
Incremental Policy Iteration with Guaranteed Escape from
Local Optima in POMDP Planning

Marek Grzes and Pascal Poupart
Cheriton School of Computer Science, University of Waterloo

200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
{mgrzes, ppoupart}@cs.uwaterloo.ca

ABSTRACT
Partially observable Markov decision processes (POMDPs) pro-
vide a natural framework to design applications that continuously
make decisions based on noisy sensor measurements. The recent
proliferation of smart phones and other wearable devices leads to
new applications where, unfortunately, energy efficiency becomes
an issue. To circumvent energy requirements, finite-state controllers
can be applied because they are computationally inexpensive to ex-
ecute. Additionally, when multi-agent POMDPs (e.g. Dec-POMDPs
or I-POMDPs) are taken into account, finite-state controllers be-
come one of the most important policy representations. Online
methods scale the best; however, they are energy demanding. Thus
methods to optimize finite-state controllers are necessary. In this
paper, we present a new, efficient approach to bounded policy in-
teraction (BPI). BPI keeps the size of the controller small which is
a desirable property for applications, especially on small devices.
However, finding an optimal or near optimal finite-state controller
of a bounded size poses a challenging combinatorial optimization
problem. Exhaustive search methods clearly do not scale to larger
problems, whereas local search methods are subject to local op-
tima. Our new approach solves all of the common benchmarks on
which local search methods fail, yet it scales to large problems.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search

Keywords
Planning under Uncertainty; POMDP; Policy Iteration; Finite State
Controller

1. INTRODUCTION
We propose a new approach to solving partially observable Mar-

kov decision processes (POMDPs) when the policy—that is, the
solution to a POMDP—is represented in the form of a finite-state
controller (FSC) [11]. Our approach deals with the combinato-
rially challenging problem of finding an optimal or near-optimal
controller of a small size [22]. It distinguishes itself from previous
work by guaranteeing improvements until a globally optimal solu-
tion is found while scaling gracefully by incrementally growing the
size of the controller one node at a time.

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Several factors can be identified to motivate research on finite-
state controllers and the need for small controllers specifically. On
one hand, research on efficient POMDP algorithms has advanced
significantly in the past decade. The most widely known and es-
teemed approaches are based on point-based value iteration [20,
29], refinement of lower and upper bounds on the optimal value
function [25, 14, 19], and online planning [24]. On the other hand,
in several modern applications of POMDPs—especially those exe-
cuted on mobile phones or wearable devices [18, 10]—a POMDP
policy has to be energy efficient. Finite state controllers are both
energy efficient and easy to implement on small devices, espe-
cially when a hardware implementation is needed. They general-
ize easily to multi-agent POMDPs such as decentralized POMDPs
(Dec-POMDPs) [4] or interactive POMDPs (I-POMDPs) [7]. For
instance, Bounded Policy Iteration (BPI) [22] has been success-
fully extended to both Dec-POMDPs [1] and I-POMDPs [27, 28].
Hence, any advances in single-agent POMDP planning using finite-
state controllers could be useful for the multi-agent setting.

Early work on POMDPs considered policy iteration with an ex-
plicit finite-state controller representation [26, 11], and then subse-
quent research has shown many improvements [22, 2, 3, 17, 10];
however, point-based approaches are still considered by practition-
ers to be more robust in many settings, even though current research
has shown that finite-state controller algorithms can learn smaller
policies [23]. Also, when point-based algorithms are used, the
resulting policy can be compiled into a finite-state controller [9].
There exists, however, an important need for robust policy itera-
tion algorithms, which would allow for the efficient optimization
of finite-state controllers of better quality and smaller size. To
that effect, this paper contributes a new policy iteration algorithm
that outperforms existing controller techniques in terms of robust-
ness and scalability while being competitive with a state-of-the-art
point-based technique. This is achieved by a novel composition of
efficient heuristics to improve existing nodes and create new nodes
in conjunction with a new technique that provably escapes local op-
tima. Furthermore, improvements in finite-state controller search
can be potentially useful for point-based algorithms (e.g., [25, 14,
19]) since the lower bound computation in those algorithms could
be replaced by a finite-state controller which would avoid many
challenges associated with maintaining large sets of belief points.

2. BACKGROUND
Partially observable Markov decision processes (POMDPs) are

formally defined by a tuple 〈S,A,O, T, Z,R, γ〉 where S is the
set of states s, A is the set of actions a, O is the set of observa-
tions o, T (s, a, s′) = Pr(s′|s, a) defines the transition probabil-
ities, Z(o, a, s′) = Pr(o|a, s′) defines the observation probabili-
ties, R(s, a) defines the reward function, and 0 < γ < 1 is the

1249

discount factor. The goal is to find a policy π : H → A that maps
histories h ∈ H of previous actions and observations to the next
action. Since the length of histories grows with time and the num-
ber of histories grows exponentially with time, there is a need for a
bounded representation. One option is to use belief states (i.e., dis-
tributions over states) which can be thought as a sufficient statistic
that encodes the same information as histories [13]. Alternatively,
we can restrict policies to finite state controllers, which define a
compact mapping from histories to actions [11].

A finite state controller (FSC) consists of a set of nodes labeled
with actions and edges labeled with observations. An FSC is pa-
rametrized by an action mapping φ, which assigns an action to each
node (i.e., φ : N → A) and a node mapping ψ, which indicates
which node each edge maps to (i.e., ψ : N × O → N). The pol-
icy encoded by a controller is executed by performing the action
associated with each node traversed and by following the edge as-
sociated with each observation received. This execution requires a
negligible amount of computation at each step to update the cur-
rent node and lookup the corresponding action. Hence, it is ideal
for applications with severe computation or energy constraints. The
value V πn (s) of starting a controller π = 〈φ, ψ〉 in node n at state
s is an |S|–dimensional vector computed as follows:

V πn (s) = R(s, φ(n))+

γ
∑
s′,o

Pr(s′, o|s, φ(n))V πψ(n,o)(s
′) ∀s, n (1)

These |S|–dimensional vectors are often called α-vectors. Without
loss of generality, we assume that the policy of a controller always
starts in the first node n1. Hence the value of a controller at initial
belief b0 is V π(b0) =

∑
s b0(s)V πn1

(s). Solving a POMDP using
a controller search method consists of finding π = 〈φ, ψ〉 which
maximizes V π(b0).

While finite-horizon POMDPs (i.e. when the policy is planned
for a finite number of time steps) enjoy piecewise-linear value func-
tions in the form of a finite set of α-vectors, it is not always the
case in infinite horizon POMDPs; however, the existing literature
has shown that policies with limited memory can still be near-
optimal [22]. In general, the optimal value function V ∗ satisfies
Bellman’s equation:

V ∗(b) = max
a

R(b, a) + γ
∑
o

P (o|b, a) V ∗(bao) (2)

where bao(s′) ∝
∑
s b(s) Pr(s′|s, a) Pr(o|a, s′) is computed using

Bayes’ rule and represents the belief reached after action a has been
executed in belief b and observation o was observed. When applied
to compute successive approximations, it is known as a dynamic
programming update rule. Since b is continuous, exact solutions
are not possible in general, and approximations, e.g., finite-state
controllers, are required.

It was shown in [22] that stochastic finite-state controllers (FSCs)
that allow stochastic edges and stochastic actions can yield higher
value than deterministic FSCs introduced above subject to the same
number of nodes. In stochastic FSCs, the notation for the observa-
tion strategy becomes ψ(n, o, n′) = P (n′|n, o), defining a dis-
tribution over successor nodes n′ given an 〈n, o〉 pair. Similarly,
φ(n, a) = P (a|n) is the probability of an action a given a node
n. During controller execution, actions and next nodes are sampled
from their distributions associated with the current node.

3. RELATED ALGORITHMS
We first review policy iteration for fully observable Markov deci-

sion processes (MDPs). After initializing the policy, π, arbitrarily,

max: δ
s.t. ∀s, Vn(s) + δ ≤

∑
a[caR(s, a)+

γ
∑
s′,o P (s′|s, a)P (o|s′, a)

∑
no
ca,noVno (s′)]∑

a ca = 1;
∑
no
ca,no = ca; ∀a, ca ≥ 0; ∀a,o, ca,no ≥ 0

Figure 1: The BPI node improvement linear program for node
n where ca = P (a|n) and ca,no = P (no|a, n)P (a|n). Decision
variables are δ, ca, and ca,no .

the algorithm iterates between (1) policy evaluation and (2) pol-
icy improvement. The first step uses a simplified version of Eq. 1,
whereas the second step tries to improve the policy at every state,
s, by computing a Bellman update for state s that uses the current
values of all next states s′:

π(s) = arg max
a

(
R(s, a) + γ

∑
s′

T (s, a, s′)V π(s′)
)
. (3)

The process stops when π cannot be improved any more; at this
point, π is optimal. Policy iteration is, however, not as straightfor-
ward in the case of POMDPs because the policy improvement step
is more complicated due to partial observability. In MDPs each
state corresponds to a node, but in POMDPs the states are unob-
served and therefore a vector of values for all states is associated
with each node.

Initially, policy improvement in POMDPs was implemented by
adding new nodes to the controller using dynamic programming
(DP) and removing dominated nodes [12]. Having a solution to
Eq. 1, which is the result of policy evaluation (in the form of N α-
vectors), the dynamic programming update produces newα-vectors
and their nodes. Dynamic programming for POMDPs has been the
subject of extensive research; the goal was to compute new, use-
ful α-vectors efficiently using Eq. 2 and exploiting the fact that the
value function is piecewise-linear and convex [13]. Various meth-
ods were introduced for this purpose with incremental pruning be-
ing the fastest known method for exact (DP) updates [5]. However,
up to |A||N ||O| nodes may be produced by each DP backup, so
the method quickly becomes intractable. In policy iteration, after
new nodes have been added to the controller, pointwise dominated
nodes can be removed. A node is pointwise dominated when its
value is less than the value of some other node at all belief states;
conversely, a node is not dominated when there exists a belief—
called a witness belief —at which the value of the node is higher
than the value of all other nodes. Inward edges leading to a re-
moved node are redirected to the dominating node.

Instead of adding a potentially intractable number of nodes and
then removing pointwise dominated nodes, bounded policy itera-
tion (BPI) [22] directly improves existing nodes without adding
new nodes unless a local optimum is reached. First, BPI considers
stochastic nodes, which often allow controllers of equal or higher
value to be represented by fewer nodes. In particular, nodes jointly
dominated by several nodes can be removed by using stochastic
edges. Second, the authors of BPI observed that the quality of a
FSC can often be improved by ‘rewiring’ edges of existing nodes,
which keeps the size of the controller constant. This approach im-
proves existing nodes individually and can be implemented with
the algorithm in Fig. 1. This optimization procedure guarantees
that the new node is better at all beliefs than the node n whenever
δ > 0. Interestingly, this approach has a very close relationship
to policy improvement in MDPs. The procedure in Fig. 1 tries to
improve the current node n by doing DP backup(s) from V πn′ (see
similarity to Eq. 3 where s are nodes). It is one DP backup when
the new node is deterministic, and a convex combination of DP
backups when the new node is stochastic; we will refer to this first
step of policy iteration in POMDPs as node improvement. This ob-

1250

max:
∑
n,s o(n, s)δn,s

s.t. ∀s, Vn(s) + δn,s ≤ ε+
∑
a[caR(s, a)+

γ
∑
s′,o P (s′|s, a)P (o|s′, a)

∑
no
ca,noVno (s′)]∑

a ca = 1;
∑
no
ca,no = ca; ∀a, ca ≥ 0; ∀a,o, ca,no ≥ 0

δn,s ≥ 0;

Figure 2: The biased BPI node improvement linear program
for node n where ca = P (a|n) and ca,no = P (no|a, n)P (a|n).
Occupancy frequency o(n, s) can be thought as a scaled belief
where improvement is maximized. Decision variables are δn,s,
ca, and ca,no ; ε is a parameter explained in text.

a) b) c)

Figure 3: Alpha vectors αj for improved nodes.

servation is useful for understanding Sec. 4 and the challenges of
policy iteration in POMDPs.

When no node can be improved, BPI will try to escape local
optima using a special procedure that replaces the dynamic pro-
gramming update used in earlier algorithms. NB: the escape step
is not required in MDPs since policy improvement converges to a
global optimum. In BPI, the escape procedure exploits the fact that
when the algorithm in Fig. 1 cannot improve node n, the dual so-
lution corresponds to a belief whose value is tangent to the current
value function. In order to escape the local optimum, BPI performs
a one-step lookahead search (DP backup) from the tangent belief
in order to find a new node which is then added to the controller.
An improved version of the optimization program in Fig. 1 was
introduced in [21] and is shown in Fig. 2. The objective of the
optimization program is biased by the occupancy frequency of the
current controller. Occupancy frequency, o(s, n) ∈ R, indicates
the expected number of times (discounted by γt for t time steps)
that state s is reached in node n when executing a particular policy
or a finite-state controller [21]. Intuitively, it is useful to focus the
node improvement procedure on those states that are more likely to
reach the node n. Relevant relationships between occupancy fre-
quency and optimality of the controller are discussed in [23] where
forward search from the beliefs proportional to the occupancy fre-
quency of each node was used to escape local optima too.

Overall, policy iteration in POMDPs requires two steps (1) pol-
icy evaluation and (2) policy improvement which attempts (2a)
node improvement, does (2b) escape when (2a) does not improve
any nodes, and (2c) performs pruning to compress the controller
and potentially improve its quality.

4. NODE IMPROVEMENT
We start with an example in Fig. 3a to show what happens when

the optimization procedure in Fig. 1 finds a better node. The ex-
ample is for a two-state POMDP, and the node that corresponds to
the vector αi is being examined for improvement. If the improve-
ment is possible, the α-vector of an improved node could look like
αj . The improved vector αj has to dominate the old vector αi
at the entire belief simplex because the optimization procedure in
Fig. 1 tries to maximize the smallest improvement over all corners
of the belief simplex. The biased version of this procedure, shown
in Fig. 2, tries to maximize the improvement at a belief point pro-
portional to the occupancy frequency o(n, s) of the current node.

By default, the procedure from Fig. 2 when used with ε = 0 tries
to maximize the improvement at o(n, s) subject to a constraint that
there is no belief in the entire belief simplex where the value would
become lower (see Fig. 3b). This restriction often prohibits the
algorithm from finding a new node. To circumvent this limita-
tion, the parameter ε can be set to a value higher than 0 in Fig.2
(ε = (maxs,aR(s, a)−mins,aR(s, a))/400(1− γ) was recom-
mended in [21]). This way, a new node with some improvement
at o(n, s) can be found at the cost of a reduction in value at some
other beliefs. This approach does not guarantee improvement of
the quality of the controller any more, but it can find useful nodes
in many cases. Low values for ε ensure that the potential loss in the
quality of the controller is low.

The above indicates that the existing literature did not solve the
problem of node improvement whereas a robust and valid node im-
provement procedure is crucial for preventing the growth of the
controller and for effective policy iteration. We observe that con-
straining the loss at some beliefs (using ε = 0 in Fig. 2) is the
main reason why many good nodes cannot be found by the BPI
optimization procedures. Therefore, our approach examines an ex-
treme case when we allow the value at some of the belief points to
have arbitrarily large loss. With that, we can gain a much higher
improvement at beliefs we are interested in, e.g., at o(n, s). This
is illustrated in Fig. 3c which demonstrates a new vector αj which
has to go down very far on the left hand-side of the figure in or-
der to have high improvement at a belief proportional to o(n, s).
In order to facilitate such flexibility, it is sufficient to remove the
parameter ε from the linear program in Fig. 2 and to allow δn,s
to take any values in R. We will call this optimization model, de-
rived from Fig. 2, an LP-based unconstrained node improvement
(LP stands for linear programming) in the remainder of the paper.
Furthermore, this naturally leads to a conjecture that the existence
of the parameter ε and the non-negativity constraints on variables
δn,s are the primary reasons why the original formulations in Fig. 2
(as well as Fig. 1) arrive at stochastic nodes. Those extra con-
straints prohibit deterministic nodes because deterministic nodes
would often require substantially reduced values at some beliefs.
With that observation, we can remove the linear program, and an
improved deterministic node can be sought directly; for that, it is
sufficient to consider the o(n, s) vector of the node as a belief state
for which a new node can be constructed by a one-step lookahead
search (i.e. one Bellman backup) from o(n, s) (which corresponds
to policy improvement in MDPs using Eq. 3). We name this pro-
cedure DP-based unconstrained node improvement (DP stands for
dynamic programming); its effectiveness is demonstrated in Sec. 7.

So far, we have shown how and why better nodes can be found
using unconstrained node improvement, and we conjecture that de-
terministic nodes are sufficient. However, it is well known that if
one uses o(n, s) as a belief state for constructing improved nodes,
the new node may reduce the quality of the entire controller even
if an individual node could be improved at o(n, s). This property
is formally discussed in Thm. 2 in [23], and it explains why only a
small reduction (small ε) or no reduction (ε = 0) at some beliefs
were allowed in BPI [22]. We propose a simple solution to this
problem.

Our approach is to apply the unconstrained node improvement
in order to compute the node with the best possible improvement
at o(n, s), and also to verify whether the overall quality of the con-
troller is improved. We temporarily replace the old node by the new
node and compute Vn1(b0). If an improvement is found, the new
node is kept; if not, we put the old node back into the controller.
Exploiting the monotonicity of Bellman backups [16], in some sit-
uations, it would be sufficient to perform a single backup instead

1251

a) b) c)

Figure 4: Possible node improvements computed using Fig. 1;
αi corresponds to an old node and αj to a new node.

of a full evaluation to determine if the new node improves the con-
troller. Additionally, even if the new node is not useful at this stage,
it may be useful at the escape stage, which is discussed in detail in
Sec. 5; hence, the time to compute the new node is not wasted. Our
procedure for node improvement is summarized in Alg. 1.

Algorithm 1: IMPROVENODE: A new method for improving
individual nodes of a finite-state controller.

Data: FSC - finite-state controller, nold - node to improve
Result: true when FSC was improved
compute nnew by LP or DP unconstrained node improvement1
swap(FSC, nold, nnew)2
evaluate(FSC) ; /* solve Eq. 1 */3
if FSC improved at b0 in node n1 then4

return true5
else6

swap(FSC, nnew , nold)7
add(node-set, nnew) ; /* store nnew for escape */8
return false9

5. PROVABLE ESCAPE METHODS
Algorithm 1 is expected to find better nodes than the original

BPI procedures and in some situations it can find improved nodes
even when BPI is not able to find any. As a result, doing bounded
policy iteration with our node improvement method will lead to
better controllers of a given size. However, there is still a need to
escape local optima (i.e., when a controller is subotimal and the
node improvement techique cannot improve any of the nodes). An
escape technique was proposed in BPI [22] that adds nodes based
on a one step lookahead from the tangent belief obtained from the
dual solution to the linear program in Fig. 1. Let us investigate this
method in detail. Three types of solutions (Fig. 4) can be computed
using Fig. 1.

1. In Fig. 4a, the new node is better than the old node at the
entire belief simplex. The new node can be used, and there
is no local optimum.

2. Fig. 4b shows the situation where the LP objective δ is zero
(the smallest improvement is zero). The new node is still
useful if there exists a corner in the belief simplex where the
improvement is higher than zero (for example, state 1 in this
case). The dual solution returns a corner (corner 0 in this
example) as a tangent belief for escape. Either the new node
or the tangent belief could be used to improve the controller.

3. The objective δ is 0, indicating that αj is identical to αi since
no improved node was found (Fig. 4c). At this point, BPI
would use the dual solution as a belief point from which the
escape can be performed by a one step look ahead. An in-
spection of Fig. 4c shows, however, that there is an infinite
number of dual solutions; any point in the belief simplex can

be the dual solution. Therefore, the dual solution depends on
the solver, and it does not have to be a belief that is useful
for escaping the local optimum. Our experiments with the
CPLEX solver showed that the same dual solution is always
returned; however, the solution may not be useful for escape.
In many cases, a corner of the belief simplex is returned by
CPLEX, which is usually a useful belief for escaping local
optima at the beginning of policy iteration, but we know from
Cheng’s algorithm that corners of the belief simplex are not
sufficient [6].

The analysis of Fig. 4 shows that a one step lookahead from the
tangent beliefs as done by BPI is not sufficient to guarantee the
escape of a local optimum. With this observation, we are back to
methods that existed before BPI was proposed if we want to have a
method that is guaranteed to escape local optima.

One option is to use methods developed for planning in finite
horizon POMDPs where incremental pruning was shown to be the
most efficient method [5]. However, those methods do an exact
DP update, produce many new nodes, and do not scale to large
problems. Another option is based on heuristic search; the forward
search can be performed using upper bounds for exploration—an
approach discussed by Hansen [12] and utilized in point-based plan-
ners with heuristic search [25, 14, 19]. Relying on a duality gap is
a standard technique in artificial intelligence and optimization, and
assuming that the heuristic search is implemented efficiently, the
method is expected to be robust. In our paper, however, we attempt
to push the understanding of escape methods in POMDP planning
further, so that more can be achieved before one has to apply heuris-
tic search for many steps because many nodes may need to be added
in one escape step. In what follows (including all our empirical re-
sults), we investigate principled methods to escape local optima in
policy iteration where we do not allow more than one step of looka-
head search (a challenge that was attempted in BPI as well).

Since BPI is not guaranteed to escape local optima, and exact DP
is intractable, a new efficient, but provable, method is missing. Be-
fore we introduce our approach, we review some useful concepts.
The naïve way to compute the exact DP update for POMDPs is to
enumerate all possible alpha vectors. We can compute the set Γa,o

of vectors V a,on (s) for each 〈a, o〉 pair by applying a DP update:

Γa,o ← V a,on (s) =
Ra(s)

|O| +

γ
∑
s′∈S

P (o|s′, a)P (s′|a, s)V πn (s′),∀n (4)

Having Γa,o, the cross-sum can be computed for every action:

Γa = Γa,o1 ⊕ Γa,o2 ⊕ ...⊕ Γa,o|O| (5)

The last step takes the union of Γa and sets:

V = ∪a∈AΓa (6)

which computes the set of new α-vectors V . The set V is guaran-
teed to provide the best possible improvement over the entire belief
simplex. In bounded policy iteration, it is sufficient to add one node
(in other words, one new α-vector) which may escape a local op-
timum. We propose a quadratic optimization program with linear
constraints that is guaranteed to find a node with the best improve-
ment possible over the entire belief simplex (see Fig. 5). We can
also show that the search can be restricted to deterministic nodes.

THEOREM 1. There always exists an optimal solution to the
quadratic problem shown in Fig. 5 that is integral ∀n′,a,o P (n′, a|o),
i.e., there exists an optimal solution that corresponds to a determin-
istic node.

1252

max:
∑
a,n′,o,s w(s)P (n′, a|o)V a,o

n′ (s)− β
s.t.

∑
s w(s) = 1;

∑
n′,a P (n′, a|o) = 1;

∀a,o1,o2
∑
n1
P (n1, a|o1) =

∑
n2
P (n2, a|o2)

∀nβ ≥
∑
s w(s)V πn (s);

∀sw(s) ∈ R;∀n′,a,oP (n′, a|o) ∈ [0, 1]

Figure 5: A quadratic optimization program to search for a
new node that provides maximal improvement at the entire be-
lief simplex; the belief w (witness belief) is the belief at which
the improvement happens. Decision variables are the witness
belief w, the current value β at belief w, and node parame-
ters P (n′, a|o) which, when interpreted as probabilities, corre-
spond to P (n′|o)P (a).

PROOF. First, we will show by contradiction that if we pick a
particular w, then no stochastic node can be better than the best
deterministic node computed for w. When w is fixed, β is also
fixed (i.e., constant) and therefore the objective can be simplified
to
∑
a,n′,o P (n′, a|o)

∑
s w(s)V a,on′ (s). Suppose that the optimal

solution P ∗(n′, a|o) is stochastic and achieves strictly higher value
than any deterministic node n = 〈φ, ψ〉 at w:∑

a,n′,o

P ∗(n′, a|o)
∑
s

w(s)V a,on′ (s) (7)

>
∑
s,o

w(s)V
φ(n),o

ψ(o,n) (s) ∀n

Since any stochastic solution can be rewritten as a convex com-
bination of deterministic nodes, let p∗n be the probability of each
deterministic node n corresponding to P ∗(n′, a|o). We can then
rewrite the objective as follows:∑

a,n′,o

P ∗(n′, a|o)
∑
s

w(s)V a,on′ (s) (8)

=
∑
n

p∗n
∑
s,o

w(s)V
φ(n),o

ψ(o,n) (s)

Eq. 8 contradicts the assumption in Eq. 7 since a convex combina-
tion of terms cannot be strictly greater than each individual term.
Since this argument applies to all w’s, this shows that there must
exist an optimal deterministic solution that corresponds to a deter-
ministic node.

The theorem shows that stochastic nodes do not have any advan-
tage over deterministic nodes in escaping a local optimum in policy
iteration and is consistent with a known fact that deterministic poli-
cies are sufficient for solving POMDPs assuming that the size of
the controller is not bounded.

We seek exact methods for solving Fig. 1. Fortunately, the qua-
dratic term w(s)P (n′, a|o) is formed by a multiplication where at
least one of the variables (e.g., P (n′, a|o)) is in the range of [0, 1].
Therefore, a special case of the McCormick relaxation [15] (known
as disjunctive programming) can be used to linearize quadratic terms.
Note that disjunctive programming is exact (not a relaxation) when
one of the factors is restricted to {0, 1} (instead of [0, 1]). Hence,
we replace w(s)P (n′, a|o) by a new variable y(s, a, o, n′), restrict
P (n′, a|o) to {0, 1} and add McCormick constraints to obtain the
mixed-integer linear program in Fig. 6. Since restricting P (n′, a|o)
to integral values does not change the best improvement that can be
achieved according to Thm. 1, the folowing corollary follows.

COROLLARY 1. Optimal solutions to the mixed-integer linear
problem in Fig. 6 are also optimal for the corresponding quadratic
program in Fig. 5.

max:
∑
a,n′,o,s y(s, n′, a, o)V a,o

n′ (s)− β
s.t.

∑
s w(s) = 1;

∑
n′,a P (n′, a|o) = 1;

∀a,o1,o2
∑
n1
P (n1, a|o1) =

∑
n2
P (n2, a|o2)

∀nβ ≥
∑
s w(s)V πn (s);

∀sw(s) ∈ R; ∀n′,a,oP (n′, a|o) ∈ {0, 1};
∀s,a,o,n′0 ≤ y(s, a, o, n′) ≤ P (n′, a|o);
∀s,a,o,n′w(s) + P (n′, a|o)− 1 ≤ y(s, a, o, n′) ≤ w(s);

Figure 6: The McCormick transformation of the quadratic
program in Fig. 5. y(s, n′, a, o) is a new decision variable. Note
that P (n′, a|o) is discrete, which changes the model to a mixed-
integer linear program.

As a result, the mixed-integer linear program (MILP) in Fig. 6 finds
a deterministic node and its witness belief, w, such that the im-
provement at w is the highest possible—the property that would be
crucial for planning over the entire belief simplex too. In our case,
we are not necessarily interested in the best node, because we are
optimizing the controller at b0. Therefore, we can stop the MILP
solver as soon as any node that escapes a local optimum is obtained.
Such nodes can also be computed using linear programming (LP)
relaxation of Fig. 6 by making P (n′, a|o) continuous. Next, we
introduce a few interesting properties about such a relaxation.

THEOREM 2. If the belief vector, w, in the solution to an LP-
relaxation of the MILP in Fig. 6 is integral, then the solution is
optimal for the unrelaxed MILP.

PROOF. It is sufficient to show that if w is a vector of integers
in the solution to the LP-relaxation, then ∀s,n′,a,oy(s, n′, a, o) =
w(s)P (n′, a|o) (this is not the case in general, and this is the reason
why an LP-relaxation is usually not tight). To this end, we focus
on the last two constraints (McCormick constraints) in Fig. 6. For
brevity, we do not write all variables. If w = 0, then y = 0 be-
cause y ≤ w in the first McCormick constraint; hence, y = wp is
satisfied. If w = 1, then y = P because w + P − 1 ≤ y ≤ P
gives P ≤ y ≤ P ; y = wp is satisfied as well.

NB: the proof does not rely on the optimal node being determinis-
tic, but Thm. 1 shows that there exists a deterministic node that is
optimal indeed. Using the same argument, a corresponding theo-
rem can be proven.

THEOREM 3. If all P (n′, a|o) in the solution to an LP-relax-
ation of the MILP in Fig. 6 are integral (i.e. the node is determin-
istic), then the solution is optimal for the unrelaxed MILP.

Note that this time, w may be fractional.
Theorem 2 has a convenient implication that whenever w is a

corner belief of the belief simplex, the solution and the node are op-
timal. Whenw is not integer, the objective value is an upper bound,
and variables P (n′, a|o) may represent a useless node, which is
worse than any of the existing nodes (unless all P (n′, a|o) are in-
tegral as shown in Thm. 3). However, w may still be a useful be-
lief to construct a useful node. Whenever the node computed by
the LP-relaxation is not useful, one can create a new deterministic
node for w directly. Only if this node does not show a sufficient
improvement, the MILP can be attempted. Even though MILP is
NP-hard, it can be stopped as soon as a feasible solution is found
since the optimal solution is not needed. These steps are summa-
rized in Alg. 2.

The optimization framework described above provides a guaran-
teed way of escaping local optima, i.e., it will always find a new,
useful node whenever such a node exists. Next, we will provide
a few heuristic approaches for escape which are cheap to compute

1253

Algorithm 2: MILPESCAPE: Provable escape method using
mathematical optimization.

Data: V π - alpha-vectors of the current controller
compute Γa,o using Eq.41
〈nodeLP , w〉 ← solve an LP-relaxation of Fig. 62
if w is integral or nodeLP is deterministic then3

return nodeLP4
else5
〈nodew, improvement〉 ← construct a new node for witness w6
if improvement > threshold then7

return nodew8
else9

return solve MILP in Fig. 6 in an anytime fashion10

yet are quite robust. Therefore, it is possible to reduce the number
of times the optimization framework needs to be used.

The node improvement algorithm (LP- or DP-based) examined
in Sec. 4 computes a DP backup for a given node, n, at its current
belief, bn, obtained from the occupancy frequency, o(n, s). Val-
ues of beliefs b′ reachable from bn are estimated using the current
alpha vectors, V π . The first, heuristic escape method that we con-
sider constructs new nodes by computing DP backups for beliefs
b′ = T (bn, a, o). For every node, n, the algorithm computes b′ for
all (a, o) and then computes their DP backups. If the new value
at b′ is better than the value obtained from V π , the new node can
improve the quality of the controller. All new nodes are ranked
by improvement at their b′, and the node that has the highest im-
provement is selected for addition to the controller. Two versions
of the procedure are considered. In the first one, named on-policy
lookahead, only the actions that have non-zero probability of being
used in their node n are used to compute b′; we assume that it is
more advantageous to add nodes for beliefs, b′, that are reachable
by the current controller. The second version, named off-policy
lookahead, uses the remaining actions to compute b′. The use of
occupancy frequency and forward search for escape was consid-
ered in [23] where the algorithm constructs a search tree up to an
arbitrary depth and expands all actions at every step.

Nodes computed in Sec. 4 are rejected when they do not improve
the quality of the controller. However, they can still be useful for
escape because they improve the value at their beliefs, bn. When
such a node is added to a controller, one can view it as a process
of splitting the node n because the old node, n, is left in the con-
troller whereas the new node that improves the value at bn is added
as well; this leads to two different nodes that have the same bn
(in other words, the original node had two reachable beliefs which
required different edges) which justifies why the process can be
named node splitting. To this end, our method introduced in Sec. 4
stores all rejected nodes of the current iteration, and when neces-
sary, it uses the node with the highest improvement at its bn for
escape. The concept of node splitting was investigated in [23];
however, the connection between the original node and the new
node was unclear.

Even though, the corners of the belief simplex do not guarantee
escape [6], our third heuristic approach computes new nodes for
corners of the belief simplex, and the node that has the highest
improvement at its corner is selected for addition.

6. POLICY ITERATION
The ideas introduced in this paper are combined into a policy

iteration algorithm (see Alg. 3). Traditionally, controller opti-
mization algorithms are initialized with a random controller, which
helps escaping poor solutions. Here, we take a more challenging

Algorithm 3: IPI(-LP): Incremental Policy Iteration for
POMDPs.

Data: POMDP
Result: FSC for POMDP
FSC.N ← {n1} ; /* the first node */1
FSC.N ← FSC.N ∪ {n2} ; /* the second node */2
while impr = true do3

Policy evaluation using Eq. 14
for n ∈ FSC.N do5

impr ←IMPROVENODE(FSC, n); /* DP or LP */6

if ¬impr then /* escape is required */7
impr ←ONPOLICYLH(FSC)8
if ¬impr then9

impr ←BESTOF(OFFPOLICYLH, SPLIT, CORNER)10
if ¬impr then11

impr ←MILPESCAPE(FSC)12

Prune dominated nodes13

approach and our algorithm always starts from an empty controller;
this way our algorithm does not introduce any randomization. The
first node (Ln. 1) is the one that maximizes Vn1(b0) whereas the
second node (Ln. 2) can also be easily constructed because all its
edges go to n1—such a node would be found using our MILP, but
we can construct it directly. After computing the first two nodes,
the algorithm starts its main ‘while’ loop where the first step is pol-
icy evaluation (Ln. 4). Afterwards, all nodes are examined (Ln. 6),
and the escape block (Ln. 7–12) is entered only when none of the
nodes can be improved. The order of the escape methods is crucial.
Intuitively, we first want to add new nodes that improve the nodes
of the current policy and consequently improve V (b0). Therefore,
the on-policy lookahead method is justified. The second group of
methods is executed only when no new node can be constructed
using on-policy lookahead. They are put together in one group be-
cause none of them guarantee that a node will be found. If there
is no improvement, the method of a last resort is the MILP op-
timization procedure which is guaranteed to find an improvement
(as long as one exists), yet it facilitates anytime execution. The
methods executed in Ln. 10–12 seek improvement anywhere in the
belief simplex, but they still guarantee escape because in subse-
quent iterations their nodes will become useful for V (b0) after in-
coming edges that introduce reachability from b0 have been added.
The escape step adds at most one node to keep the size of the con-
troller small; therefore, pruning of dominated nodes can be left for
the last step (Ln. 13). We prune nodes that are unreachable from
n1. The algorithm is named IPI when used with DP-based node
improvement in Ln. 6 and IPI-LP when used with LP-based node
improvement.

In our algorithm, one extension was introduced into the way the
new nodes are added to the controller during escape. We observe
that under specific conditions the new node can be merged into an
existing node, and the size of the controller does not have to grow.
This can happen when the two nodes differ only by those edges that
have zero probability (with respect to a node’s witness beliefs) in at
least one of the nodes. In our implementation, such nodes are also
merged during controller pruning in Ln. 13 in Alg. 3.

7. EXPERIMENTS
Algorithm 3 is compared against the state-of-the-art for con-

troller optimization: bounded policy iteration (BPI) with escape [22],
quadratically constrained linear programming for Moore (QCLP) [1]
and Mealy automata (QCLP-Mealy) [3], expectation maximiza-

1254

tion (EM) [23], and branch-and-bound (B&B) with isomorph prun-
ing [10]. For reference, the results with the point-based solver
SARSOP [14] are also provided (NB: SARSOP is not a policy it-
eration algorithm). Since IPI was outperforming all the other FSC
search algorithms, and it is was the only FSC algorithm that pro-
vided consistent improvement, we stopped it whenever more nodes
would not lead to a significant value increase. In this way, the con-
troller size of IPI(-LP) was used as a reference point for other meth-
ods. For SARSOP, we report both the result that has the same or
closest running time to IPI(-LP) and the result that has the same or
closest number of nodes. All algorithms were evaluated on a suite
of standard POMDP problems from Cassandra’s repository1 and a
few problems from the recent literature [10].

Results in Tab. 1–2 are remarkable because, for the first time,
policy iteration can solve a number of common benchmarks (chain-
OfChains3, cheese-taxi, hhepis6obs_woNoise, and tiger.95) which
were notoriously challenging for local search methods. IPI could
solve them by starting from an empty controller without relying
on randomized initialization. While B&B is guaranteed to find the
best controller of a given size since it does an exhaustive search,
our method scales much better, especially for problems exceeding
104 states. IPI also computes controllers that are much smaller than
those computed by SARSOP, e.g., on elevators_inst_pomdp_1 and
baseball the number of nodes is reduced by 3 orders of magnitude.
On several domains, controllers computed by IPI were not only
the smallest, but also with the highest value even when compared
to large policies computed by SARSOP on lacasa2a, lacasa4.batt,
hallway2, 4x5x2.95, aloha.10, and underwaterNav. Overall, for the
first time, an FSC technique compares well to SARSOP, which is
one of the best point-based value iteration techniques. Addition-
ally, our methods consistently outperform alternative controller op-
timization methods: they achieve higher value on 13/17 problems,
the same value and controller size on 3/17 problems, and the same
value with smaller controller size on 1/17 problems when compared
to existing controller techniques.

Almost identical results for IPI and IPI-LP show that it does not
matter if node improvement is implemented using a linear program
or a DP backup in our unconstrained node improvement, and there-
fore deterministic nodes are sufficient. A detailed investigation has
shown that even if the LP-based unconstrained node improvement
is used, the nodes it finds are all deterministic in all results reported
in Tab. 1 and 2; recall that in Sec. 4, we explained that constraints
present in Fig. 1 frequently lead to stochastic nodes in BPI. An
important consequence of that fact is not only the reduced com-
putational complexity of the node improvement procedure (a one-
step lookahead search instead of solving a linear program is suf-
ficient), but the fact that good, limited memory controllers can be
constructed from deterministic nodes only. The differences in the
performance of IPI and IPI-LP can result from different ways both
methods break ties or deal with zero-probability edges.

Table 3 shows which escape methods were used by the IPI-LP
solver in our evaluation. The ratios (vertical bars) indicate that the
node improvement step led to the most frequent improvements on
almost all domains; the significance of our insights into the node
improvement step of policy iteration for POMDPs becomes evi-
dent. Intuitively, after a new node has been added during escape,
the controller can be improved several times using our simple, yet
powerful node improvement procedure. On-policy lookeahead was
the most frequent escape method. The other methods were less fre-
quent; however, their importance is critical to escape local optima.
On the current suite of domains, the MILP-based escape method

1http://www.cassandra.org/pomdp/examples/index.shtml

POMDP solver value V (b0) #nodes time [s]
chainOfChains3 SARSOP 157 10 0.1
|S|=10, |A|=4 B&B 157 10 1.7
|O|=1, γ = 0.95 EM 0.17± 0.06 10 6.9
UB=157 QCLP 0± 0 10 0.2

QCLP-Mealy 33.1± 2.3 10 0.1
BPI 25.7± 0.77 10 4.3
IPI 157 10 0.6
IPI-LP 157 10 1.5

cheese-taxi SARSOP 2.48 163 0.1
|S|=34, |A|=7 SARSOP -6.38 40 0.0
|O|=10, γ = 0.95 B&B -19.9 10 24h
UB=2.48 EM -17.2± 2.05 12 64.5

QCLP -17.77± 2.22 12 124.6
QCLP-Mealy -12.5± 4.74 12 2779.4
BPI -10.46± 0.97 12 75.1
IPI 2.48 11 3.6
IPI-LP 2.48 12 8.1

lacasa2a SARSOP 6715.67 53 135.5
|S|=320, |A|=4 SARSOP 6706.5 12 6.7
|O|=12, γ = 0.95 B&B 6710.0 3 493.8
UB=6717 EM 6707.9± 0.0 7 1708.8

QCLP 6687.5± 12.85 7 5880.3
QCLP-Mealy 6714.6± 0.0 2 5497.0
BPI 6707.0± 0.21 7 450.4
IPI 6715.70 7 61.6
IPI-LP 6715.70 7 134.2

lacasa3.batt SARSOP 293.5 103 345.2
|S|=1920, |A|=6 SARSOP 293.2 34 120.8
|O|=36, γ = 0.95 B&B 287.0 5 24h
UB=294.6 EM 293.1± 0.02 8 46873.6

QCLP n.a. n.a. n.a.
QCLP-Mealy n.a. n.a. n.a.
BPI 293.3± 0.10 13 6168.3
IPI 293.5 13 4758.7
IPI-LP 293.5 12 6017.2

lacasa4.batt SARSOP 291.46 12866 27979.1
|S|=2880, |A|=6 SARSOP 290.9 53 521.4
|O|=72, γ = 0.95 B&B 285.0 10 24h
UB= 292.6 EM 290.5± 0.01 5 35895.5

QCLP n.a. n.a. n.a.
QCLP-Mealy n.a. n.a. n.a.
BPI 291.38± 0.08 14 19078.7
IPI 291.48 9 9414.2
IPI-LP 291.46 14 27370.1

hallway SARSOP 1.00 630 1708.7
|S|=60, |A|=5 SARSOP 0.15 49 0.4
|O|=21, γ = 0.95 B&B 0.18 8 24h
UB=1.19 EM 0.95 40 n.a.

QCLP 0.94± 0.00 40 5025.2
QCLP-Mealy 0.90± 0.01 10 4425.4
BPI 0.95± 0.03 40 88.8
IPI 0.99 40 289.5
IPI-LP 0.99 40 1711.0

hallway2 SARSOP 0.41 697 5046.6
|S|=60, |A|=5 SARSOP 0.11 50 0.4
|O|=21, γ = 0.95 B&B 0.11 8 24h
UB=0.88 EM 0.43 40 n.a.

QCLP 0.42± 0.00 40 9133.2
QCLP-Mealy 0.38± 0.00 10 7902.0
BPI 0.41± 0.02 40 95.9
IPI 0.42 40 899.8
IPI-LP 0.43 40 5048.3

hhepis6obs_woNoise SARSOP 8.64 1775 1.7
|S|=20, |A|=4 SARSOP 0.0 13 0.0
|O|=6, γ = 0.99 B&B 8.64 8 4.5
UB=8.64 EM 0.0± 0.0 7 9.7

QCLP 0.82± 0.0 7 3.4
QCLP-Mealy 0.81± 0.0 7 7.0
BPI 0.0± 0.0 7 2.7
IPI 8.64 7 8.5
IPI-LP 8.64 7 9.6

Table 1: Results: comparison of the value V (b0), the number
of nodes (#nodes), and the time to obtain a controller. Column
POMDP contains details of all domains that are solved using
solvers listed in column solver. ‘n.a.’ means that QCLP did not
complete on http://www.neos-server.org, or that BPI
and EM running on our machine did not produce results within
24 hours using 8GB of RAM.

1255

POMDP solver value V (b0) #nodes time [s]
4x5x2.95 SARSOP 2.02 509 6.7
|S|=39, |A|=4 SARSOP 1.14 30 0.1
|O|=4, γ = 0.95 B&B 2.02 5 639.9
UB=2.08 EM 1.46± 0.06 12 83.1

QCLP 1.99± 0.05 12 13.4
QCLP-Mealy 1.99± 0.04 12 19.0
BPI 1.68± 0.19 12 26.7
IPI 2.08 12 5.9
IPI-LP 2.08 10 6.7

aloha.10 SARSOP 535.1 70 381.8
|S|=30, |A|=9 SARSOP 535.0 39 120.2
|O|=3, γ = 0.999 B&B 529.0 10 24h
UB= 544.2 EM 533.2± 0.42 38 1257.3

QCLP 533.9± 0.57 38 541.6
QCLP-Mealy 532.3± 2.05 38 1999.6
BPI 524.6± 1.20 38 3129.9
IPI 537.7 38 230.3
IPI-LP 537.7 38 381.8

baseball SARSOP 0.6412 123 1.35
|S|=7681, |A|=6 SARSOP 0.636 6 0.3
|O|=9, γ = 0.999 B&B 0.636 5 24h
UB=0.641 EM 0.636± 0.0 2 48656.0

QCLP n.a. n.a. n.a.
QCLP-Mealy n.a. n.a. n.a.
BPI 0.636± 0.0 6 187.1
IPI 0.6412 6 12.8
IPI-LP 0.6412 6 60.7

elevators_inst_pomdp_1 SARSOP -44.32 26701 4520.9
|S|=8192, |A|=5 SARSOP -149.2 52 108.9
|O|=32, γ = 0.99 B&B -149.0 10 24h
UB=-44.3 EM n.a. n.a. n.a.

QCLP n.a. n.a. n.a.
QCLP-Mealy n.a. n.a. n.a.
BPI n.a. n.a. n.a.
IPI -45.41 10 3654.9
IPI-LP -44.32 11 13328.5

machine SARSOP 63.17 78 96.5
|S|=256, |A|=4 SARSOP 35.73 42 1.0
|O|=16, γ = 0.99 B&B 62.6 6 52100.0
UB=66.4 EM 62.45± 0.09 9 780.7

QCLP 62.78± 0.04 9 2859.2
QCLP-Mealy 53.69± 9.21 9 17011.2
BPI 53.27± 1.04 9 115.3
IPI 63.04 9 48.9
IPI-LP 63.04 9 96.5

tagAvoid SARSOP -6.11 9113 6614.4
|S|=870, |A|=5 SARSOP -13.7 49 0.6
|O|=30, γ = 0.95 B&B -19.9 9 24h
UB=-3.46 EM -6.81± 0.12 9 19295.0

QCLP -19.99± 0.0 9 5506.9
QCLP-Mealy -9.46± 0.81 2 15798.0
BPI -8.46± 0.45 9 788.4
IPI -6.22 9 5888.0
IPI-LP -6.29 9 6613.9

tiger.95 SARSOP 19.3 5 0.1
|S|=2, |A|=3 B&B 19.3 5 1.4
|O|=2, γ = 0.95 EM 6.91± 2.48 5 0.2
UB=19.3 QCLP -6.3± 3.79 5 0.7

QCLP-Mealy 9.81± 5.23 5 0.03
BPI -20.2± 0.12 5 0.1
IPI 19.3 5 0.7
IPI-LP 19.3 5 0.9

underwaterNav SARSOP 746.9 38860 34495.5
|S|=2653, |A|=6 SARSOP 681.2 54 0.5
|O|=103, γ = 0.95 B&B 747.0 10 24h
UB=754.0 EM 749.9± 0.00 6 34933.9

QCLP n.a. n.a. n.a.
QCLP-Mealy n.a. n.a. n.a.
BPI 749.6± 0.08 53 30992.2
IPI 749.5 3 22.6
IPI-LP 750.0 53 33840.0

rockSample-7_8 SARSOP 21.66 32727 87671.5
|S|=12545, |A|=13 SARSOP 15.34 70 0.9
|O|=2, γ = 0.95 B&B 11.9 10 24h
UB=24.2 EM n.a. n.a. n.a.

QCLP n.a. n.a. n.a.
QCLP-Mealy n.a. n.a. n.a.
BPI 10.7± 0.40 40 21174.1
IPI 17.9 40 88747.0
IPI-LP 14.96 21 87749.0

Table 2: Continuation of Tab. 1.

IPI-LP

POMDP no
de

im
pr

ov
em

en
t

on
-p

ol
ic

y
L

H
of

f-
po

lic
y

L
H

sp
lit

co
rn

er
w

itn
es

s
M

IL
P

ne
w

no
de

m
er

ge
d

4x5x2.95
aloha.10

chainOfChains3
cheese-taxi

lacasa2a
lacasa3.batt
lacasa4.batt

hallway
hallway2

hhepis6obs_woNoise
baseball

elevators_inst_pomdp__1
machine
tagAvoid

tiger.95
underwaterNav

rockSample-7_8

Table 3: Improvements performed by IPI-LP to obtain con-
trollers reported in Tab. 1 and 2. In columns ‘node improve-
ment’ through ‘MILP’, the vertical bars represent the ratio of
the number of times a particular method was used to the num-
ber of times all methods were used. Column ‘new node merged’
shows the ratio of the new nodes merged into an existing node
to all new nodes that were computed during escape.

was needed on the hhepis6obs_inst_woNoise domain only. This
domain has a very challenging local optimum, which all the other
methods could not escape. This clearly shows the advantage of
our provable procedure to escape local optima. Additional test-
ing, when the other escape methods were switched off, showed that
MILP-based escape was consistently providing escape whenever
all the other methods failed or were not used. Merging new nodes
(the last column) was important on some problems too.

8. CONCLUSION AND FUTURE WORK
Even though significant improvements were made, POMDP plan-

ning is still challenging. Additionally, numerous practical applica-
tions require finite-state controllers, which are even more challeng-
ing to compute. On the other hand, policy iteration methods, which
compute finite-state controllers, are known to be very efficient in
MDPs. In this paper, we bring closer the success of policy itera-
tion in MDPs to POMDPs and show, for the first time, that policy
iteration in POMDPs can be both scalable and robust against local
optima. Our method is based on—and adds to—fundamental prop-
erties of POMDPs, does not rely on randomization, does not rely
on upper bounds, and forward search is limited to one-step looka-
head from selected beliefs. Certainly, integrating those additional
features (especially upper bounds [8]) in future research can yield a
much more powerful algorithm. It would also be interesting to ex-
tend IPI to multi-agent POMDPs where controllers are often used
to represent policies [1, 27, 28].

Acknowledgements
The authors thank Craig Boutilier and Pascal Van Hentenryck for
useful discussions. This research was sponsored by NSERC and
MITACS.

1256

REFERENCES
[1] C. Amato, D. Bernstein, and S. Zilberstein. Optimizing

fixed-size stochastic controllers for POMDPs and
decentralized POMDPs. JAAMAS, 2009.

[2] C. Amato, D. S. Bernstein, and S. Zilberstein. Solving
POMDPs using quadratically constrained linear programs. In
IJCAI, pages 2418–2424, 2007.

[3] C. Amato, B. Bonet, and S. Zilberstein. Finite-state
controllers based on Mealy machines for centralized and
decentralized POMDPs. In AAAI, 2010.

[4] D. S. Bernstein, E. A. Hansen, and S. Zilberstein. Bounded
policy iteration for decentralized POMDPs. In Proceedings
of the Nineteenth International Joint Conference on Artificial
Intelligence, pages 1287–1292, Edinburgh, Scotland, 2005.

[5] A. Cassandra, M. L. Littman, and N. L. Zhang. Incremental
pruning: A simple, fast, exact method for partially
observable Markov decision processes. In Proceedings of the
Thirteenth Conference on Uncertainty in Artificial
Intelligence, UAI’97, pages 54–61, 1997.

[6] H.-T. Cheng. Algorithms for Partially Observable Markov
Decision Processes. PhD thesis, University of British
Columbia, Vancouver, 1988.

[7] P. J. Gmytrasiewicz and P. Doshi. A framework for
sequential planning in multi-agent settings. Journal of
Artificial Intelligence Research (JAIR), 24:49–79, 2005.

[8] M. Grześ and P. Poupart. POMDP planning and execution in
an augmented space. In Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 2014.

[9] M. Grześ, P. Poupart, and J. Hoey. Controller compilation
and compression for resource constrained applications. In
Proceedings of International Conference on Algorithmic
Decision Theory (ADT), 2013.

[10] M. Grześ, P. Poupart, and J. Hoey. Isomorph-free branch and
bound search for finite state controllers. In Proceedings of
International Joint Conference on Artificial Intelligence
(IJCAI), 2013.

[11] E. A. Hansen. An improved policy iteration algorithm for
partially observable MDPs. In Proceedings of Advances in
Neural Information Processing Systems, 10, pages
1015–1021. MIT Press, 1997.

[12] E. A. Hansen. Solving POMDPs by searching in policy
space. In Proc. of UAI, pages 211–219, 1998.

[13] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra.
Planning and acting in partially observable stochastic
domains. Artificial Intelligence, 101(1-2):99–134, 1998.

[14] H. Kurniawati, D. Hsu, and W. S. Lee. SARSOP: Efficient
point-based POMDP planning by approximating optimally
reachable belief spaces. In Proc. Robotics: Science and
Systems, 2008.

[15] G. McCormick. Computability of global solutions to
factorable nonconvex programs: Part I convex
underestimating problems. Mathematical Programming, 10,
1976.

[16] H. B. McMahan, M. Likhachev, and G. J. Gordon. Bounded
real-time dynamic programming: RTDP with monotone
upper bounds and performance guarantees. In Proc. of
ICML, pages 569–576, 2005.

[17] N. Meuleau, K.-E. Kim, L. P. Kaelbling, and A. R.
Cassandra. Solving POMDPs by searching the space of finite
policies. In Proc. of UAI, pages 417–426, 1999.

[18] J. Pajarinen and J. Peltonen. Periodic finite state controllers
for efficient POMDP and DEC-POMDP planning. In
Advances in Neural Information Processing Systems, pages
2636–2644, 2011.

[19] K.-E. K. Pascal Poupart and D. Kim. Closing the gap:
Improved bounds on optimal POMDP solutions. In
nternational Conference on Automated Planning and
Scheduling (ICAPS), Freiburg, Germany, 2011.

[20] J. Pineau, G. Gordon, and S. Thrun. Point-based value
iteration: An anytime algorithm for pomdps. In International
Joint Conference on Artificial Intelligence (IJCAI), pages
1025 – 1032, August 2003.

[21] P. Poupart. Exploiting Structure to Efficiently Solve Large
Scale Partially Observable Markov Decision Processes. PhD
thesis, University of Toronto, Toronto, Canada, 2005.

[22] P. Poupart and C. Boutilier. Bounded finite state controllers.
In Proc. of NIPS, 2003.

[23] P. Poupart, T. Lang, and M. Toussaint. Analyzing and
escaping local optima in planning as inference for partially
observable domains. In D. Gunopulos, T. Hofmann,
D. Malerba, and M. Vazirgiannis, editors, ECML/PKDD (2),
volume 6912 of Lecture Notes in Computer Science, pages
613–628. Springer, 2011.

[24] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. Online
planning algorithms for POMDPs. Journal of Artificial
Intelligence Research, 32:663–704, 2008.

[25] T. Smith and R. G. Simmons. Point-based POMDP
algorithms: Improved analysis and implementation. In Proc.
Int. Conf. on Uncertainty in Artificial Intelligence (UAI),
2005.

[26] E. Sondik. The optimal control of partially observable
decision processes over the infinite horizon: Discounted cost.
Operations Research, 26(2):282–304, 1978.

[27] E. Sonu and P. Doshi. Generalized and bounded policy
iteration for finitely-nested interactive POMDPs: Scaling up.
In Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems, volume 2,
pages 1039–1048, 2012.

[28] E. Sonu and P. Doshi. Scalable solutions of interactive
POMDPs using generalized and bounded policy iteration.
Journal of Autonomous Agents and Multi-Agent Systems,
2014.

[29] M. T. J. Spaan and N. Vlassis. Perseus: randomized
point-based value iteration for POMDPs. Journal of Artificial
Intelligence Research, 24(1):195–220, 2005.

1257

	Introduction
	Background
	Related Algorithms
	Node Improvement
	Provable Escape Methods
	Policy Iteration
	Experiments
	Conclusion and Future Work

