
Predictive State Representations with State Space
Partitioning

Yunlong Liu1 Yun Tang1 Yifeng Zeng1,2

1Department of Automation, Xiamen University, Xiamen, China
2School of Computing, Teesside University, UK

ylliu@xmu.edu.cn tydqhqy@qq.com yifeng.zeng.dk@gmail.com

ABSTRACT
Predictive state representations (PSRs) are powerful meth-
ods of modeling dynamical systems by representing state
through observational data. Most of the current PSR tech-
niques focus on learning a complete PSR model from the en-
tire state space. Consequently, the techniques are often not
scalable due to the dimensional curse, which limits applica-
tions of PSR. In this paper, we propose a new PSR learning
technique. Instead of directly learning a complete PSR at
one time, we learn a set of local models each of which is con-
structed on a sub-state space and then combine the learnt
models. We employ the landmark technique to partition the
entire state space. We further show the theoretical guaran-
tees on the learning performance of the proposed technique
and present empirical results on multiple domains.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Theory

Keywords
Predictive State Representations; state space partitioning;
landmark

1. INTRODUCTION
One of the most challenging problems in artificial intelli-

gence is concerned with agents operating in stochastic and
partially observable environments, i.e., how an agent can
plan and act optimally under uncertainty. One commonly
used technique is to model the system first, and then the
problem can be solved using the developed model.

Thus far, the most general framework to model such con-
trolled dynamical systems is partially observable Markov de-
cision processes (POMDPs) [11]. However, it is well known
that the POMDP model is based on unobserved or hidden
states and requires significant amount of prior knowledge
when learning such a model in practice. As an alternative,
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Littman et al. [12] proposed a new framework called predic-
tive state representations (PSRs) to model such systems by
defining and operating on the PSR state. PSRs define state
using a prediction vector, which specifies probabilities over
a number of tests. A test is a sequence of action-observation
pairs to occur in the future and can be done on the system.
The PSR state summarizes all of the information about the
past. Unlike the POMDP model which is based on unob-
served or hidden states, the PSR model is expressed entirely
in terms of observable quantities. Compared to learning
POMDP, learning PSR should be easier and less prone to
local minimum problems. Additionally, PSRs are more com-
pact than POMDPs [1].

Much progress has been made since PSRs were first de-
scribed by Littman et al. [12]. However, the current PSR
techniques mainly focus on learning the model from the en-
tire state space. For linear PSRs, the vast majority of the
literature on PSRs, one can directly derive the PSR model
from a system dynamics matrix (SDM) that contains condi-
tional probabilities of all possible tests given the past se-
quences and can be used to describe the underlying dynam-
ical system [17]. The rank of the SDM is the linear dimen-
sion (denoted as n) of the dynamical system. To learn a
PSR model on the entire state space, on one hand, we need
to determine the n linearly independent columns of the S-
DM for state representation; on the other hand, we need to
learn the model parameters and use these parameters for the
prediction computation and state update, which involves at
least |A||O| full rank square matrices of rank n, where A is
the set of actions that can be executed at each time step and
O the set of possible observations of the underlying dynami-
cal system. Given a complex setting of state space, learning
PSR becomes rather expensive and time-consuming.

In this paper, we present a decomposition technique to
learn the PSR models. Observing that the learning com-
plexity is mainly due to the high dimension of state space,
we proceed to learn local PSR models on a set of sub-state
spaces and then complete the PSR model by combining the
learnt models. To partition the entire space, we resort to
the landmark technique that provides sufficient statistics of
states in the learning. More importantly, we show that the
learning performance of the proposed technique can be guar-
anteed theoretically. We demonstrate its performance in
multiple domains.

We organize the remainder of this paper as follows. We
briefly review the PSR model in Section 2. Subsequent-
ly, we propose the new PSR learning algorithm in Section
3. The technique first partitions the entire state space and
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Figure 1: The system dynamics matrix

then learns local models on sub-state spaces. We show the
theoretical guarantees on the learning performance of the
proposed technique in Section 4 and provide comparative
results in Section 5. In Section 6, we further discuss the
relevant works on learning PSRs. Finally we conclude the
paper with remarks on the future work.

2. PREDICTIVE STATE REPRESENTATION-S

Given a discrete set of observations O = {o1, o2, · · · , o|O|}
and a discrete set of actions A = {a1, a2, · · · , a|A|}, the pre-
diction of a length-m test at history h is defined as p(t|h) =
p(ht)/p(h) =

∏m
i=1 Pr(oi|ha1o1 · · · ai) [14], where ai ∈ A

and oi ∈ O denote the action and observation respectively
at time i. A history, like a test, is also a sequence of action-
observation pairs; however, it is constrained to start from the
beginning of time and is used to describe the full sequence
of past events. Given a set of tests Q = {q1, q2, · · · , qk},
at any history h, for any test t, if p(t|h) = ft(p(Q|h)) for
some function ft, i.e., p(Q|h) captures all the information
in h relevant to predicting the future, then Q constitutes a
PSR. The tests in Q are called core tests, p(Q|h) is called the
prediction vector at history h and the PSR state at history
h is denoted p(Q|h).

As mentioned previously, the PSR model of a dynamical
system can be directly derived from the SDM. The SDM’s
rows correspond to all possible histories (past). The first row
of the SDM corresponds to the null history φ, i.e., the initial
state, and the columns correspond to all possible tests (fu-
ture). The entries of the SDM are the probabilities of future
under certain past [17]. The SDM is shown in Fig. 1 [9].

For any SDM with rank k, there exist k linearly indepen-
dent columns. Let Q = {q1, q2, · · · , qk} be these column-
s’ corresponding tests. Then, at any history h, a length-k
weight vector mt exists for every test t such that the cor-
responding p(t|h) can be calculated as p(t|h) = p(Q|h)Tmt,
where p(Q|h)T is the transpose of p(Q|h). Hence, Q can be
used as core tests and the state of the system at history h is
denoted as p(Q|h). By analogy the corresponding histories
of any k linearly independent rows are called core histories.

On taking action a from history h and observing observa-
tion o, the state, i.e., the prediction vector of Q at history

Algorithm 1: Pseudo-code for state space partitioning

Input:
d; //Training data;

Lstart; //First landmark in d;
currLandmark ← Lstart //Current landmark;

prevLandmark; //Previous landmark;
Scurr; //The sequence until current step;

Output:
dLM ← {}; //Training data corresponds to

landmark LM;

for Each step in d started from Lstart do
if Scurr ends with landmark, e.g. landM then

prevLandmark ← currLandmark ;
currLandmark ← landM ;
seq ← sequence between currLandmark and
prevLandmark ;
dprevLandmark ← dprevLandmark ∪ seq ;

end

end

hao, can be updated as [12]:

p(Q|hao) =

(
p(Q|h)TMao

p(Q|h)Tmao

)T

(1)

where Mao is a k × k matrix and its ith column is maoqi .
In summary, a PSR model of a system is specified by core

tests Q, model parameters mao,Mao for all a ∈ A, o ∈ O,
and the initial prediction vector p(Q|φ).

3. PREDICTIVE STATE REPRESENTATION-
WITH STATE SPACE PARTITIONING

3.1 State Space Partitioning
Many dynamical systems have memories that can serve as

landmarks that completely determine the current state [9].
Landmarks are often used for resetting a model that has
gotten off-track. In this paper, we use landmarks for state
space partitioning, i.e., the landmarks are used to partition
the entire training data into multiple sets of sequences of
action-observation pairs. Subsequently, each set of data is
used to learn a local model of the system. A combination of
the local models generates the complete model of the under-
lying system. We first give the definitions of memory and
landmark below [9].

Definition 1 (Memory). A memory is a sequence of
alternating actions and observations that ends with observa-
tion.

Definition 2 (Landmark). A landmark is a memory
that can serve as state, i.e., a sufficient statistic of history.

Given a submatrix of SDM Z, its columns correspond to
columns of Z and its rows correspond to the set of all his-
tories that end with the same memory. If the rank of the
submatrix is 1, the memory is a landmark [9].

Landmarks exist in most man-made and many natural
environments [8]. Any system that can be modeled by n-
order Markov process has landmarks, and some systems that
even cannot be modeled by n-order Markov process still have
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landmarks. Some practical and popular application, like
MEDUSA [10], retrieves states at the middle point of the
entire process and the states can also serve as the landmarks.
Alternatives can seek for the advice from domain experts or
exploit high-quality sensors to label some states, which are
well accepted in many applications.

Algorithm 1 describes the partitioning of the state space
through the landmark techniques. We partition the whole
training data into multiple sets of training sequences that
correspond to different sub-state spaces. Each set is marked
by a landmark and contains the sequences of alternating ac-
tions and observations between its landmark and other land-
marks, i.e., seq is the sequence of actions and observation-
s between currLandmark and prevLandmark, which in-
cludes currLandmark, but does not include preLandmark.

As landmark can serve as state and be used as the initial
state of the underlying system [9, 13], for each sub-state
space, the landmark of it is used as its initial state. We
then proceed to learn local PSR models from the subsets of
training data.

3.2 Learning Local Models
Current methods for learning a complete model of a sys-

tem generally assume that any entry of the SDM can be
estimated using the training data. However, for PSRs with
state space partitioning, the training data is decomposed
into multiple sets, and each set of data is used for learning
a local model, i.e., the model of a sub-state space. In such
cases, some entries of the SDM required for obtaining a local
model cannot be estimated using only one set of data. For
example, entry p(t|h) cannot be estimated using only one
set of data if h exists in one sub-state space and t exists in
both this sub-state space and other sub-state spaces.
Obtaining Missing Values. According to the state s-
pace partitioning mechanism, for the prediction p(t|h), if
sequence h exists in one sub-state space and ht exists in
more than one sub-state spaces, there exists landmark(s) in
ht, and ht can be denoted ht = ht1t2 · · · tn. Here ht1 is the
sequence in the first sub-state space, t2 is the sequence in the
second sub-state space, etc.. ht1, t2, . . ., and tn−1 all end
with a landmark. In such cases, p(t|h) cannot be estimated
using only one set of the partitioned data. Note that t1 can
be null.

Taking the example of ht = ht1t2 in two sub-state spaces,
the following equation holds:

p(t|h) = p(t1|h)p(t2|ht1) = p1(t1|h)p2(t2|φ) (2)

where pj(t|h) is the prediction for test t at history h in the
jth sub-state space and φ the null history in the correspond-
ing sub-state space. We define p(t1|h) = 1 when t1 is null.

Since ht1 ends with a landmark, the landmark can serve
as state and be used as the initial state of the next sub-
state space. Hence the equation, p(t2|ht1) = p2(t2|φ), holds.
p1(t1|h) can be estimated using the set of data correspond-
ing to the first sub-state space and p2(t2|φ) can also be es-
timated using the set of data corresponding to the second
sub-state space. The missing value p(t|h) can be obtained.

For test that exists in more than two sub-state spaces, the
same mechanism can be applied to achieve the prediction.
Learning Local Models. Existing PSR learning algo-
rithms can be used to obtain each local model from the
corresponding partitioned training data.

3.3 Combining Local Models
We formally define the PSR model with state space par-

titioning as one tuple below.

Definition 3. A PSR model with state space partitioning
is a tuple: 〈A,O, l1 · · · lN , Q1 · · ·QN ,M, p(Q1|φ) · · · p(QN |φ)〉.

where A is the set of actions, O the set of observations,N the
number of the sub-state spaces, li the landmark correspond-
ing to sub-state space i, Qi the set of core tests for local
model li, M the set of update parameters M i

ao and mi
ao for

all a,o and all local models li, p(Q
i|φ) the initial prediction

vector for local model li which can be estimated using the
corresponding set of training data. Each local model li is
specified by the tuple 〈A,O,Qi,M i

ao,m
i
ao, p(Q

i|φ)〉, and the
PSR state in sub-state space i is denoted by the concate-
nation of the local model and the prediction vector for that
local model, i.e., as [li, p(Q

i)].
Then, the prediction for any test t given any history h,

p(t|h), can be calculated as follows.
First, we determine the sub-state space to which the suffix

of history h belongs. Let c be the sub-state space and hc

the suffix of history h that exists in c. Then, the equation
p(t|h) = p(t|hc) holds as hc starts with a landmark.

Second, we compute p(t|h) in different cases: 1)if the test
t only exists in sub-state space c, we compute p(t|h) directly
using the local model of c; 2)if the test t exists in multiple
sub-state spaces, we compute p(t|h) by linking landmarks
in different sub-state spaces. Considering the test t in two
sub-state spaces, c and c+ 1, we write t as t = tctc+1 where
tc = a1o1 · · · akok, tc+1 = ak+1ok+1 · · · anon, and tc ends
with the landmark of sub-state space c+1, then

p(t|h) =p(t|hc) = p(tctc+1|hc) = p(tc|hc)p(tc+1|hctc)

=pc(t
c|hc)pc+1(tc+1|φ) = p(Qc|hc)TMc

a1o1 · · ·

Mc
ak−1ok−1

mc
akokp(Q

c+1|φ)TMc+1
ak+1ok+1

· · ·

Mc+1
an−1on−1

mc+1
anon

(3)

Similarly, p(t|h) can be calculated if t exists in more than
two sub-state spaces.

Note that unlike the local PSR models proposed in [5,
18, 19, 20], which can make only certain predictions in some
specific situations, our PSR model can make any conditional
prediction about the system.

4. ALGORITHM CORRECTNESS AND COM-
PLEXITY ANALYSIS

In the following, we show that our method can be guar-
anteed to find the full core tests in each sub-state space. In
addition, we analyze the data efficiency and time complexity
of learning a PSR model with state space partitioning.

4.1 Algorithm Correctness
A sub-state space resulting from partitioning the full s-

tate space is a region in which every state is reachable from
an initial state. We can consider the sub-state space as a
separate dynamical system that is usually represented by a
finite POMDP model. To learn a PSR model, a common
approach for determining core tests uses an iterative pro-
cedure [7], i.e., finding the set of test Q where the rank of
matrix of p(Q|H ′) equals to the rank of matrix p(aoQ|H ′)
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for all a ∈ A, o ∈ O, and H ′ is the set of histories. In The-
orem 1 and Lemma 1, we show the correctness of learning
PSR models on a sub-state space.

Theorem 1. A full set of core tests can be correctly found
on a sub-state space by the iterative method.

Proof. Let a sub-state space be a tuple< S, T ,O, bo, A,O >,
where S is a finite set of states of the world, T the state-
transition function, O the observation function, and bo the
initial belief state.

For any test t at any history h, if t can be produced by a
linear combination of Q found through the iterative proce-
dure, aot can also be produced by a linear combination of
Q for any a ∈ A and o ∈ O:

p(aot|h) = bThU(aot) (4)

= bThT
aOaoU(t) (5)

= bThT
aOaoU(Q)wt (6)

= bThU(aoQ)wt (7)

= bThU(Q)Wwt (8)

= bThU(Q)wt′ (9)

= p(Q|h)wt′ (10)

The components of U(t) are the probabilities of the test t
when applied from each underlying state of the POMDP. Q
is the set of core tests found by the iterative method. .T is
the transpose operator. wt is the |Q| × 1 weight vector for
test t and W is a |Q|× |Q| matrix with its ith column be the
weight vector for the test aoqi.

Simultaneously, at the end of the iterative procedure, ao
for any a ∈ A, o ∈ O can be produced by a linear com-
bination of Q, then any test t can be produced by a linear
combination of Q. Hence a full set of core tests Q is correctly
found.

Lemma 1. The learnt model parameters converge to the
true model parameters as more training data are added.

Proof. The model parameters mao, Mao are learnt by
the following equations.

m̂ao = p̂(Q|H)−1p̂(ao|H), m̂aoqi = p̂(Q|H)−1p̂(aoqi|H) (11)

where maoqi is the ith column of Mao.
As shown in Theorem 1, the set of core tests Q and the

set of core histories H can be correctly found. Then, as
more training data were included, the law of large numbers
guarantees that the empirical estimation of p̂(t|h) converges
to the true p(t|h), i.e., p̂(T |H), p̂(ao|H) and p̂(aoqi|H) con-
verge to the true p(T |H), p(ao|H) and p(aoqi|H) respective-

ly. Thus, the estimation of m̂ao ( and M̂ao) will converge to
the true model parameters mao (and Mao).

4.2 Data Efficient Learning
Compared to other PSR learning algorithms, learning P-

SR by partitioning the state space requires less training da-
ta to learn a comparable model. For our approach, a single
action-observation sequence can usually be partitioned into
multiple training sequences using the landmarks. For exam-
ple, given the landmark a2o2, we aim to estimate p(a1o1|ha2o2)
for any history h using three training sequences that s-
tart from the initial states: s1 = a1o1a2o2a1o3a2o3,s2 =

a2o2a1o2a3o3,s3 = a2o1a2o2a1o1a1o3. We first convert the
training sequences into five training sequences: s1 = a1o1,
s2 = a2o2a1o3a2o3, s3 = a2o2a1o2a3o3, s4 = a2o1, s5 =
a2o2a1o1a1o3. As stated above, p(t|ha2o2) = p(t|a2o2) be-
cause a2o2 is a landmark. Then, p(a1o1|ha2o2) = p(a1o1|a2o2) =
1
3
. However, for other PSR learning approaches, p(a1o1|ha2o2)

is directly estimated using the original training sequences,
and for any history h, p(a1o1|ha2o2) = 1 or 0. Obviously,
the entry estimated by our method is more accurate since
our algorithm exploits the training data more efficiently.

4.3 Complexity Analysis
Instead of directly learning a complete PSR model, we

learn local models on sub-state spaces and then combine the
learnt models to compose the complete model. Intuitively,
a local model may be far simpler than the complete model
of the original system, and can be no more complex. We
formally state it below.

Proposition 1. The linear dimension of any local mod-
el is not larger than the linear dimension of the dynamical
system.

Proof. The rows and columns of the SDM corresponding
to a local model are part of rows and columns of the SDM
of the original system. Thus, the rank of the SDM corre-
sponding to a local model can be no more than the rank of
the SDM of the original system, i.e., if the linear dimension
of a dynamical system is n the linear dimension of any local
model does not exceed n.

In practice, while the SDM of the sub-state space is esti-
mated using part of the whole training data, the SDM of the
dynamical system is estimated using the whole training data
that contains more rows and columns. The linear dimension
of any local model is usually less than the linear dimension
of the dynamical system.

Another advantage of our method is on the reduction of
computational complexity. The state-of-the-art PSR learn-
ing algorithms are the spectral approaches that perform the
singular value decomposition (SVD) operation on the matrix
p(T,H) [15], where p(T,H) is a T×H matrix containing the
joint probabilities of all tests t ∈ T and all histories h ∈ H.
With the setting of |H| = |T | = n, the number of the SVD
operation is O(n3) in the spectral approach [15]. On the
other hand, our approach conducts |LM | of SVD operations
on the matrix p(T,Hi) where i = 1, · · · , LM and |LM | is
the number of the landmarks used to partition the data. As-
suming that on the average, the size of each set of history
Hi is n

|LM| . Thus, in our approach, SVD on these matrices

requires O(|LM |n(( n
|LM| ))

2) = O( n3

|LM| ) operations.

5. EXPERIMENTAL RESULTS
We implemented the algorithm on learning PSR model-

s with state space partitioning (PSRs with SSP). To learn
local models on sub-state spaces, we employ the tradition-
al iterative algorithm [7] in the implementation. Note that
other existing PSR learning techniques can also be used to
learn local PSR models. A landmark can be determined by
checking whether the rank of the memory’s corresponding
sub-SDM is equal to 1[9, 13]. Many techniques for identify-
ing/verifying landmarks have been well designed and imple-
mented. For example, the techniques for identifying states
can also be used to identify landmarks [21]. However, it is
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not our interests to automatically find the landmarks in this
paper. Our experiments assume that a set of landmarks are
known as a prior in the learning.

5.1 Problem Domains
We tested the algorithm on three benchmarks [4], namely

Cheese Maze, Hallway and Hallway2, in Figs. 2 - 4. Cheese
Maze has 11 states and 7 observations. Hallway and Hall-
way2 are relatively large domains by PSR standards, where
previous iterative algorithms that learn complete models had
difficulties. Differ from the environments used as the test
bed for the iterative algorithms of learning a complete mod-
el of a system [7, 9, 14, 22], which are usually with several
observations and no more than 20 states. In Hallway, the
number of states is 48 (11 rooms with 4 orientations, plus
4 landmarks) and the number of observations is 20 (each
possible combination of the presence of a wall in each of the
4 relative directions, plus the 4 landmarks that are visible
when the agent is in the four particular locations). In Hall-
way2, the number of states is 71 (4 orientations in 16 rooms,
plus 7 landmarks) and the number of observations is 23 (all
combinations of walls, plus 7 landmarks).

Figure 2: Cheese Maze with 11 states and 7 obser-
vations. Landmarks are observations 1, 3 and 4.

Figure 3: Hallway with 48 states and 20 observa-
tions. The stars are set as landmarks.

Figure 4: Hallway2 with 71 states and 23 observa-
tions. The stars are seven landmarks.

5.2 Comparative Techniques
Many algorithms have been proposed for learning PSR

models on some large scale systems. However, the algo-
rithms focus on learning approximate predictive representa-
tions, i.e., learning a local model of the underlying system

with the goal of making only certain predictions in some
certain situations. We cannot compare them with our ap-
proach directly since we aim to learn a complete model. On
the other hand, we observe that the transformed PSR (TP-
SR) [3, 16] model learning technique has shown good model
learning performance and potential applications in realistic
domain, we compared our new PSR learning technique with
TPSR.

Additionally we implemented the expectation maximiza-
tion (EM) algorithm for learning the POMDP models of
the underlying system and compared it to our approach on
learning PSR models.

5.3 Measurements
For each trial in each environment, a training data se-

quence using a uniformly-random action at each time step
was generated to obtain the complete model of the under-
lying system. We computed the difference between the true
predictions and the predictions given by the learned model
over a test data sequence. The difference measures the ac-
curacy of the learnt model, which is a normalized version of
the measurement used in the previous work [5].

We used two error functions in the measurement. One
error function is the average one-step prediction error per
time step. It is computed in Eq. 12.

1

L

L∑
t=1

1

|O|
∑
o∈O

(p(o|ht, at+1)− p̂(o|ht, at+1))2 (12)

where p(o|ht, at+1) is the probability calculated from the
true POMDP model of the problem domain and p̂(o|ht, at+1)
the probability obtained from the learnt model. L(= 10, 000)
is the length of the test sequence in our experiments.

The other is the average four-step prediction error per
time step on the test sequence. To reduce the computation
complexity, we compute it in Eq. 13.

1

L

L∑
t=1

(p(ot+1ot+2ot+3ot+4|htat+1at+2at+3at+4)

− p̂(ot+1ot+2ot+3ot+4|htat+1at+2at+3at+4))2

(13)

where p̂(·|·) is the estimation computed by the comparative
methods. As the number of joint observations over four steps
tends to be extremely large in the domains, it is intractable
to compute p(ot+1ot+2ot+3ot+4|htat+1at+2at+3at+4) for all
possible observations. We compute the p(·|·) in the test
sequences where at happens to be the action chosen at time
t.

5.4 Results
We compare the performance of three methods (PSRs

with SSP, TPSR and EM algorithms) in the aforementioned
problem domains. We implemented two versions of the EM
algorithm. One is with random initial states and the other
has been supplied with almost correct initial states. We ran
each algorithm for ten trials and plot the prediction error
functions (Y -axis) over the training sequence lengths (X-
axis) in Figs. 5- 7.

5.4.1 Cheese Maze
In Cheese Maze, with 80% of the time the agent moves in

its intended direction and with 10% of the time it moves in

1263



one of the directions perpendicular to its intended direction.
In Fig. 2, observations 1, 3 and 4 are used as the landmarks
for the state space partitioning. Obviously, other memories
that uniquely determine the underlying state, such as 1S5,
1E2, 3S5, etc., can also be used as landmarks for this en-
vironment, where S and E are the GoSouth and GoEast
actions respectively.
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Figure 5: (a)One-step; (b)four-step prediction error
in Cheese Maze.

Fig. 5 shows the average predication errors of three meth-
ods in Cheese Maze. The performance of the EM algorithm
with close to correct initial states is not shown in the figure s-
ince the algorithm achieves very low prediction error (around
0.007 in the one-step and four-step predictions). Given the
almost correct input, the EM algorithm approaches the true
POMDP model of the Cheese Maze domain with a reason-
able size of 11 states.

For the one-step and four-step predictions (respectively
in Fig. 5(a) and Fig. 5(b)), our algorithm outperforms both
the EM with random initial states and TPSR learning tech-
niques. Given a small amount of training data, our algorith-
m results in a large prediction error particularly in the four-
step prediction. However, as the training-sequence length
increases, our algorithm reduces its prediction error while
the EM algorithm with random initial values does not im-
prove its performance. Notice that the TPSR learning tech-
nique does not perform well and is even worse than the EM
algorithm with random initial values in the four-step predic-
tion.

To further investigate the performance of state space par-
titioning approach, we estimate the sub-SDMs for the corre-
sponding data partitioned by the same landmarks and com-

bine them into one entire SDM. The SDM is used directly
to learn a complete model (Complete model with landmark-
s). As can be seen in Fig. 5(a) and Fig. 5(b), both for the
one-step and four-step predictions, models learned using s-
tate space partitioning approach perform significantly better
than models on the entire state space. The explanation is
that the more complex a SDM is, the more difficult to find
the correct core tests, which results in less accurate models.

At the same time, as can be seen from the domain in
Fig. 2. Rather than learning a complete model on the envi-
ronment with 11 states, we learn 3 local models with 5, 7,
and 5 states respectively. Hence the learning is more effec-
tive and efficient.

5.4.2 Hallway and Hallway2
The domains of Hallway and Hallway2 are rather large and

were seldom used to test the PSR learning techniques. To
the best of our knowledge, neither of the existing algorithms
has learnt the complete PSR models in the two domains.

In our experiments, we set 4 and 7 landmarks respectively
in Hallway and Hallway2, which are marked as the stars in
Figs. 3 and 4. In these squares, the agent will fully disam-
biguate its location.
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Figure 6: (a)One-step; (b)four-step prediction error
in Hallway.

Figs. 6 and 7 show the average one-step and four-step pre-
diction errors of the comparative methods in both domains.
As the TPSR approach needs to estimate the entries in the
matrix p(T,H), the calculation becomes extremely inaccu-
rate due to a large number of states in the domains. The
prediction conducted by TPSR is much worse than that of
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Figure 7: (a)One-step; (b)four-step prediction error
in Hallway2.

the EM algorithm with random initial states, which is elim-
inated from the plots in Figs. 6 and 7.

As expected, our algorithm continues the good perfor-
mance in two large domains and exhibits significantly lower
prediction errors than the EM algorithm with random initial
states. Meanwhile, we observe that our algorithm does not
outperform the EM algorithm with close to correct initial
states on the four-step prediction in both domains. This is
mainly due to the incomplete calculation in Eq. 13 where on-
ly a relatively small set of observations (compared to more
than 204 possible joint observations over four time steps in
the two domains) are counted in the test sequences.

Overall, our algorithm achieves the acceptable prediction
in the two large domains. This is benefited from the de-
composition strategy in the new learning technique. For
example, in Hallway, our algorithm learns 4 local models
with 18, 15, 15, and 18 states respectively, which is much
more efficient than learning a complete model with 48 states
in total. In Hallway2, we avoid to learn a complete model
on an environment with 71 states. Instead, the algorithm
learns 7 local models with 24, 19, 19, 11, 19, 19 and 24 states
respectively.

6. RELATED WORK
Much effort has been devoted to learning PSR models.

In the work [7, 9, 13, 22], Monte-Carlo-style estimation was
used to construct elements of SDM and then PSRs including
the tests whose predictions constitute state and the model
parameters can be derived from the SDM. McCracken and

Bowling [14] learnt PSR models through a gradient descen-
t approach, which provides online PSR algorithms. Liu et
al. [13] presented an approach to learning the completed
model by using landmarks to obtain the entries of the S-
DM. However, unlike our approach, these methods directly
learn the PSR model on the entire state space thereby being
subject to the dimensional curse.

Rosencrantz et al. [16] developed the TPSR model that
uses the principle component analysis for learning the mod-
el parameters in uncontrolled dynamical systems. Instead
of maintaining probability distributions over the outcomes
of a set of tests, they keep linear combinations of the prob-
abilities to alleviate the discovery problem. Recently, some
spectral algorithms for learning TPSR parameters were de-
veloped and they are computationally efficient and statisti-
cally consistent [2, 3]. Hamilton et al. [6] presented the com-
pressed PSR models. The technique learns approximate P-
SR models of uncontrolled dynamical systems by exploiting
a particularly sparse structure presented in some domains,
which allows for an increase in both the efficiency and pre-
dictive power. These algorithms have been applied to some
large domains. With landmarks, our partitioning approach
is a general learning strategy and can be integrated into such
algorithms. By adopting state space partitioning approach,
as discussed earlier and shown in the experimental result-
s, beside the reduction of computational complexity, more
accurate learned model can be found.

To avoid the problem of the entire state space based meth-
ods, some work provides local approaches to modeling the
observational data [5, 18, 19, 20]. Although in the work
of [19], several local models can be combined to compute
the predictions of intersections/unions of test of interest by
making a strong assumption that the local models are mu-
tually conditionally independent, most of these works learn
only the local PSR model of the underlying system. In con-
trast, our approach still constructs the complete PSR model
of the system using the observed data and can generate any
conditional prediction about the system.

James et. al. [9] proposed the memory-based PSR (mP-
SR) that exploits the memory of the past to facilitate the
model learning. More recently, Ong et.al. [15] presented the
mixed observability PSR (MO-PSR) model by partitioning
the SDM based on the fully observable variable of the last
observation. However, some important differences exist be-
tween their approaches and ours: (i) Our approach first par-
titions the training data, then uses these partitioned data
to estimate the corresponding sub-SDM and learn the lo-
cal model. However, their methods first estimate the SDM
using the training data, and rather than partitioning the
training data, they partition the SDM, then each sub-SDM
is used to learn the corresponding local model. As a result,
our method is more efficient and required less training da-
ta to learn a model of better accuracy; (ii) our method can
ensure the correctness of core tests discovery and model pa-
rameters learning. In the mPSR and MO-PSR models, each
local model is learnt using a submatrix of the SDM of the
original system in which the histories (rows) end with the
same memory/full observable variable of the last observa-
tion. However, the states at the histories ending with the
same memory/full observable variable of the last observation
are usually not adjacent. For example, in the Cheese Maze
environment (in Fig. 2), the states at the histories ending
with memory “observation 5” are not adjacent. In such cas-
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es, the sub-state space cannot be represented by a POMDP
model. Consequently, equations 5 and 6 do not hold, and
the correctness of learning core tests is not guaranteed.

7. CONCLUSION AND FUTURE WORKS
To reduce the complexity of learning a complete PSR

model, we resort to learning local models on sub-state spaces
and then combine the learnt models. By learning local mod-
els, the new algorithm achieves data efficiency resulting in a
good scalability. The learning performance is also guaran-
teed in a theoretical way. Particularly we test the new al-
gorithm in Hallway and Hallway2, where previous iterative
algorithms that learn the complete model had difficulties.

As mentioned in the experiments, the traditional iterative
algorithm was used to learn local models in this research.
Obviously, other more modern learning algorithms, such as
local approaches to modeling the observed data or the spec-
tral methods proposed recently, can also be extended direct-
ly to learn local models. We will investigate the improved
performance in more complex domains.
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