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Figure 2: Comparison of our Greedy Rate (GR) algorithm
against the benchmark of Continuous Area Sweeping (CAS)
when resources follow the Bernoulli model of replenishment.
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Figure 3: Comparison of our Greedy Rate (GR) algorithm
against the benchmark of Continuous Area Sweeping (CAS)
when resources follow the Poisson model of replenishment.

in the combination of both the foraging and information-
gathering algorithms. Previous foraging algorithms gener-
ally do not consider incorporating new information from
other sources (e.g., the reconnaissance agent), while our for-
aging algorithms exploit the fact the new information can
arrive at any time, and thus improves the overall team for-
aging rate, as we describe in the next section.

7. EXPERIMENTS AND RESULTS

We describe the extensive experiments we conducted to
analyze the performance of our algorithms we introduced
in the previous sections. We compare against the baselines
from sustainable foraging and continuous area sweeping, and
evaluate our Expected Observation algorithm.

7.1 Experimental Setup

The foraging locations were randomly generated, follow-
ing a uniform distribution over a square of size N x N, and
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Figure 4: Effect of communication among foraging agents
when resources follow the Bernoulli model of replenishment.
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Figure 5: Effect of observational noise when resources follow
the Poisson model of replenishment.

either followed the Bernoulli, Poisson, or the stochastic Lo-
gistic models. The agents’ initial positions were randomly
generated to be also be within the N x N square. In each
experiment, we simulated 7" = 1000 timesteps, and recorded
the number of resources vg,r foraged to the home lo.

We varied the number of agents n from 1 to 10, and the
capacities from 1 to 20. We chose 10 and 20 because it was
sufficient for a Random foraging algorithm (i.e., agents that
randomly select their destinations) to forage almost all re-
sources in the Bernoulli and Poisson scenarios. We set the
number of locations |£| = 20 (since it is twice the number of
agents) and set the number of location that the reconnais-
sance agent could visit at each timestep to be M = %.

As a baseline, we assumed that foraging agents were ca-
pable of limited communication when they were within %
distance, and could communicate their destinations and pay-
loads. We assumed that observations are not noisy as a
baseline. We investigate the effects of no communication

and noisy observations in the Bernoulli and Poisson models.

7.2 Experiments with Bernoulli and Poisson
Models of Replenishment
We compared our Greedy Rate (GR) algorithm against



the Continuous Area Sweeping (CAS) algorithm [1]. As a
baseline, we used a Random foraging (R) algorithm where
agents randomly select their destination.

Both our GR algorithm and the CAS algorithm can use
information gathered by the reconnaissance agent, and we
compared our Expected Observation (EO) algorithm to a
Random Observation (RO) algorithm, where M locations
would be randomly chosen by the reconnaissance agent.

Figures 2 and 3 show the performance of our algorithms
when the capacities of the agents are 10. Since the num-
ber of resources generated in simulation varied, we mea-
sured the percentage of resources that were successfully for-
aged at the end of the experiment. The solid red, black
and blue lines show Greedy Rate with Expected Observa-
tion (GR4+EQ), Continuous Area Sweeping with Expected
Observation (CAS+EO), and Random Foraging (R), and
the shaded areas show the standard deviations of these al-
gorithms. The dotted and dashed lines show other combi-
nations of foraging and reconnaissance algorithms.

As the number of agents increase, R outperforms both GR
and CAS (p=1x 107%* and p = 3 x 107%7 with a 2-tailed
T-test on R vs GR in Bernoulli and Poisson respectively),
primarily because the agents do not share their models, so
agents tend to head to similar locations. Even though agents
coordinate when possible, the limited range of communica-
tion causes inefficiencies in foraging.

However, the introduction of a reconnaissance agent sub-
stantially improves both GR and CAS. Our EO algorithm
outperforms the RO algorithm (p = 1 x 107! and p
2 x 107 for GR+EO vs GR+RO on Bernoulli and Pois-
son respectively), and GR4+EO outperforms CAS+EO and
R (p=3x1072% and p = 1 x 107%° for Bernoulli, and
p=25x10"% and p = 1 x 1073" for Poisson). It is inter-
esting to note that CAS+EO performs substantially better
than the baseline CAS. In general, adding a single reconnais-
sance agent with EO provides a much higher benefit than
increasing the number of foraging agents.

We investigated having no communication (among the for-
aging agents) and noisy observations. Figures 4 and 5 shows
the effects as the number of agents and their capacities vary.
While a lack of communication and noisy observations affect
our algorithms, the effect is minimal (a median of 0.3% and
2.2% respectively for communication and noise, thus illus-
trating that our algorithms are robust to a lack of commu-
nication and noisy observations.

In addition, Figures 4 and 5 clearly illustrate the efficacy
of our GRH+EO algorithms over the baseline CAS, across all
numbers of foraging agents and agent capacities. We chose
10 to be the maximum number of foraging agents, and 20
to be the maximum capacity, because our algorithm have
already hit the 100% foraging rate before that point. In
contrast, CAS does not reach 100% even with 10 foraging
agents with a capacity of 20 each.

7.3 Experiments with Stochastic Logistic Model

We compared our Adaptive Sleep (AS), Adaptive Sleep
with Target Change (ASTC) algorithms against Sustainable
Foraging (SF) [17], and a Random (R) foraging algorithm as
baseline. Only our algorithms could use information gath-
ered by the reconnaissance agent.

Fig. 6 shows the algorithms’ performance when the agent
capacities are 20, and the stochastic Logistic noise is 0. =
0.08. The shaded regions show the standard deviations of
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Figure 6: Comparison of our Adaptive Sleep (AS) and Adap-
tive Sleep with Target Change (ASTC) algorithms against
the benchmark of Sustainable Foraging (SF) when resources
follow the stochastic Logistic model of replenishment.
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Figure 7: Effect of noise in the stochastic Logistic model.

ASTC+EO, AS+EO, SF and R. SF and AS both increase
linearly, since the agents select a single destination; our AS
algorithm outperforms SF (p = 7 x 1075).

R outperforms AS and SF when the number of agents
are small, primarily because changing destinations allows
resources to replenish at a higher rate. However, as the
number of agents increase, R’s performance begins to plum-
met as locations become over-foraged and the replenishment
rate lowers. ASTC combines the benefits of AS and R, al-
lowing agents to choose a destination, and also visit other
unassigned locations. Thus, the shape of the ASTC curve is
similar to R, albeit at a much higher foraging rate.

The introduction of a reconnaissance agent improves the
foraging rate. EO and RO perform similarly with the AS
algorithm. For ASTC, EO and RO perform similarly when
the number of agents n < 5 (p = 0.14), but EO outperforms
RO when there are n > 5 (p = 8 x 107%). The constant 5
corresponds to the number of locations the reconnaissance
agent visits: EO determines the best locations to visit, com-
pared to RO’s random choice. When n < 5, there is a high
probability that RO visits all agents’ locations.

Fig. 7 shows the effect of stochastic Logistic noise (o =
0.04 to 0.20). SF performs poorly as the noise increases, but
ASTCHEOQO performs better with higher noise, showing that



our algorithm takes advantage of the noise (noise creates a
probability of generating resources ahead of schedule).

7.4 Summary of Experimental Analysis

Across the Bernoulli and Poisson models of replenish-
ment, our Greedy Rate (GR) algorithm outperforms the
baseline Continuous Area Sweeping (CAS). Further, the ad-
dition of the reconnaissance agent improves the performance
of both GR and CAS, since additional information is pro-
vided to both algorithms. Our Expected Observation (EO)
algorithm outperforms the Random Observation (RO) algo-
rithm, showing that although the reconnaissance agent can
visit % of the locations each timestep, selecting which lo-
cations to visit still plays a very important role. Random
selection (which will visit every location every 4 timesteps on
average) improves the team foraging rate, but not as much.

In addition, it is important to note that our EO algo-
rithm significantly improves the CAS algorithm’s foraging
rate, so our information-gathering algorithm is not specific
to our foraging algorithms, but can be applied to any forag-
ing algorithm that makes use of new information. Also, our
algorithms are robust to noise in observations, and performs
with minimal degradation when communication among the
foraging agents are unavailable.

Similarly, for the stochastic Logistic model of replenish-
ment, our Adaptive Sleep (AS) and Adaptive Sleep with
Target Change (ASTC) algorithms outperform the baseline
of Sustainable Foraging (SF), across all numbers of forag-
ing agents and agent capacities. Our algorithm is robust to
the noise in the stochastic Logistic model, and the EO al-
gorithm improves our foraging algorithms significantly. The
ASTC algorithm incorporates both the features of the AS
algorithm (to maximize the foraging rate at the assigned lo-
cation) and the Random algorithm (to exploit the resource
replenishment at unassigned locations).

Thus, our experiments show that our algorithms are dis-
tributed and require little communication among the forag-
ing agents, and are robust to noise in observations, a lack
of communication, and noise in the models. We outperform
the baselines significantly, and the addition of the reconnais-
sance agent improves the multi-agent team’s foraging rate,
even for foraging algorithms that we did not create.

8. CONCLUSION

We formally defined the continuous foraging problem, where

agents visit known foraging locations to collect and deliver
resources to a home location. The resources replenish over
time, and we defined three models of resource replenishment:
the Bernoulli and Poisson models where resources replen-
ish probabilistically (e.g., mail entering a mailbox), and a
stochastic Logistic model where the rate of resource replen-
ishment depends on the number of existing resources (e.g., a
population of fish).

We considered two types of agents: foraging agents that
actively forage resources, and a reconnaissance agent that
cannot forage items, but can visit a subset of the locations
to determine the number of resources available.

We contributed algorithms for the foraging and recon-
naissance agents, and to evaluate our algorithms, we per-
formed experiments in simulation, benchmarking against ex-
isting algorithms in sustainable foraging and continuous area
sweeping. We showed that our algorithms outperform the
existing ones even without the use of the reconnaissance
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agent. Further, we demonstrated that the reconnaissance
agent further improves the foraging rate of the multi-agent
team, even in the presence of noisy observations and no com-
munication among the foraging agents, thus illustrating the
benefits of our algorithms.
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