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ABSTRACT
Improving the energy efficiency of domestic heating systems
can lead to a major reduction in energy consumption and
the corresponding CO2 emissions. To this end, intelligent
domestic heating agents (IDHAs) aim to operate domestic
heating systems more efficiently with minimum user input.
In this work, we propose a new general IDHA that balances
heating cost and thermal discomfort in an infinite horizon
optimization manner, learns an adaptive thermal model of
the system under control on-line and plans a heating sched-
ule that fully exploits the probabilistic occupancy estimates.
Importantly, our agent adapts to the user preferences in bal-
ancing heating cost and thermal discomfort, as it relies on a
single parametrization variable that is learned on-line, and
is able to consider a wide range of heating systems typically
employed in domestic settings. The backbone of our IDHA
is an adaptive model predictive control approach along with
a new general planning algorithm that utilizes dynamic pro-
gramming. We present a thorough evaluation of our ap-
proach, and show its effectiveness in terms of Pareto effi-
ciency and usability criteria against state-of-the-art IDHAs.
By so doing, we also conduct a comprehensive characteriza-
tion of existing IDHAs to provide significant insights about
their performance in different operational settings.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Control theory, Dynamic program-
ming, Graph and tree search strategies

General Terms
Algorithms, Performance, Reliability, Experimentation

Keywords
Machine Learning; Control; Energy Savings

1. INTRODUCTION
In many countries, such as the UK and the US, the domes-
tic sector accounts for more than 20% of the total energy
consumption, and over 40% of this share is related to space

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

heating.1 As such, improving the energy efficiency of do-
mestic heating systems can lead to a major reduction in en-
ergy consumption and the corresponding CO2 emissions. To
this end, intelligent domestic heating agents (IDHAs) aim to
operate such systems (i.e., optimize the heating control pro-
cess) more efficiently than current manual (programmable or
static) thermostat control, with minimum user input [10].

Now, the goal of any heating automation system is to
balance heating cost and the occupant’s thermal discomfort
according to their preferences—this balancing considers a
non-trivial bi-objective optimization task. In this context,
energy research has long been preoccupied with developing
such supervisory control systems for non-domestic buildings
(e.g, [10, 13]). However, more recently, with the onset of
ever-increasing house instrumentation and cloud comput-
ing, experimental IDHAs are also starting to emerge (e.g.,
[24, 28, 21, 31, 29]) and have already made their way into
modern homes as commercial products (e.g., Nest, Honey-
well and Hive). Such autonomous agents become essential
in domestic heating settings as the latter provide additional
challenges over their non-domestic counterparts.

In particular, the thermal dynamics of domestic build-
ings are harder to model accurately than their non-domestic
counterparts as: (i) the occupant’s activity is more diverse
and highly affects the thermal dynamics of the house (e.g.,
opening a window, operating an auxiliary heater, or cook-
ing) [20, 12]; (ii) the temperature in adjacent buildings or
rooms is rarely observed and/or predicted [20, 17]; and (iii)
the local weather observations and forecasting reports are
usually less accurate due to lack of appropriate instrumen-
tation [20, 9]. In addition, the occupancy schedule—which
is an essential input to any thermal comfort model (as any
comfort is experienced only when the space is occupied)—is
typically unknown in domestic settings and needs to be pre-
dicted [19]—in contrast to commercial buildings where it is
typically fixed. In this context, all proposed predictive ap-
proaches inevitably retain an uncertainty over this schedule
which is modeled in the form of probabilistic estimates [19].
In the presence of this uncertainty, sacrificing thermal com-
fort is typically inevitable to avoid extreme heating cost. As
such, dealing with this uncertainty and matching the occu-
pant’s preferences in balancing discomfort and cost arises as
a significant challenge in IDHAs. This is exacerbated by the
fact that even for a single household these preferences vary
over time as they are affected by a range of time-varying
factors (e.g., availability of money; health conditions). Fi-
nally, domestic heating systems are much more diverse than

1Based on data from www.gov.uk and www.eia.gov.
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those used in non-domestic buildings which calls for a gen-
eral IDHA (that is able to handle a variety of them).

That said, a number of IDHAs have been proposed in the
literature (e.g., [24, 28, 21, 31, 29]). However, they typi-
cally suffer from several drawbacks: (i) they usually rely on
a simple experimental thermal model which is not reliable
in practice and suitable only for proof-of-concept systems;
if not (ii) they do not deal with the highly dynamic nature
of house thermal characteristics; (iii) they do not provide
a way of choosing the parameterizable coefficients in bal-
ancing heating cost and thermal discomfort—the important
challenge of matching the occupant’s preferences is usually
disregarded in IDHAs; (iv) they usually rely on heuristic
control approaches in dealing with occupancy uncertainty
(without providing any guarantees or intuition regarding the
performance loss from an approach that fully exploits the
probabilistic estimates); if not (v) they rely on computation-
ally expensive approaches that limit their applicability only
to experimental settings; and (vi) they are usually heating-
system-specific. In addition to the above limitations, there
is also a lack of comparison among IDHAs, as those are usu-
ally benchmarked against simple static timer programs such
as “always-on” or “pre-scheduled” heating.

To address these shortcomings, we propose a new general
IDHA, AdaHeat, that balances heating cost and thermal dis-
comfort in an infinite horizon optimization manner, learns
an adaptive thermal model of the system under control on-
line and does planning to fully exploit the occupancy prob-
abilities. To this end, our agent employs a model predictive
control (MPC) approach utilizing adaptive gray-box thermal
modeling and a new general algorithm for planning that fully
exploits the probabilistic occupancy estimates via dynamic
programming. As such AdaHeat: (i) is able to effectively
account for the highly dynamic thermal characteristics of
houses, (ii) is able to work in conjunction with both linear
and non-linear optimization objectives and system models,
(iii) and is general enough to consider a wide range of heat-
ing systems. Due to these reasons, AdaHeat can be con-
sidered as a general framework where specific models can
be inserted to give particular characteristics. Last but not
least, AdaHeat adapts to the user preferences in balancing
cost and discomfort as it relies on a single parametrization
factor that is learned on-line.

In more detail, we extend the state-of-the-art as follows:

• We show how adaptive gray-box thermal modeling (i.e.,
adaptive modeling that relies on simplified physical
equations—see Sec. 2) can be incorporated in IDHAs
to capture the highly dynamic nature of domestic ther-
mal characteristics. This is the first IDHA that incor-
porates adaptive gray-box thermal modeling.

• We propose a general algorithm for planning in the
context of MPC, that optimally accounts for the oc-
cupancy probabilities and efficiently searches over the
heating schedule space, utilizing dynamic programming.

• We evaluate our approach with data coming from a real
house that employs underfloor heating (which consti-
tutes a challenging testbed on the generality of our ap-
proach both in terms of thermal modeling and control)
where we show the benefits of incorporating adaptive
gray-box thermal modeling in IDHAs as well as the ef-
fectiveness of balancing heating cost and thermal dis-
comfort based on a single parameter.

• We run a comparison over existing heating agent ap-
proaches and an improved approach that fully exploits
the occupancy probabilities where we show that the
latter leads to a more stable performance, in terms of
Pareto efficiency, in various operational settings. In
this context we also provide significant insights into
the agents’ usability in various settings.

The rest of the paper is structured as follows: We begin
with Sec. 2 with a review of related work. Then, in Sec.
3, we present our general adaptive IDHA; AdaHeat. In Sec.
4.4 we evaluate AdaHeat and provide a comprehensive char-
acterization of IDHAs. Finally, Sec. 5 concludes.

2. RELATED WORK
As discussed above, two fundamental tasks in IDHAs are:
i) the reliable thermal modeling of the house; and ii) the ef-
ficient control to optimize the heating process handling the
occupancy uncertainty. Now, adaptive thermal modeling—
where the thermal model varies through time to adapt to
the dynamic thermal characteristics—has been shown to be
resilient and effective in highly dynamic thermal settings
such as those in houses (e.g., [20, 25, 12, 17, 23]). Based
on the techniques used, adaptive modeling can be classified
as either black-box or gray-box [25, 20]. Adaptive black-box
approaches use statistical or machine learning techniques
for thermal modeling with minimum need for prior physi-
cal knowledge of the system (e.g., [17, 23]). However, these
approaches lack a physical interpretation and, hence, typ-
ically require a large amount of training data to demon-
strate adequate performance (e.g., [20, 23]). Given this,
such approaches are not considered in this work. On the
other hand, adaptive gray-box thermal modeling, which we
consider here, relies on simplified physical equations based
on derived equivalent thermal parameters (ETPs) which are
learned on-line and assumed to be time-varying (e.g., [20,
12]). Hence, such approaches do not suffer from the above
drawbacks [20] and have already shown their potential in
thermal processes control (e.g., [7, 5]). However, their in-
corporation in IDHAs has not been investigated yet.

Regarding control, a wide family of respective approaches
that has proven very efficient and has been extensively used
in IDHAs is that of MPC (e.g., [15, 28, 13, 31, 24]). This
success of MPC is due to its ability to handle control prob-
lems where off-line computation of a control law is difficult
or impossible (as is the case in IDHAs2) [4]. Moreover, the
slow nature of thermal processes of buildings does not gen-
erally raise stability issues that are usually a concern with
MPC control [30]. Due to these reasons, MPC is the most
common approach in heating agents [10], and is also em-
ployed in this work. In more detail, MPC considers a wide
family of control algorithms that share the following three
criteria [4]: (i) they make explicit use of a model that de-
scribes the dynamics of the system under control in order to
predict its future state; based on this model, (ii) they cal-
culate a sequence of actions over a finite horizon according
to the optimization objective—in this work we refer to this
process as planning; and, finally, (iii) they apply the first
control action of the calculated sequence, and repeat the

2We note here that although [29] calculates a control law off-
line, it is impractical as it fails to consider real-time updates
of the occupancy schedule and weather condition estimates.
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procedure, shifting the planning horizon into the future—a
property known as receding horizon.

A number of IDHAs have been proposed in the literature
(e.g., [24, 28, 21, 31, 29]). In their pioneering work, [24]
propose Neurothermostat, which employs a control method
that fully exploits the occupancy probabilities and balances
cost and discomfort in a single-objective optimization man-
ner. However, the major drawback of this work is that it
employs exhaustive search for planning which is extremely
costly, limiting its applicability to simple proof-of-concept
settings. In this context, Neurothermostat relies on a sim-
ple, fixed and, thus, impractical thermal model. Moreover,
Neurothermostat employs a static empirical formula to ex-
press discomfort in monetary cost which is problematic as
this equivalence varies among users and through time [28].

In contrast to the infinite horizon approach above, [21]
propose Smart Thermostat, which divides heating control
into two relatively independent tasks: (i) when to switch on
heating; preheating, and (ii) when to switch it off; heating
stopping. In this context, Smart Thermostat uses a sim-
ple, fixed thermal model based on ETPs estimated through
historical average. However, Smart Thermostat employs
a system-specific heuristic preheating approach that only
searches over a sub-region of the heating schedule space.
Moreover, heating stopping is reactive (heating is switched-
off when a departure event is inferred) which is not Pareto
optimal for heating systems that exhibit considerable ther-
mal lags [11]. Most importantly though, tackling preheat
and heating stopping independently is not effective in heat-
ing systems with considerable thermal lags (even if early
stopping is considered), as the preheating policy can signif-
icantly affect the optimal stopping policy and vice-versa.

More recently, a particular heuristic approach is rising in
popularity which deals with the probabilistic occupancy es-
timates in a thresholding manner (e.g. [28, 14, 13]). In par-
ticular, these estimates are assumed binary depending on
their relation to a predefined threshold; any estimate above
the threshold assumes occupancy, otherwise not. In more
detail, [28] propose PreHeat, which plans based on a de-
terministic occupancy schedule, derived through the afore-
mentioned approach. PreHeat works in two ways: (i) when
the space is considered occupied it uses predefined set point
temperatures; and if not (ii) it uses a lookahead window to
check if an occupancy event is imminent so as to heat up the
space for the minimum time required right before this event.
In this context, PreHeat uses a simple fixed thermal model
based on a single ETP, estimated as a historical average.
That said, this method tackles preheating and heating stop-
ping independently where the latter is reactive, thus facing
the aforementioned limitations. Moreover, the preheating
method is only appropriate for fixed-efficiency heating sys-
tems that do not exhibit any thermal lags, or energy cost
variability over time. On top of the above, the trade-off be-
tween cost and discomfort is determined by the threshold
choice which defines the deterministic occupancy schedule.
As such, cost and discomfort are balanced based on a heuris-
tic approach and no guarantees or intuition is given regard-
ing the performance loss from a heating schedule planning
that fully exploits the probabilistic occupancy estimates.

Another heating agent using thresholding is SPOT+ [13],
a non-domestic heating agent (for office buildings) that does
deal with occupancy uncertainty and hence could also be em-
ployed in domestic settings. SPOT+ tackles heating control

in an infinite horizon optimization manner but plans based
on a threshold-based deterministic occupancy schedule. In
this context, SPOT+ uses a fixed thermal model for plan-
ning, estimated through least squares regression. By so do-
ing, SPOT+ balances discomfort and cost on two levels:
(i) based on the threshold choice to derive with the deter-
ministic occupancy schedule and, (ii) based on the weight-
ing parameter used in the unifying formula. However, this
scheme obscures how each of the balancing techniques affect
the trade-off between cost and discomfort making parameter
choice tricky. Moreover, this scheme also considers a heuris-
tic approach and no intuition is given regarding the perfor-
mance loss from optimal heating schedule planning. Lastly,
although shortest path finding is mentioned for planning,
the algorithmic choice is not reported and no appropriate
algorithm is provided.

3. A GENERAL ADAPTIVE IDHA
In this work we propose a new general adaptive IDHA, Ada-
Heat consisting of the following components: (i) the thermal
comfort model, (ii) the thermal model of the building, (iii)
the heating system consumption model, and (iv) the con-
troller, that utilizes the aforementioned components. We
now proceed to describe each component in detail.

3.1 Thermal Comfort Model
In essence, thermal comfort is a complex response to sev-
eral potentially interacting and less tangible factors (e.g.,
differences in mood, activity, biology, clothing, air tempera-
ture, humidity, and air speed) [8]. As such, based on differ-
ent assumptions, a variety of metrics have been proposed to
measure thermal discomfort [8]. In this work, for simplic-
ity, we assume discomfort to depend only on the inside air
temperature, T IN ; and any discomfort experienced, at each
instance that the house is occupied, to be the absolute devi-
ation of T IN from the user-provided, set-point temperature,
TSP . As such, assuming constant T IN within a particular
interval of length δ, thermal discomfort is calculated as:

Disc(TSP , T IN , δ) = |TSP − T IN |δ 1occupied (1)

That said, more complex, and potentially self-adaptive, com-
fort models can be incorporated in our approach in a straight-
forward manner. Now, the occupancy schedule is essential
for modeling and predicting thermal discomfort since the
latter is experienced only when the house is occupied. How-
ever, the occupancy schedule is usually unknown in domestic
settings and needs to be predicted. In this work, we employ
the schedule-based occupancy prediction approach proposed
by [28], due to its general low instrumentation needs and
its particular efficiency (i.e. median predictive accuracies
of ∼80%) [28, 19]. In more detail, this approach predicts
the occupancy schedule on-line and returns a vector of oc-
cupancy probabilities for every 15 min. over the predicting
horizon.3 As such, assuming a constant T IN during an in-
terval of length δ, the expected thermal discomfort is:

E
[
Disc(TSP , T IN , δ)

]
= B |TSP − T INτ | δ (2)

where B is the occupancy probability during the interval.

3We interpolate any estimates where necessary.
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3.2 Thermal Model
In general, a thermal model predicts the thermal response
of a building based on: (i) the current thermal state vector
of the building, x; (ii) the vector of heating control actions
to be executed, u; and (iii) the vector of information vari-
ables regarding exogenous stochastic processes that affect
the thermal process (e.g, incident solar radiation, outside or
adjacent buildings’ temperature), i. As such, at time step t,
any thermal model can be defined as xt+1 = TM(xt, it,ut),
where its parameters are the ETPs to be estimated which
can be assumed to be either time-varying or fixed.

Now, in order to account for the highly dynamic domes-
tic thermal characteristics (Sec. 2), we assume time-varying
ETPs. Depending on the complexity of the thermal model
used (linear or non-linear), different ETP identification meth-
ods can be used such as recursive least square with forgetting
factor or (extendend) Kalman filters.4 We note, that al-
though several methodologies exist for model selection (e.g.,
[26, 2]), identifying the most suitable model depends on the
process to be modeled and the application requirements and,
hence, it is typically undertaken by the designer. Neverthe-
less, our agent is able to handle both linear and non-linear
models (as further discussed in Sec. 3.4). A specific instan-
tiation for our case study system is provided in Sec. 4.3.

3.3 Consumption Model
Strictly speaking, the amount of energy consumed by space
heaters is the energy provided to the space over the efficiency
of the system. As such, we calculate the consumption cost
over a time interval of length δ, where its efficiency, Ceff ,
the energy price, PBuy, and u, remain constant, as:

Cost(u, PBuy, δ) = δ
Pwr(u)

Ceff
PBuy (3)

where, Pwr(u) stands for the energy provided to the space
according to u (and assumed to be independent of x in terms
of simplicity). Now, in contrast to other approaches where
fixed formulas or multiple user-provided parameters are used
to balance cost and discomfort (e.g., [24, 14]), in our ap-
proach this balancing is adaptive to the user preferences (see
Sec. 3.4). As such, Ceff , as well as the energy provided for
a particular u, can be set to arbitrary values as long as any
needed ratios are retained.5 We note however that, for heat
pumps, Ceff needs to be modeled as a function of the tem-
perature difference between the heat source and the sink.

3.4 Control Approach
We now describe our control approach that utilizes the afore-
mentioned components and provide our general planning al-
gorithm. AdaHeat employs an adaptive, certainty equivalent
MPC [3, 4] that works as follows: Every δ amount of time,
the controller executes the first action of the planned heating
schedule. Then the thermal model is updated, new proba-
bilistic occupancy estimates, and predictions of i and, po-
tentially, PBuy are acquired; and the procedure is repeated
shifting the planning horizon into the future. We now pro-
ceed to describe our planning approach.

4We note here that x can be partially observable as well and
estimating state variables along with the ETPs introduces
non-linearity even in the case of a linear model [16].
5For instance, for a radiative heater which can operate with
either 1 or 2 identical elements, the respective energy provi-
sion values should correspond to the ratio 0:1:2.

Planning (Objective Formalization).
Within the above defined context, planning considers the
task of balancing discomfort and cost over the planning hori-
zon; that is a finite bi-objective optimization problem. In
order to tackle the respective complexity we combine the
two objectives via the well-known weighted sum [22] which
is a sufficient but not necessary condition for Pareto opti-
mality [22].6 Although other formalizations exist that are
both necessary and sufficient conditions [22], we employ the
weighted sum due to its simplicity and good observed per-
formance. Moreover, by doing so, our agent is able to adapt
to the user’s preferences, through a simple Boolean feedback
procedure. In particular, the user can simply progressively
adjust the weighting factor, in real time, by a constant value
until his/her preferences are met.

More formally, we plan for the MPC horizon, of length ∆,
by breaking it down into a set of non-overlapping intervals of
length δ. As such, ensuring that ∆ is an integer multiple of
δ, it corresponds to a set of intervals, noted H, where |H| =
∆/δ. During each interval, τ , all environmental conditions
are assumed constant. Hence, the optimization objective
is to find the sequence of actions, uτ , that minimizes the
expected unifying cost; J̄ , over the planning horizon:

minimize
u1,...,u|H|

J̄(·) =

|H|∑
τ=1

λ E [Disc(·)] + (1− λ) Cost(·)

subject to u1, . . . ,u|H| ∈ U

Here, E [Disc(·)] and Cost(·) return the expected discom-
fort and heating cost during interval τ , based on Eq. 2 and
3 respectively, λ is the weighting factor, and U is the set of
all feasible u.7 In general, λ ∈ (0, 1), to ensure strict Pareto
optimality [22]—as for the two limits only one objective is
considered. For eliminating cost with the minimum dicom-
fort there is a unique trivial solution of no heating, while for
the reverse problem a λ very close to 1 can be used. Note
that normalized values for cost and discomfort can be used.
We now proceed to describe our planning algorithm.

Planning (Optimization Approach).
The slow nature of the thermal process of buildings enables
us to tackle the optimization problem in a dynamic pro-
gramming manner (as the real-time computation constraints
are not typically strict). By doing so, our IDHA is general
enough to handle both linear and non-linear models and ob-
jectives. In particular, we reduce planning into finding the
shortest path in a directed acyclic graph (DAG) and provide
a planning algorithm that exploits the property of topolog-
ical ordering of a DAG through depth first search (DFS) to
find the shortest path in linear time [6].8

In more detail, each node, n, of the DAG, G, corresponds
to a distinct tuple that contains all the necessary information
to predict the next state, n′, according to u based on TM(·).
We note though that i at each instance can be inferred by τ
and, hence, the n tuple will just be 〈τn,xn〉. Now, each of
the edges, e, corresponds to a tuple that contains the initial

6Unless the Pareto optimal hyper-surface is convex [22].
7Note that the absence of hard output variable constraints
ensures that we will not face any feasibility issues [4].
8Although dynamic programming requires a discretization,
due to the limited predicting ability of any thermal model, a
discretization of x comes naturally (in contrast to the claim
in [24]) while τ is already discrete.
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Algorithm 1 AdaHeat Planning Algorithm

1: procedure HeatingPlanning(G, n)
2: for every u ∈ U do
3: Cost← Cost(u, PBuy[τn], δ)
4: Disc← B[τn] Disc(TSP , T INn , δ)
5: n′ ← TM(n,u)
6: e←< n 7→ n′,Cost,Disc >
7: add e to EG
8: if n′ /∈ VG then
9: add n′ to VG

10: if τn′ < |H| then
11: G← HeatingPlanning(G, n’)
12: else
13: MinJ̄{n′} ← 0

14: Tmp← MinJ̄{n′}+ λ Disc + (1− λ) Cost
15: if MinJ̄{n} = NaN or MinJ̄{n} > Tmp then
16: MinJ̄{n} ← Tmp
17: BestAction{n} ← u

18: return G

and successor node, and two weights corresponding to the
heating cost and expected discomfort during interval τ .

Algorithm 1 illustrates our planning algorithm. In partic-
ular, we extend the DFS recursion with constant time ex-
pressions, thus the time complexity is retained at O(|VG|+
|EG|) where VG and EG stand for the set of edges and ver-
tices ofG respectively. Specifically, the algorithm creates the
DAG in a pre-order [6] manner and populates MinJ̄{n} and
BestAction{n} with the minimum additional expected uni-
fying cost, J̄ and the best action for each node respectively.
As such when the algorithm terminates BestAction{n} holds
the optimal heating actions for each node.9

4. EVALUATION
In this section we provide a thorough evaluation of AdaHeat
and a comprehensive characterization of state-of-the-art ID-
HAs; we first describe the case study of our evaluation and
how we collected the necessary data; then, we describe the
specific instantiation of our IDHA for the case study system;
subsequently, we discuss our evaluation set-up and the in-
stantiations of the various benchmark agents; and, then, we
report the evaluation results.

4.1 Case Study and Data Collection
For our evaluation case study, we consider the living room
of a family house in Cambridge, UK. The house has both ra-
diators and underfloor heating (UFH) and is equipped with
custom hardware for heating control and data collection (see
[28]). We chose the living room as: (i) it is often in use and
(ii) its thermal dynamics are particularly challenging due to
its physical properties and household activity. In particular,
it has two doors and three windows and it is equipped with a
UFH system and an, occasionally used, auxiliary fan heater.
As such, the heating in adjacent rooms, the weather con-
ditions and the occupant activity have a substantial effect
on its thermal dynamics. Moreover, UFH involves multi-
ple heat transfer processes introducing considerable thermal
lags. Taken together, these factors make this room a chal-
lenging testbed on the generality and efficiency of our ap-
proach both in terms of thermal modeling and control.
9The arguments at the initial call of the recursion consider
an empty graph and the root node.

For the purpose of our research, we collected T IN read-
ings, and occupancy events from November 2011 to March
2012 (150 days) via the custom hardware (as discussed above).
For the outside temperature, T o, we use the publicly avail-
able dataset from the Cambridge Computer Laboratory.10

Finally, for solar radiation estimates, Gs, we use the dataset
from the EU Joint Research Commission.11

4.2 Instantiating AdaHeat
We now detail the instantiation of AdaHeat for our case
study system. Starting with comfort modeling, the case
study set-point temperature and, hence TSP , is 22◦C.

Regarding thermal modeling, we identify the most suitable
model by starting with the simplest feasible model and iter-
atively refining it into a more complex one. By doing so, we
derive a model where the transfer of heat from the source
to the indoor air is assumed to take place via an interme-
diate thermal mass, and the transfer to the outside via the
house envelope. Moreover, our model accounts for the ef-
fects of solar radiation on the indoor air and house envelope
temperature. In more detail, the derived model is [1]:

TFLt+1 = TFLt + rha+ φa(T INt − TFLt )

T INt+1 = T INt + rsaG
s + φa(TFL − T INt ) + φb(T

EN
t − T INt )

TENt+1 = TENt + rseG
s + φb(T

IN
t − TENt ) + φc(T

o − TENt )

where TFL and TEN stand for the floor-mass and envelope
temperature respectively, and, along with T IN , consider x.
Furthermore, Gs and T o consider i. In addition, φa, φb, and
φc stand for leakage rates12, and rh, rsa and rse are additional
coefficients that capture the effect of the heating output on
T IN , and the effect of Gs on T IN and TEN , respectively.
These coefficients along with the leakage rates consider the
time-varying ETPs. Finally, a ∈ {1, 0} (on/off) is the heat-
ing action and trivially considers u. That said, TFL and
TEN are hidden thermal state variables that need to be es-
timated along with the ETPs. To this end, as is common
practice, we use an extended Kalman filter (EKF) for the
joint estimation of state and parameter variables [16], and
evaluate our approach over the 150-days dataset to achieve
the 95th percentile of the absolute prediction error to be
0.95◦C and 1.37◦C for 2 and 4 hours predictions,respectively.

Regarding the consumption model, we have appropriately
set Ceff = 1 and Pwr(a) = a (i.e., Pwr(0) = 0 and Pwr(1) =
1). Finally, the planning horizon and the planning interval
length of AdaHeat controller were set to 1 hour ahead and
5 minutes, respectively (i.e., δ = 5 min, |H| = 12), as those
MPC design characteristics have been found to be adequate
for efficient control of the case study system (after experi-
menting with various design characteristics).

4.3 Experimental Setup
In this work, we evaluate AdaHeat, with and without adap-
tive thermal modeling. We do so, to identify the benefits of
such modeling in our IDHA. Moreover, we compare against
the well-known SPOT+ and PreHeat which, essentially, em-
ploy MPC along with heuristic planning (Sec. 2). As such,

10www.cl.cam.ac.uk/research/dtg/weather
11re.jrc.ec.europa.eu/pvgis/apps4/pvest.php
12As far as the common RC-network representation is con-
sidered [20], the notion of leakage rates can be interpreted as
the cumulative representation of thermal capacitance, Cth,
and thermal resistance, Rth (i.e., φ = 1

CthRth
).
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our evaluation can provide significant insights about the
trade-off between heuristic and optimal planning, in the con-
text of MPC. Now, although these heating agents employ
simple fixed thermal modeling, we also evaluate them with
a more advanced fixed model (that captures the thermal lags
of the case study system) and with our adaptive model. In
addition, we use the same occupancy prediction algorithm
(i.e., [28]); cost and discomfort metrics (i.e., Eq. 3 and 1
respectively); and planning horizon and interval length (i.e.,
δ = 5 min and |H| = 12) for all agents. We do so: (i) to
identify the benefits of adaptive modeling in various IDHAs;
and (ii) to compare various IDHAs without being affected by
any model and design differences. Moreover, we evaluate all
IDHAs with and without considering variable energy cost in
order to characterize them in different settings. That said,
our case study system with energy cost variability is a worst
case scenario system and its efficient control can confirm
(or disprove) the intended generality of AdaHeat. For com-
pleteness, we also evaluate the performance of three simple
heating strategies: (i) Always-on, which retains T IN at TSP

throughout the whole day, (ii) Never/Always-off, in which
heating is alway off, and (iii) Reactive, in which heating re-
sponds to occupancy (this is equivalent to a strategy where
heating is manually switched on and off, when the occu-
pants leave and return to the house, respectively). In more
detail, the aims of this evaluation are: (i) to identify the
benefits of incorporating adaptive gray-box thermal model-
ing in different IDHA approaches, (ii) to identify the trade-
off between heuristic planning and a planning approach that
fully exploits the probabilistic occupancy estimates, in the
context of MPC (without being affected by any modeling
and design differences of the IDHAs considered), and (iii)
to provide a comprehensive comparison of different IDHAs
in different operational settings (also without being affected
by any modeling and design differences).

In more detail, we evaluate all IDHAs for a typical winter
day (of February 2011), ensuring (via an iterative procedure)
that the initial and final thermal state, x, at the beginning
and at the end of the day respectively, are the same for
all experiments. As such, our evaluation results consider
long-term average performance evaluation, assuming that
the same day repeats over time (i.e., same occupancy sched-
ule, environmental conditions and predictions). We followed
this procedure to provide long-term performance estimates
for various IDHA parameter settings within feasible com-
putational time. In particular, by doing so, we were able
to evaluate all IDHAs for a wide range of parameters and
identify their performance in meeting the user preferences.
In more detail, we evaluate SPOT+ for all combinations of
a weighting factor within (0,1) with a step of 0.01, and a
threshold value within (0,1) with step 0.1.13 In addition, we
evaluate PreHeat and AdaHeat for the same threshold and
weighting factor range, respectively.

Now, we chose a week-day in winter due to the heating
needs of the particular season and to avoid any week-end
day peculiar features.14 To this end, we used the collected
data for the ground truth of the occupancy schedule (and
derived respective occupancy predictions for this day based

13We note here that the SPOT+ objective has been normal-
ized to work with a weighting parameter in the range (0,1)
without any performance loss to reinforce our comparison.

14For instance if the house is unoccupied during a week-end
day, due to a trip, there will be zero potential savings.
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Figure 1: Initial evaluation results17 (Always-off wields
∼154◦Ch discomfort and, appropriately, no cost)

on historical data according to [28]—see Sec. 3.1) and the
weather conditions (see Sec. 4.1).15 Furthermore, in order
to model our thermal model inaccuracies, we simulated the
underlying thermal process by sampling x, at each instance,
from the respective EKF derived distributions. As such, the
thermal model is not completely accurate with respect to
our simulation, making our experiments more realistic.

As outlined above, we evaluate SPOT+ and PreHeat also
with their original fixed thermal models. Thus, as proposed
in the respective publications, we estimated SPOT+ model
via least squares regression and PreHeat’s heat-rate as a
historical average. In particular, we estimated both models
based on the two first months of the 150-days dataset—
thereafter, the estimated ETPs are fixed. Now, in order
to evaluate the IDHAs with a more advanced fixed model,
we used the ETPs of our adaptive model as derived exactly
30 days before the evaluation day (as such, the last model
“calibration” is done, approximately, one month ago).16 Fi-
nally, we note that in our evaluation, discomfort and cost
are estimated with a numerical evaluation of 1-min interval.

4.4 Evaluation Results
We note that the simple models of SPOT+ and PreHeat
are not able to capture the case study UFH system thermal
lags. However, as further discussed below, PreHeat is not
very sensitive to the accuracy of the thermal model used
due its simple heating control strategy. On the other hand
though, SPOT+ is not able to execute any heating schedule
other than Always-off when a planning horizon of one hour
is used. Hence, only for this experiment SPOT+ horizon is
set to two hours (in contrast to AdaHeat and PreHeat where
one hour is used). Fig.1 illustrates the evaluation results.

From this we can see that AdaHeat has a better per-
formance, in terms of Pareto efficiency, compared to both
SPOT+ (with two hours ahead planning horizon) and Pre-
Heat (while SPOT+ and PreHeat have a comparable ef-

15We linear interpolate whenever needed.
16Although this simple technique is used to “approximate” a
fixed thermal model, estimation techniques for fixed ETPs
can potentially demonstrate higher accuracy [18].

17Points closer to the origin indicate higher Pareto efficiency.
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Figure 2: Comprehensive evaluation results17 (Always-off wields ∼154◦Ch discomfort and no cost)

ficiency). In particular, the balancing points captured by
AdaHeat fall closer to the origin and consider a wider and
more evenly distributed set. However, this experiment is
not very informative on whether this is due to the differ-
ences in thermal modeling or in planning. It is worth noting
though, that none of the agents are dominated by the simple
strategies (i.e., Always-on, Always-off or Reactive) and can
improve heating efficiency compared to these strategies.

Given these initial observations, we proceed with a more
comprehensive evaluation of the agents. In particular, we
first evaluate them with our thermal modeling approach,
both fixed and adaptive, without considering energy cost
variability. As expected, adaptive thermal modeling signif-
icantly improves IDHA efficiency. In particular, as seen in
Fig. 2, both AdaHeat and SPOT+ highly depend on the
thermal model accuracy and their performance improves sig-
nificantly when adaptive modeling is considered, especially
when low discomfort values are intended. In particular, the
solutions captured with adaptive modeling fall closer to the
origin compared to fixed modeling solutions. On the other
hand, PreHeat is less sensitive to the thermal model accu-
racy due to its simple control strategy. However, this simple
strategy deteriorates in terms of flexibility and efficiency as
discussed below. In general though, none of the systems’ so-
lutions are dominated by the simple heating strategies even
when fixed thermal modeling is considered.

Now, as far as all IDHAs are considered with adaptive
thermal modeling, the results shown in Fig. 2(a) suggest that
SPOT+ and AdaHeat have comparable Pareto efficiency
while PreHeat demonstrates a slightly worse efficiency. This
is due to its simple control strategy which is not able to cap-
ture heating systems with considerable thermal lags, such as
the UFH system considered, in a maximally efficient manner.
Moreover, SPOT+ demonstrates a less stable performance,
in terms of Pareto efficiency compared to AdaHeat, i.e., the
solutions captured by SPOT+ are sometimes dominated by
AdaHeat and vice-versa. In further investigation, SPOT+
has been observed to occasionally plan a clearly subopti-
mal heating schedule.18 However, the suboptimal planning

18This fact suggests that the non-closed form formalization

of SPOT+ occasionally leads to higher or lower Pareto effi-
ciency, as the MPC is not an optimal control approach [4].

Now, matching the time-varying occupant preferences in
balancing discomfort and cost is crucial in the context of
IDHAs (as discussed in Sec. 2). To this end, SPOT+ relies
on two user-provided parameters, i.e., the weighting factor
and the threshold over the probabilistic occupancy estimates
(Sec. 2). However, in general, mathematical relationships
between heating cost and quantifications of thermal discom-
fort are hard to comprehend for the users. As such, the us-
ability of SPOT+ in domestic settings is questionable due to
the complicated relationship between the threshold and the
weighting parameter (see Fig. 3(a)). In more detail, many
SPOT+ solutions (for different weighting and threshold pa-
rameters) are dominated by other solutions that SPOT+
captures with different parameter choices. However, the ex-
act performance of SPOT+ cannot be known in advance and
we are not able to find any algorithm to appropriately popu-
late the weight and the threshold parameter that can demon-
strate a monotonic relationship with either the discomfort
or the cost. For instance, one such algorithm could be to
increase weight and threshold iteratively, starting from a
particular weight for each threshold choice. This fact makes
the parameter choice tricky as the user cannot know what
to expect from different parameter value combinations.

On the other hand, both AdaHeat and PreHeat rely on
only a single parameter for balancing heating cost and ther-
mal discomfort. Moreover, the adjustable parameter of both
AdaHeat and PreHeat demonstrates a monotonic correla-
tion to thermal discomfort (and to heating cost for Ada-
Heat), when adaptive thermal modeling is considered, as
seen in Figures 3(b) and 3(c). This fact enables the adjust-
ment of these variables through a simple, real-time, adap-
tive procedure, based on a single Boolean feedback from the
user, as discussed in Section 3.4. As discussed above though,
when adaptive thermal modeling is considered (Fig. 2(a)),
PreHeat illustrates a slightly lower Pareto efficiency than

of SPOT+’s planning objective (see [13]) is not a sufficient
condition for Pareto optimality over cost and expected dis-
comfort. However, we cannot conclude, whether it is a nec-
essary condition just from these observations.
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Figure 3: Balancing heating cost and thermal discomfort19
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Figure 4: Evaluation results with variable price17

SPOT+ and AdaHeat. Moreover, in general, PreHeat is not
able to capture a wide range of balancing points between
cost and discomfort that allows a variety of user preference
schemes to be captured—in contrast to AdaHeat. In partic-
ular, PreHeat operates on only a small region in balancing
cost and discomfort which is not sufficient for appropriate
heating control in domestic settings. As such, the occupants
need to also adjust the origin of the discomfort metric (i.e.,
the set-point temperature), along with the threshold param-
eter, in order to meet their preferences. Thus AdaHeat is the
only agent that works sufficiently based on a single weighting
parameter that can be learned on-line.

Lastly, the simple heating control strategy of PreHeat
(i.e., heating for the minimum time required right before
an occupancy event) does not allow this agent approach to
efficiently work in conjunction with heating systems that
exhibit a variability of heating energy cost over time, time-
varying overall efficiency or considerable thermal lags (as
illustrated above). To further illustrate this we have con-
ducted an additional experiment where arbitrarily variable
energy prices have been assumed through the day. In partic-
ular, the energy prices have been designed to change every 5

19 Fig. 3(a) reveals the complicated, non-monotonic and,
hence, impractical nature of balancing discomfort and cost
based on two parameters (in contrast to 3(b) and 3(c)).

minutes with their value being sampled from a uniform dis-
tribution within the range [1,10]. As can be seen in Fig. 4,
PreHeat’s performance deteriorates significantly in this set-
tings (both in terms of Pareto efficiency, and distribution
and range of balancing points that it captures). Specifi-
cally, certain PreHeat solutions are dominated even by the
Always-on strategy. Moreover, SPOT+ demonstrates signif-
icant variability over its performance for different parameter
choices in this setting, as it captures many self-dominated
solutions. In contrast, AdaHeat is generally stable in terms
of Pareto efficiency, and generally smooth in terms of the
distribution and range of solutions captured (Fig. 4).

5. CONCLUSIONS
In this work we propose a new general IDHA (framework),
AdaHeat, that balances cost and discomfort in an infinite
horizon optimization manner, learns an adaptive thermal
model on-line and does planning to fully exploit the oc-
cupancy probabilities. AdaHeat adapts to the user pref-
erences in balancing cost and discomfort as it relies on only
one parametrization factor. We showed the effectiveness of
our approach in different settings against two state-of-the-
art IDHAs. In particular, we showed how adaptive thermal
modeling can significantly improve the efficiency of IDHA,
especially when advanced heating strategies are considered
(i.e., SPOT+, AdaHeat). Moreover, we showed that a single
parameter, in balancing heating cost and thermal discom-
fort, is sufficient for efficient IDHA performance, and ensures
the applicability of the IDHAs in domestic settings with vari-
able user preferences. In addition, we showed that optimal
exploitation of the occupancy probabilistic estimates, within
the context of MPC, is feasible in practice and leads to a
more stable performance, in terms of Pareto efficiency, in
various operational settings. Lastly, in this work, we also
ran a comparison over existing IDHAs and provided signif-
icant insights about their performance in terms of Pareto
efficiency and usability criteria. Regarding future work we
aim to extended our work to control heating in systems with
renewable energy resources and uncertain energy prices since
such systems are expected to be the norm within the next
generation electricity grid (i.e., the smart grid [27]).
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