
scoring vector v1 = (∗,6,5,5,−5,−6)

EXAMPLE 19. Let A = {1,2,3,4,5,6} and the preference with
thresholds from Example 2: �+0−

1 = (2�1 3∼1 4 | |5�1 6). Fig-
ure 1 shows the graph corresponding to the Bossong–Schweigert
extension of this preference. For six agents and �+0−

1 , the scor-
ing vector in the strongly friend-optimistic and strongly enemy-
pessimistic setting is v1 = (∗,6,5,5,−5,−6).

Table 1 shows the scores of some of the coalitions from agent 1’s
view with scoring vector v1.

To determine the overall value of all coalitions, the individual
scores of the other five agents have to be determined as well.

The following observation follows directly from the definitions
above.

OBSERVATION 20. For each player i ∈ A, the comparability
function f i

Borda preserves those rankings that are induced by the
Bossong–Schweigert extension.

Furthermore, a game that is induced by comparability function
FBorda (as an extension) is additively separable.

This observation allows us to use known results for the complex-
ity of the various stability problems in general additive separable
hedonic games (ASHGs, for short), which have been studied in-
tensely (see, e.g., the work by Aziz et al. [3] for a comprehensive
overview). Upper bounds can be transferred directly from known
results for general ASHGs. Whether the known lower bounds also
hold for our special games, however, has to be checked separately.
For certain settings of scoring vectors (often all 16 combinations at
once), we were able to adapt known hardness proofs for some of
the stability concepts to our setting. Although the cardinaliziation
of the ordinal preferences might suggest that verification and exis-
tence of a stability concept become more tractable. However, for
the strongly friend-pessimistic and strongly friend-optimistic case,
we obtain the same complexity results as for Nash stability: ver-
ification is decidable in P, existence NP-complete. The problem
of whether there exists a core stable coalition structure in a given
FEN-hedonic game is even Σ

p
2 -complete.

6. CONCLUSIONS AND FUTURE WORK
In this paper we introduce a new representation of preferences

in hedonic games using the Bossong–Schweigert principle to ex-
tend the players’ preferences over the other players to preferences
over the coalitions. This generalized Bossong–Schweigert exten-
sion principle to positive and negative items (here called friends
and enemies), and neutral items, is new and it is original in itself,
independently of its use in hedonic games.

We have then looked at several stability concepts in hedonic
games with such preferences. The problem of remaining incom-
parabilities is tackled in two ways: Firstly, by letting these incom-
parabilities unresolved and introducing known stability concepts
with respect to notions of necessity and possibility, and secondly
by introducing a comparability function based on Borda-like scor-
ing vectors.

For both approaches we analyze for the induced games the com-
plexity of the existence and verification of well-known stability
concepts. So far, with the help of these solution concepts we can

verify if a coalition structure is a “good” solution, compare two
coalition structures, and decide, whether there even exists such a
coalition structure—sometimes at great cost in terms of complex-
ity.

Besides completing the analysis initiated here (such as consider-
ing other solution concepts and solving remaining open problems),
we suggest for future work introducing the notion of partition cor-
respondences with the purpose to actually identify “good” coalition
structures as an output. In contrast to the original idea of hedonic
games where coalitions form in a decentralized manner, here a cen-
tral correspondence is used, in order to decide which coalitions will
work together. This might, for example, be the case in a setting
where the head of a department has to divide a group of employees
into teams. The teams should be stable, in the sense that the team
members are as happy as possible with their group to create a good
working atmosphere.
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