
Robust Strategy against Unknown Risk-averse Attackers in
Security Games

Yundi Qian
University of Southern

California
yundi.qian@usc.edu

William B. Haskell
National University of

Singapore

isehwb@nus.edu.sg

Milind Tambe
University of Southern

California
tambe@usc.edu

ABSTRACT

Stackelberg security games (SSGs) are now established as a pow-

erful tool in security domains. In this paper, we consider a new

dimension of security games: the risk preferences of the attacker.

Previous work assumes a risk-neutral attacker that maximizes his

expected reward. However, extensive studies show that the attack-

ers in some domains are in fact risk-averse, e.g., terrorist groups

in counter-terrorism domains. The failure to incorporate the risk

aversion in SSG models may lead the defender to suffer significant

losses. Additionally, defenders are uncertain about the degree of

attacker’s risk aversion. Motivated by this challenge this paper pro-

vides the following five contributions: (i) we propose a novel model

for security games against risk-averse attackers with uncertainty in

the degree of their risk aversion; (ii) we develop an intuitive MI-

BLP formulation based on previous security games research, but

find that it finds locally optimal solutions and is unable to scale up;

(iii) based on insights from our MIBLP formulation, we develop

our scalable BeRRA algorithm that finds globally ǫ-optimal solu-

tions; (iv) our BeRRA algorithm can also be extended to handle

other risk-aware attackers, e.g., risk-seeking attackers; (v) we show

that we do not need to consider attacker’s risk attitude in zero-sum

games.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms

Algorithm, Security, Robust

Keywords

Risk-averse, Robust Stackelberg equilibrium, Optimization, Secu-

rity Games.

1. INTRODUCTION
Stackelberg security games (SSGs) are now established as a suc-

cessful tool in the security domain [10, 3, 12]. In this paper, we

focus on a critical dimension of SSGs that has not yet been stud-

ied — the risk preferences of the attacker. Previous work on game

theory for SSGs emphasizes a risk neutral attacker that is trying to

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

maximize his expected reward. However, if the attacker is not risk-

neutral but is actually risk-averse, then the failure to model this risk

attitude may lead the defender to suffer significant losses in solu-

tion quality.

A major motivating example of our work is the application of se-

curity games to the counter-terrorism domain, and there is a thread

of work that studies terrorist risk attitudes [19, 18, 20]. In [19],

portfolio theory is applied to study a terrorist group’s decision mak-

ing process, and this research argues that terrorist strategies are

risk-averse and are highly sensitive to the group’s level of risk aver-

sion. While this finding of risk aversion may appear to be counter-

intuitive, notice that it is the terrorist groups (and the planners in

these groups) that are found to be risk-averse due to resource lim-

itation; not the individuals in the organization who finally launch

an attack. [18] studies the risk preferences of Al Qaeda specifi-

cally and concludes that the group is risk-averse and consistently

displays the same degree of risk aversion in their activities. This

work is further extended in [20] where the degree of risk aversion

for Al Qaeda is estimated empirically based on data of attacks over

the last decade.

Risk aversion encompasses a wide range of behavior — so to

say that attackers are risk-averse is not enough for the defender. To

address this issue, we compute a robust defender strategy against

risk-averse attackers with uncertainty in the degree of risk aver-

sion [1]. In this process, we provide the following contributions

in this paper. First, we build a robust SSG framework against an

attacker with uncertainty in level of risk aversion. Second, building

on previous work on SSGs in mixed-integer programs, we provide a

novel mixed-integer bilinear programming problem (MIBLP), and

find that it only finds locally optimal solutions. While the MIBLP

formulation is also unable to scale up, it provides key intuition for

our new algorithm. This new algorithm, BeRRA (Binary search

based Robust algorithm against Risk-Averse attackers) is our third

contribution, and it finds globally ǫ-optimal solutions by solving

O(n log(1
ǫ
) log(1

δ
)) linear feasibility problems. The key idea of

our BeRRA algorithm is to reduce the problem from maximiz-

ing the reward with a given number of resources to minimizing

the number of resources needed to achieve a given reward. This

transformation allows BeRRA to scale up via the removal of the

bilinear terms and integer variables as well as the utilization of key

theoretical properties that prove correspondence of its potential “at-

tack sets” [10] with that of the maximin strategy. Fourth, although

the BeRRA algorithm is designed for risk-averse attackers, it also

applies to other risk-aware attackers, e.g., risk-seeking attackers.

Finally, we also show that we do not need to consider attacker’s

risk attitude in zero-sum games. Our experimental results show the

solution quality and runtime advantages of our robust model and

BeRRA algorithm.

1341

2. MODEL

2.1 Stackelberg Security Games
An SSG [10, 3, 12] is a two-player game between a defender

and an attacker. We consider the problem with n targets where

T = {1, 2, . . . , n} is the set of targets. The defender has a total

number of m resources to allocate among these n targets to protect

them from attack. The defender commits to a mixed strategy c to

protect these targets, where ci ∈ [0, 1] is the probability that tar-

get i is protected. We have the resource constraint
∑

i∈T
ci ≤ m.

The attacker observes the defender’s strategy c and then chooses

one target to attack. If the attacker attacks a protected target i,
this attack is unsuccessful and the attacker receives utility1 Uc

a(i)
while the defender receives utility Uc

d(i). If the attacker attacks

an unprotected target i, this attack is successful and the attacker

receives utility Uu
a (i) while the defender receives utility Uu

d (i).
Necessarily, Uu

d (i) < Uc
d(i) and Uc

a(i) < Uu
a (i),∀i ∈ T. If

Uu
d (i) + Uu

a (i) = 0 and Uc
d(i) + Uc

a(i) = 0, ∀i ∈ T, this SSG is

a zero-sum game.

We define Ua(i, c) , ciU
c
a(i) + (1 − ci)U

u
a (i) to be the ex-

pected utility for the attacker when the defender’s strategy is c

and the attacker chooses to attack target i; similarly, Ud(i, c) ,

ciU
c
d(i) + (1 − ci)U

u
d (i) is the expected utility for the defender.

Given the defender strategy c, the attacker would attack the tar-

get that maximizes his expected utility. When there are ties, the

attacker is assumed to break ties in favor of the defender. Thus, a

mixed integer linear program (MILP) can be formulated to compute

the defender’s optimal strategy, as is shown in Problem (1). Here,

{qi}i∈T are auxiliary variables to represent if target i is chosen by

the attacker, and M is a constant orders of magnitude larger than

all target utilities. The solution c is called the Strong Stackelberg

Equilibrium (SSE) strategy [7, 21, 11] of the game.

max
c,{qi}i∈T,v,d

v

s.t. 0 ≤ ci ≤ 1,∀i ∈ T

∑

i∈T

ci ≤ m

qi ∈ {0, 1}, ∀i ∈ T

∑

i∈T

qi = 1

v ≤ Ud(i, c) + (1− qi)M,∀i ∈ T

0 ≤ d− Ua(i, c) ≤ (1− qi)M,∀i ∈ T

(1)

2.2 Stackelberg Security Games with Unknown
Risk-averse Attackers

The SSE strategy provides the optimal defender strategy when

the attacker is risk-neutral. However, as previously discussed, at-

tackers are risk-averse rather than risk-neutral in several key do-

mains. If the defender executes the SSE strategy against a risk-

averse attacker, then the defender may suffer significant losses in

solution quality. We show in Example 1 that these losses can be

arbitrarily large.

EXAMPLE 1. Suppose there are two targets, t1 and t2, in the

game, and their utilities are as shown in Table 1. The defender has

only 1 resource. The SSE strategy of the game is c1 = 0.4, c2 =
0.6. If the attacker is risk-averse, he would choose to attack t1
(these two targets are identical to the attacker in terms of expected

utility, but a risk-averse attacker prefers a small reward with high

1Literature on risk denotes Uc
a(i)/U

c
d(i) as values. However, we

use the terminology utilities and mapped utilities for consistency
with previous work on SSGs.

probability versus a high reward with low probability), and the de-

fender’s reward would be 0.4+0.6x for the SSE strategy. However,

if the defender executes the strategy of c1 = 1, c2 = 0, then the at-

tacker would attack t2 and the defender would receive reward −1.

Compared with −1, the loss of the SSE strategy can be arbitrarily

large since x can be arbitrarily small.

Table 1: Utility Example

U
c
d U

u
d U

c
a U

u
a

t1 1 x -1 1

t2 1 -1 -1 2

This example strongly motivates the need to consider risk-averse

attackers. However, real world defenders are uncertain about the

attacker’s degree of risk aversion, and the defender may suffer sig-

nificant losses if she incorrectly estimates it. Therefore we focus on

a robust strategy in this paper, i.e., our aim is to compute a defender

strategy that is robust against all possible risk-averse attackers.

In literature on risk, the utility function f , which maps values to

utilities, is used to specify the risk preference. f is concave for the

risk-averse case and is convex for the risk-seeking case, while the

risk-neutral case corresponds to the function y = Cx,C > 0. The

agent makes decisions based on the mapped utilities.

In our problem, we define the mapping function Û that maps the

utilities Uc
a(i) and Uu

a (i) to the attacker’s mapped utilities. We de-

note Ûa(i, c) , ciÛ(Uc
a(i)) + (1− ci)Û(Uu

a (i)) as the attacker’s

expected utility under the mapping Û . We restrict Û to be strictly

increasing, concave and satisfying the equality Û(0) = 0 — strict-

ly increasing reflects the preference for more to less; concavity cor-

responds to risk aversion; and Û(0) = 0 distinguishes between

gains and losses. According to this definition, the risk-averse case

includes the risk-neutral case.

We define U to be the set of all valid mapping functions Û . Prob-

lem (2) describes the robust defender strategy through a bilevel

optimization problem. In the upper level, the defender chooses

c to maximize her expected utility Ud(k, c). The constraint k ∈
argmaxi∈T Ûa(i, c) requires target k to have the highest expect-

ed utility for the attacker under the utility mapping Û when the

defender’s strategy is c. The lower level demonstrates that the de-

fender maximizes her worst-case reward over all possible attacker

responses with utility mapping functions Û ∈ U . The lower level

also suggests that the attacker breaks ties against the defender due

to the concept of robustness. We define the solution c to be the

Robust Stackelberg Equilibrium (RSE) strategy of the game.

max
c

min
Û∈U,k

{
Ud(k, c) : k ∈ argmax

i∈T

Ûa(i, c)

}

s.t. 0 ≤ ci ≤ 1,∀i ∈ T

∑

i∈T

ci ≤ m
(2)

3. RELATED WORK
Our work is related to handling uncertainty in SSGs. Previous

approaches can be divided into two categories: 1) model uncertain-

ty in terms of different attacker types and solve a resulting Bayesian

Stackelberg game [17, 24]; 2) apply robust optimization techniques

to optimize the worst case for the defender over the range of model

uncertainty [23, 9, 15].

Bayesian Stackelberg Game Bayesian Stackelberg game mod-

els uncertainty by allowing different attacker types, where there is

some prior probability corresponding to each attacker type. Al-

though this method is used to model payoff uncertainty in previous

work [17, 24], it can also be used to model different degrees of

1342

attacker risk aversion in SSGs. However, this approach requires a

prior distribution of attacker types, which is usually inapplicable for

many real-world security domains [15]. In addition, it is difficult

to apply this approach to infinitely many attacker types. Therefore,

we focus on the robust approach in this work.

Robust Approach The robust approach for SSGs, in line with

robust optimization, computes a defender strategy that optimizes

the worst case over the model uncertainty. Yin et al. [23] computes

a defender strategy that is robust against defender execution uncer-

tainty as well as uncertainty in the attacker’s observations of the

defender’s strategy. Kiekintveld et al. [9] focus on interval uncer-

tainty in the attacker’s payoffs. Nguyen et al. [15] develop a robust

strategy that takes the attacker’s bounded rationality into account

as well as the uncertainties [23, 9] discuss.

The previous work has addressed neither attacker risk aversion

nor ambiguity about the attacker risk profile. Although Kiekintveld

et al. [9] try to capture uncertainty in attacker’s utilities, they are

unable to fully capture the attacker’s risk aversion. The mapped u-

tilities are coupled in our problem since they are mapping with the

same utility function Û , and interval uncertainty is unable to mod-

el that. For example, Suppose target t1 is of reward 1 and penalty

−2; target t2 is of reward 2 and penalty −1. The coverage proba-

bility c1 = c2 = 0.5. A risk-averse attacker will always attack t2
since Û must be strictly increasing. However, the model with inter-

val uncertainty 1 would consider both t1, t2 to be potential targets

for attack. The weakness of the interval uncertainty model is also

shown numerically with experiments later.

A third thread of related work is the research in game theory that

explores human’s bounded rationality in decision making — hu-

mans do not necessarily choose the strategy that provides them the

highest expected utility [6]. Quantal response [13, 14] argues that

human are more likely to choose the strategy with a higher expect-

ed utility. Yang et al. [22] apply the concept of quantal response

to security games. Nguyen et al. [16] propose the SUQR model

by extending the quantal response concept with subjective utilities

in security games. However, these approaches do not model risk

aversion, and nor do they model uncertainty in risk aversion that

we model in this paper. In fact, models such as SUQR essentially

address concerns that are orthogonal to the issue of risk aversion;

future research may thus consider integrating bounded rationality

models with risk aversion.

4. PRELIMINARIES
In its current form, the optimization problem (2) is not tractable

because it is a bilevel programming problem that requires the so-

lution of uncountably many inner optimization problems indexed

by U [2]. To take steps towards tractability, in Section 4.1 and 4.2,

we provide key concepts that are used in our MIBLP formulation

(Section 5) and our BeRRA algorithm (Section 6).

4.1 Risk Aversion Modeling
In this section, we write the condition Û ∈ U in a computation-

ally tractable way via linear constraints. For any utility function

Û ∈ U , we are actually only interested in its values at 0 and at

the points of the attacker’s utility set Uc
a(i) and Uu

a (i), which we

denote as Θ:

Θ = {Uu
a (i), U

c
a(i),∀i ∈ T}

⋃
{0} = {θ1, . . . , θI} ,

where θ1 < θ2 < · · · < θI .

LEMMA 1. Choose ǫu > 0.2 Û ∈ U is equivalent to satisfying

2Since Problem (2) is invariant under scaling of Û , i.e., the attacker

the linear constraints (3) on the values
{
Û (θ)

}

θ∈Θ
, i.e., ∀Û ∈ U ,

Û satisfies the constraints (3); ∀
{
Û ′ (θ)

}

θ∈Θ
that satisfies con-

straints (3), ∃Û ∈ U such that
{
Û (θ) = Û ′ (θ)

}

θ∈Θ
.

Û (θ2)− Û (θ1)

θ2 − θ1
≥ Û (θ3)− Û (θ2)

θ3 − θ2

≥ . . . ≥ Û (θI)− Û (θI−1)

θI − θI−1
≥ ǫu

Û(0) = 0

(3)

PROOF. If Û ∈ U , then
{
Û (θ)

}

θ∈Θ
satisfies constraints (3) by

definition. Conversely, if
{
Û ′ (θ)

}

θ∈Θ
satisfies constraints (3), the

piecewise linear function that connects {(θ1, Û ′(θ1)), (θ2, Û
′(θ2))},

{(θ2, Û ′(θ2)), (θ3, Û
′(θ3))}, . . . , {(θI−1, Û

′(θI−1)), (θI , Û
′(θI))}

belongs to U .

Based on Lemma 1, the condition Û ∈ U is completely cap-

tured by constraints (3). From now on we denote the constraints

(3) compactly as Û ∈ U .

4.2 Possible Attack Set
In this section, to better understand Problem (2) we study the

“possible attack set” Sp(c) and its complement Si(c) = T−Sp(c).

DEFINITION 1. Given the coverage probability c, Possible At-

tack Set Sp(c) is defined to be the set of targets that may be attacked

by a risk-averse attacker, i.e., it is the set of targets that have the

highest expected utility for the attacker for some Û ∈ U .

Si(c) = T − Sp(c) is defined to be the set of targets that the

attacker will never attack, i.e., the set of targets that for any Û ∈ U ,

there always exists another target i ∈ Sp(c) with a higher expected

utility for the attacker.

Given the coverage probability c, we can compute Sp(c) and

Si(c) by testing the feasibility of the following constraints for ev-

ery target.

Ûa(i, c) ≥ Ûa(j, c),∀j ∈ T, j 6= i

Û ∈ U
(4)

If these constraints are feasible for a target i, there exists a map-

ping Û ∈ U under which target i has the highest expected utility

for the attacker, and thus i ∈ Sp(c); otherwise, i ∈ Si(c).
In Problem (2), when the defender’s strategy c is given, the de-

fender’s (worst case) reward is:

min
Û∈U,k

{
Ud(k, c) : k ∈ argmax

i∈T

Ûa(i, c)

}

which is equivalent to:

min
i∈Sp(c)

{Ud(i, c)}

So Problem (2) can be written as

max
c

min
i∈Sp(c)

{Ud(i, c)}

s.t. 0 ≤ ci ≤ 1, ∀i ∈ T

∑

i∈T

ci ≤ m
(5)

makes the same decision under either Û or αÛ,∀α > 0. Thus, the
value of ǫu does not affect the result.

1343

5. MIBLP FORMULATION
In this section, we formulate Problem (5) as an MIBLP problem

to find the RSE strategy for the defender. While this approach does

not scale up to large-scale games, it provides several insights for

our BeRRA algorithm. As in Problem (1), we use integer variables

{qi}i∈T to denote if target i belongs to Sp(c): we set qi = 1 if

i ∈ Sp(c) and qi = 0 if i ∈ Si(c). Problem (5) can then be

converted to the formulation below

max
c

v

s.t. 0 ≤ ci ≤ 1,∀i ∈ T

∑

i∈T

ci ≤ m

qi ∈ {0, 1}, ∀i ∈ T

v ≤ Ud(i, c) + (1− qi)M,∀i ∈ T

i ∈ Sp(c)⇔ qi = 1

i ∈ Si(c)⇔ qi = 0

(6)

When i ∈ Sp(c), constraints (4) are feasible for target i. When

i ∈ Si(c), for any utility mapping Û ∈ U , there is always another

target with a higher expected utility for the attacker. We approxi-

mate this strict inequality with a small ǫc > 0:

min
Û∈U

{
max
j∈T

Ûa(j, c)− Ûa(i, c)

}
≥ ǫc

which states that for any Û ∈ U , there exists a target j ∈ T

whose expected utility for the attacker is at least ǫc more than the

expected utility for target i. By substituting maxj∈T Ûa(j, c) with

the slack variable λ, the preceding bilevel optimization problem

can be reduced to:

min
Û,λ

λ− Ûa(i, c)

s.t. Ûa(j, c) ≤ λ,∀j ∈ T

Û ∈ U

(7)

If the solution of Problem (7) is larger than ǫc, then i ∈ Si(c).
Otherwise, i ∈ Sp(c) (subject to the approximation error intro-

duced by ǫc). Since Problem (7) is a minimization problem, it can-

not substitute the constraint i ∈ Si(c) ⇔ qi = 0 in Problem (6).

So, we take the Lagrangian dual of Problem (7) to convert it into a

maximization problem:

max
α,β,γ,κ

βǫu

s.t.
∑

j∈T

γj = 1

∑

k∈T

γkck1{θj = Uc
a(k)}+ γk(1− ck)1{θj = Uu

a (k)}

− ci1{θj = Uc
a(i)} − (1− ci)1{θj = Uu

a (i)}

+
αj−21{j ≥ 3}
θj − θj−1

− αj−11{I − 1 ≥ j ≥ 2}
θj+1 − θj

− αj−11{I − 1 ≥ j ≥ 2}
θj − θj−1

+
αj1{j ≤ I − 2}

θj+1 − θj

− β1{j = I}
θj − θj−1

+
β1{j = I − 1}

θj+1 − θj

+ κ1{θj = 0} = 0,∀j ∈ {1, 2, . . . , I}
αj ≥ 0, ∀j ∈ {1, 2, . . . , I − 2}
β ≥ 0

γj ≥ 0,∀j ∈ T

(8)

For succinct notation, we denote the constraints on the variables

(α, β,γ, κ) in the above formulation as (α, β,γ, κ) ∈ D. By

applying Problem (4) and Problem (8) to every target i to put con-

straints on qi, we summarize our final MIBLP formulation in the

next theorem.

THEOREM 1. Problem (2) is (approximately)3 equivalent to

max v

s.t. 0 ≤ ci ≤ 1, ∀i ∈ T

∑

i∈T

ci ≤ m

qi ∈ {0, 1}, ∀i ∈ T

v ≤ Ud(i, c) + (1− qi)M,∀i ∈ T

Û i
a(j, c) ≤ Û i

a(i, c) + (1− qi)M,∀i ∈ T,∀j ∈ T, j 6= i

Û i ∈ U , ∀i ∈ T

βiǫu ≥ ǫc − qiM,∀i ∈ T
(
α

i, βi,γi, κi
)
∈ D,∀i ∈ T

(9)

where the superscript i in
(
α

i, βi, γi, κi
)

and Û i marks differ-

ent variables. Û i
a(j, c) is attacker’s expected utility for target j

under the mapping Û i and defender’s strategy c.

PROOF. If qi = 1, the constraints Û i
a(j, c) ≤ Û i

a(i, c) + (1 −
qi)M,∀j ∈ T, j 6= i and Û i ∈ U ensure that i ∈ Sp(c); if qi = 0,

then these constraints are always feasible and can be ignored.

If qi = 0, the constraints βiǫu ≥ ǫc−qiM and
(
α

i, βi,γi, κi
)
∈

D ensure that i ∈ Si(c) (approximately) since there exists a so-

lution
(
α

i, βi,γi, κi
)
∈ D that satisfies βiǫu ≥ ǫc. Thus, the

objective of Problem (8) is larger than ǫc, and i ∈ Si(c). For the

other direction, if the objective of Problem (8) is larger than ǫc, then

these two constraints are also satisfied; if qi = 1, these constraints

are always feasible and can be ignored.

In summary, we have converted Problem (2) into Problem (9),

which is an MIBLP: {qi}i∈T are integer variables; Û i
a(j, c) =

cjÛ
i(Uc

a(j)) + (1 − cj)Û
i(Uu

a (j)) contains bilinear terms since

both cj and Û i(Uc
a(j))/Û

i(Uu
a (j)) are variables. Problem (9) is

a non-convex optimization problem and lacks efficient solvers. We

used a powerful nonlinear solver — KNITRO to search for local

optimal solutions to Problem (9). However, this approach does not

scale up — the two-target scenario takes about 1 minute and the

three-target scenario takes about 15 minutes to solve. Faced with

this scalability issue, we develop the BeRRA algorithm that finds

the ǫ-optimal solution and provides significant scalability.

6. BeRRA ALGORITHM
Problem (9) has two main hindrances to scaling up: the presence

of Θ(n2) bilinear terms and the presence of n integer variables.

Thus, eliminating these bilinear terms and integer variables should

allow us to scale the problem up. The bilinear terms in Problem (9)

have two components: the coverage probability ci and the mapped

attacker utilities Û(Uc
a(i))/Û(Uu

a (i)). Intuitively, we can avoid

the bilinearity by fixing one of these two terms. In addition, if the

coverage probability c is fixed, then Sp(c) is also fixed and we no

longer need the integer variables {qi}i∈T to represent if i ∈ Sp(c).
Based on the idea of fixing the coverage probability c, we develop

the BeRRA algorithm. This algorithm computes an ǫ-optimal RSE

strategy where ǫ can be made arbitrarily small.

3The approximation is due to the introduction of ǫc.

1344

The main idea of the BeRRA algorithm is to reduce the prob-

lem to computing the minimum amount of resources needed to

achieve a given reward, which can be solved efficiently by using

special properties of the problem. With this reduction, we use bi-

nary search to find the highest reward that the defender can achieve

with the given number of resources. The high-level intuition of

this reduction is that a fixed defender’s reward leads to fixed de-

fender maximin strategy, which eliminates the bilinear terms and

integer variables. Additionally, optimal strategy can be derived ef-

ficiently from the maximin strategy via the property Sp(c
max) =

Sp(c
opt).

6.1 Binary Search Reduction
Algorithm 1 lists the steps of our BeRRA algorithm. The input

to Algorithm 1 is the number of defender resources m and the de-

fender’s and the attacker’s utilities U. The output is the defender’s

RSE strategy c and her reward lb. The lower bound lb and upper

bound ub are first set to be the lowest and the highest possible re-

wards, respectively, that the defender may achieve (Line 2). The

function MinimumResources(r, U) returns the strategy p that us-

es the minimum number of resources for the defender to achieve

reward r. This function will be discussed in detail in Section 7.

During the binary search phase (Lines 3 ∼ 11), the lower bound is

set to be the defender’s achievable reward (the strategy p returned

by the MinimumResources function is the solution) and the upper

bound is set to be an unachievable reward. Therefore, the BeRRA

algorithm achieves the ǫ-optimal solution and we can set ǫ arbitrar-

ily small to get arbitrarily near-optimal solutions.

Algorithm 1 BeRRA Algorithm

1: function BERRA (m,U)

2: lb← mini∈T U
u
d (i), ub← maxi∈T U

c
d (i)

3: while ub− lb ≥ ǫ do

4: p← MINIMUMRESOURCES(lb+ub
2

, U)

5: if
∑

i∈T
pi ≤ m then

6: lb← lb+ub
2

7: c← p

8: else

9: ub← lb+ub
2

10: end if

11: end while

12: return (c, lb)
13: end function

7. MINIMUM RESOURCES
We present Algorithm 2 in this section. This algorithm computes

the defender strategy that requires as few resources as possible to

achieve a given reward r, i.e., the MinimumResources function in

Algorithm 1. We call this resource-minimizing strategy the optimal

strategy and denote it as copt for succinctness.

Algorithm 2 Minimum Resources

1: function MINIMUMRESOURCES(r,U)

2: (flag, cmax, Sp(c
max), Si(c

max))← MAXIMIN(r,U)

3: if flag = false then

4: return (∞,∞, . . . ,∞)⊤

5: end if

6: copt ← REDUCE(U,cmax, Sp(c
max), Si(c

max))
7: return copt

8: end function

Algorithm 2 consists of two functions: Maximin and Reduce.

The Maximin function computes the maximin strategy cmax for

which the defender achieves reward r, as well as the corresponding

sets Sp(c
max) and Si(c

max). The variable flag is set to false
when the input reward is not achievable for any amount of defend-

er resources. In this case, Algorithm 2 returns (∞,∞, . . . ,∞)⊤

(Lines 3 ∼ 5) so that Algorithm 1 knows r is not achievable. We

will prove in Theorem 2 that if the reward r is achievable, then

Sp(c
max) = Sp(c

opt) and Si(c
max) = Si(c

opt). Based on

this property, the Reduce function derives the optimal strategy copt

from the maximin strategy cmax. Section 7.1 and Section 7.2 dis-

cuss these two functions in detail.

Maximin

Lemma 3 infeasible

cmax, Sp(c
max), Si(c

max)

Reduce

copt

Theorem 2 Lemma 8

Lemma 6, 7

Lemma 4, 5

flag

true

false

Figure 1: Algorithm 2 and Lemmas (Theorems)

We present a flowchart in Figure 1 that overviews the results we

use to establish the correctness of Algorithm 2. Lemma 3 detects

if a reward r is achievable or not. Lemmas 4 and 5 help prove

Lemmas 6 and 7, which are then used to prove Theorem 2. By

Theorem 2 and Lemma 8, the Reduce function is guaranteed to

derive the optimal strategy copt from the maximin strategy cmax.

7.1 Maximin Function
The Maximin function is summarized in Algorithm 3. It first

computes the maximin strategy cmax for which the defender achieves

reward r (Lines 2 ∼ 4) and then it assigns each target to either

Sp(c
max) or Si(c

max) (Lines 5 ∼ 15). If the reward r is not

achievable for any amount of resources, then it returns flag =
false (Line 10).

Lines 2 ∼ 4 compute the maximin strategy for a given reward

r. Given a coverage probability c, the maximin setting assumes

that the attacker attacks target i = argminj∈T Ud(j, c), and thus

the defender’s reward will be mini∈T Ud(i, c). For the defender to

achieve reward r, we should have Ud(i, c) ≥ r,∀i ∈ T so that

cmax
i =

r−Uu
d (i)

Uc
d
(i)−Uu

d
(i)

(which is bounded by [0, 1]).

Given the maximin strategy cmax, Lines 5 ∼ 15 iterate through

all targets and assign them to either Sp(c
max) or Si(c

max) by

testing the feasibility of constraints (4). If these constraints are

feasible, then i ∈ Sp(c); otherwise, i ∈ Si(c). Next in Lemma

3 we prove that ∃i ∈ Sp(c
max) that satisfies r > Uc

d (i) if and

only if reward r is not achievable. In that case, Algorithm 3 returns

flag = false (Lines 9 ∼ 11).

1345

Algorithm 3 Maximin

1: function MAXIMIN(r,U)

2: for i = 1→ n do

3: cmax
i ← min{1,max{ r−Uu

d (i)

Uc
d
(i)−Uu

d
(i)

, 0}}
4: end for

5: Sp(c
max), Si(c

max)← ∅
6: for i = 1→ n do

7: if Problem (4) is feasible for target i given cmax then

8: Sp(c
max)← Sp(c

max) ∪ {i}
9: if r > Uc

d(i) then

10: return (false, cmax, Sp(c
max), Si(c

max))
11: end if

12: else

13: Si(c
max)← Si(c

max) ∪ {i}
14: end if

15: end for

16: return (true,cmax, Sp(c
max), Si(c

max))
17: end function

LEMMA 2. Given coverage probability c, the defender’s reward

is mini∈Sp(c) Ud(i, c).

PROOF. Follows from the form of problem 5.

The proof of the following Lemma 3 can be found in the online

appendix4 .

LEMMA 3. Reward r is infeasible if and only if Algorithm 3

returns flag = false.

Theorem 2 demonstrates why we compute cmax, Sp(c
max) and

Si(c
max). We see that Sp(c

max) = Sp(c
opt) and Si(c

max) =
Si(c

opt). Therefore, we get Sp(c
opt) and Si(c

opt) by computing

Sp(c
max) and Si(c

max). We introduce supporting lemmas before

proving Theorem 2.

The next two lemmas explain how the set Sp(c) changes when

the coverage probability for a certain target decreases. The proofs

can be found in the online appendix. Lemma 4 shows that if the

coverage probability for a target i ∈ Sp(c) decreases, then the set

Sp(c) “shrinks”. Lemma 5 shows that if the coverage probability

for a target i ∈ Si(c) decreases, then the set Sp(c) also “shrinks”

but target i might be added to it.

LEMMA 4. Given coverage probability c and another coverage

probability c′ which satisfies c′i < ci for a target i ∈ Sp(c) and

c′j = cj ,∀j ∈ T, j 6= i, we have Sp(c
′) ⊆ Sp(c).

LEMMA 5. Given coverage probability c and another coverage

probability c′ which satisfies c′i < ci for a target i ∈ Si(c) and

c′j = cj ,∀j ∈ T, j 6= i, we have Sp(c
′) ⊆ Sp(c)

⋃{i}.

The next two lemmas discuss key properties of copt, and the

proofs are in the online appendix. Lemma 6 shows that the cover-

age probability for a target i ∈ Sp(c
opt) must be max{ r−Uu

d (i)

Uc
d
(i)−Uu

d
(i)

, 0};
Lemma 7 shows that the coverage probability for a target i ∈ Si(c

opt)

is at most min{1,max{ r−Uu
d (i)

Uc
d
(i)−Uu

d
(i)

, 0}}. This property is used in

the Reduce function that derives copt from cmax, as well as in the

proof of Theorem 2.

4http://teamcore.usc.edu/people/yundiqia/web%20page/papers/AAM
AS2015Appendix.pdf

LEMMA 6. Given a feasible reward r, all i ∈ Sp(c
opt) must

satisfy Uc
d(i) ≥ r and have expected reward max{Uu

d (i), r} for

the defender, i.e., copti = max{ r−Uu
d (i)

Uc
d
(i)−Uu

d
(i)

, 0}, ∀i ∈ Sp(c
opt).

LEMMA 7. Given a feasible reward r, ∀i ∈ Si(c
opt), i has

expected reward at most min{Uc
d (i),max{Uu

d (i), r}} for the de-

fender, i.e., copti ≤ min{1,max{ r−Uu
d (i)

Uc
d
(i)−Uu

d
(i)

, 0}}, ∀i ∈ Si(c
opt).

We are now ready to combine these preliminary lemmas to prove

Theorem 2.

THEOREM 2. Given a feasible reward r, Sp(c
max) = Sp(c

opt)
and Si(c

max) = Si(c
opt).

PROOF. First we present two results that will be used in the

proof: (i) ∀i ∈ Sp(c
max), since the reward r is feasible, Lem-

ma 3 and Algorithm 3 imply that Uc
d (i) ≥ r so that cmax

i =

max{ r−Uu
d (i)

Uc
d
(i)−Uu

d
(i)

, 0}; (ii) ∀i ∈ Sp(c
opt), according to Lemma

6, Uc
d(i) ≥ r and copti = max{ r−Uu

d (i)

Uc
d
(i)−Uu

d
(i)

, 0}. Furthermore,

Uc
d(i) ≥ r implies that cmax

i = max{ r−Uu
d (i)

Uc
d
(i)−Uu

d
(i)

, 0} according

to Algorithm 3. Thus, cmax
i = copti ,∀i ∈ Sp(c

opt).
We will prove by contradiction that Sp(c

opt) ⊆ Sp(c
max).

Suppose there exists a target i ∈ Sp(c
opt) with i ∈ Si(c

max),
we have cmax

i = copti according to result (ii). Since i ∈ Sp(c
opt),

Ûa(i, c
opt) ≥ Ûa(j, c

opt),∀j ∈ T, j 6= i under some mapping

Û ∈ U by definition. Since i ∈ Si(c
max), for this mapping Û ,

∃j 6= i, j ∈ Sp(c
max) such that Ûa(j, c

max) > Ûa(i, c
max)

where cmax
j = max{ r−Uu

d (j)

Uc
d
(j)−Uu

d
(j)

, 0} according to result (i). So

Ûa(j, c
max) > Ûa(i, c

max) = Ûa(i, c
opt) ≥ Ûa(j, c

opt), which

leads to Ûa(j, c
max) > Ûa(j, c

opt). Thus, we have coptj > cmax
j =

max{ r−Uu
d (j)

Uc
d
(j)−Uu

d
(j)

, 0}, which contradicts Lemmas 6 and 7. So, it

must be that i ∈ Sp(c
max) which implies Sp(c

opt) ⊆ Sp(c
max).

We will prove by contradiction that Si(c
opt) ⊆ Si(c

max). Sup-

pose there exists a target i ∈ Si(c
opt) with i ∈ Sp(c

max). We

have cmax
i = max{ r−Uu

d (i)

Uc
d
(i)−Uu

d
(i)

, 0} according to result (i). S-

ince i ∈ Sp(c
max) there exists a mapping Û ∈ U such that

Ûa(i, c
max) ≥ Ûa(j, c

max), ∀j ∈ T, j 6= i. Since i ∈ Si(c
opt),

for this mapping Û , ∃j 6= i, j ∈ Sp(c
opt) such that Ûa(j, c

opt) >

Ûa(i, c
opt) by definition. We have cmax

j = coptj according to re-

sult (ii). Thus Ûa(i, c
max) ≥ Ûa(j, c

max) = Ûa(j, c
opt) >

Ûa(i, c
opt), which yields Ûa(i, c

max) > Ûa(i, c
opt). Then copti >

cmax
i = max{ r−Uu

d (i)

Uc
d
(i)−Uu

d
(i)

, 0}, which contradicts Lemma 7. It fol-

lows that i ∈ Si(c
max) which implies Si(c

opt) ⊆ Si(c
max).

To conclude, Sp(c
opt) = Sp(c

max), Si(c
opt) = Si(c

max).

7.2 Reduce Function: Derive copt from cmax

Section 7.1 demonstrated that Algorithm 2 returns (∞,∞, . . . ,∞)⊤

if the reward r is infeasible; if the reward r is feasible, then Sp(c
max)

and Si(c
max) are the same as Sp(c

opt) and Si(c
opt). It follows

that Algorithm 4 correctly derives the optimal strategy copt from

cmax.

Given cmax, Sp(c
max) and Si(c

max), Algorithm 4 returns copti =
cmax
i for i ∈ Sp(c

max). For i ∈ Si(c
max), Algorithm 4 uses bi-

nary search to find the minimum coverage probability ci such that

any further decrease5 in coverage probability would add target i to

5δ can be arbitrarily small

1346

Algorithm 4 Computing copt by reducing cmax

1: function REDUCE(U,cmax, Sp(c
max), Si(c

max))
2: copt = cmax

3: for every i ∈ Si(c
max) do

4: lb← 0, ub← copti

5: while ub − lb ≥ δ do

6: copti ← lb+ub
2

7: if Problem (4) is feasible for target i given copt

then

8: lb← lb+ub
2

9: else

10: ub← lb+ub
2

11: end if

12: end while

13: copti ← ub
14: end for

15: return copt

16: end function

the set Sp(c
opt). The next lemma shows that this mechanism lead-

s to the optimal strategy copt, and the proof can be found in the

online appendix.

LEMMA 8. Given a feasible reward r, Algorithm 4 returns the

optimal strategy copt.

THEOREM 3. Given reward r, Algorithm 2 either detects its in-

feasibility or provides the optimal strategy copt.

PROOF. Follows from Lemmas 3 and 8.

8. DISCUSSIONS

8.1 Computational Cost of BeRRA
The main computational cost of our BeRRA algorithm comes

from evaluating the feasibility of the linear constraints (4), which

is a linear feasibility problem and can be solved in polynomial time.

Algorithm 2 is calledO(log(1
ǫ
)) times, and every call to Algorithm

2 involves solving Problem (4) O(n + |Si(c
max)| log(1

δ
)) times,

which is bounded by O(n log(1
δ
)). Thus Problem (4) is solved

O(n log(1
ǫ
) log(1

δ
)) times in total for our BeRRA algorithm.

8.2 Extensions of BeRRA to General Risk Aware-
ness

Notice that we only require U to be increasing in the preced-

ing proofs and algorithms. Thus, our BeRRA algorithm can also

be used to compute the optimal robust strategy against other kind-

s of risk-aware attackers, e.g., risk-seeking criminals [4, 5, 8]. If

the attacker is risk-seeking, Û should be a strictly increasing, con-

vex function and satisfies Û(0) = 0. Therefore, when adapting

our BeRRA algorithm to deal with risk-seeking attackers, the on-

ly difference is in testing feasibility of constraints (4), where the

condition Û ∈ U in constraints (4) should be written as:

ǫu ≤ Û (θ2)− Û (θ1)

θ2 − θ1
≤ Û (θ3)− Û (θ2)

θ3 − θ2

≤ . . . ≤ Û (θI)− Û (θI−1)

θI − θI−1

Û(0) = 0

(10)

8.3 Zero-sum Game
When the game is a zero-sum game, the utilities for the defender

and the attacker are strongly correlated with correlation coefficient

−1, i.e., Uc
a(i) = −Uc

d(i) and Uu
a (i) = −Uu

d (i),∀i ∈ T. Based

on this property, we obtain the following theorem.

THEOREM 4. For zero-sum games, the defender’s Robust S-

tackelberg Equilibrium (RSE) strategy and Maximin strategy are

the same.

PROOF. We first prove that given a defender’s strategy c, the

defender’s reward is the same in both settings.

Given the defender’s strategy c, the defender’s reward in the

Maximin setting is minj∈T Ud(j, c), which is a lower bound on

the defender’s reward in the Robust Stackelberg game setting since

minj∈T Ud(j, c) is the minimum reward the defender can possi-

bly achieve with c. Meanwhile, since the risk-neutral case is a

special case of the risk-averse case, i = argminj∈T Ud(j, c) =
argmaxj∈T Ua(j, c) ∈ Sp(c). Thus, the attacker might attack

target i so that the expected reward the defender achieves if the at-

tacker attacks target i — minj∈T Ud(j, c) is also an upper bound

on the defender’s reward in the Robust Stackelberg game setting.

Therefore, the defender’s reward in the Robust Stackelberg game

setting is minj∈T Ud(j, c).
Since the defender’s reward given the defender’s strategy c is the

same in both settings, the strategy c that maximizes the defender’s

reward in both settings is also the same.

It is known that the solution concepts of Nash Equilibrium, min-

imax, maximin, and SSE all give the same answer for finite two-

person zero-sum games. Therefore, Theorem 4 adds RSE to this

equivalence list.

9. EXPERIMENTAL EVALUATION
We will evaluate the performance of our algorithms in this sec-

tion through extensive numerical experiments. Unless otherwise

stated, all of the experiment results are averaged over 20 instances.

Uc
d(i) and Uu

a (i) are generated as random variables between 11
and 40; Uu

d (i) and Uc
a(i) are generated as random variables be-

tween −11 and −40. To generate payoff matrixes with corre-

lation between the defender’s and the attacker’s utilities, we set

Uc
a(i) ← −αUc

d(i) +
√
1− α2Uc

a(i) and Uu
a (i) ← −αUu

d (i) +√
1− α2Uu

a (i), where −α is the correlation coefficient between

Uc
a(i)(U

u
a (u)) and Uc

d(i)(U
u
d (i)). α = 1 corresponds to zero-sum

games. n is the number of targets in the game and m is the number

of resources the defender has.

9.1 MIBLP vs BeRRA
We first compare the performance of the MIBLP formulation and

our BeRRA algorithm. Due to the scalability of the MIBLP, we

only compare the case when n = 2 and n = 3. m is set to be 1.

The KNITRO solver is used to solve the MIBLP formulation.

MIBLP vs BeRRA: Solution Quality The solution quality of

the MIBLP formulation and our BeRRA algorithm is shown in Ta-

ble 2. We can see from the table that BeRRA algorithm has a higher

average reward compared with MIBLP, and the difference becomes

larger as the number of targets n increases. This is because KNI-

TRO can only find the locally optimal solution while our BeRRA

algorithm finds the globally ǫ-optimal solution, and larger game

scale leads to worse solution quality of the local optimum.

MIBLP vs BeRRA: Runtime The runtime of the MIBLP for-

mulation and our BeRRA algorithm is shown in Table 3. We can

see from the table that BeRRA is much faster than MIBLP, and

the difference becomes larger as the number of targets n increases.

1347

Table 2: MIBLP vs BeRRA in Solution Quality
(a) n = 2

MIBLP BeRRA

α = 0 3.18 3.41

α = 0.2 2.78 2.99

α = 0.4 2.45 2.62

α = 0.6 1.72 1.82

α = 0.8 0.75 0.81

α = 1.0 0.53 0.53

(b) n = 3

MIBLP BeRRA

α = 0 -5.69 -4.60

α = 0.2 -5.71 -5.32

α = 0.4 -6.75 -5.84

α = 0.6 -6.92 -6.31

α = 0.8 -7.24 -6.96

α = 1.0 -7.64 -7.64

This is because solving MIBLP is difficult and the computation-

al complexity increases exponentially with the problem size, while

BeRRA only requires solving O(n log(1
ǫ
) log(1

δ
)) linear feasibil-

ity problems. For MIBLP, it takes about 15 minutes for the very

trivial case n = 3, which means it cannot scale up at all.

Table 3: MIBLP vs BeRRA in Runtime (s)
(a) n = 2

MIBLP BeRRA

α = 0 70.4 0.95

α = 0.2 71.2 0.95

α = 0.4 72.0 0.94

α = 0.6 68.9 0.77

α = 0.8 73.4 0.48

α = 1.0 64.4 0.20

(b) n = 3

MIBLP BeRRA

α = 0 863.1 1.75

α = 0.2 1004.4 1.63

α = 0.4 958.8 1.53

α = 0.6 886.9 1.36

α = 0.8 1119.8 1.10

α = 1.0 859.3 0.27

Runtime of BeRRA Figure 2 further analyzes the runtime of

our BeRRA algorithm. m is set to be n/2 and all results are av-

eraged over 100 instances. We observe that the runtime increases

almost linearly with the number of targets n, and the game with

50 targets only takes about 2 minutes to solve, which demonstrates

BeRRA’s ability to scale up to larger problems. The figure also

shows that the runtime does not change significantly with different

α, but it decreases significantly when α is increased from 0.9999
to 1. This is because |Si(c

max)| is almost 0 in zero-sum games.

10 20 30 40 50
0

50

100

150

Number of Targets

R
u
n
ti
m

e
 (

s
)

α = 0

α = 0.2

α = 0.4

α = 0.6

α = 0.8

α = 0.9999

α = 1

Figure 2: Runtime of BeRRA

9.2 Performance Evaluation of RSE strategy
In this section, we will evaluate solution quality of the RSE s-

trategy in detail. Since BeRRA shows advantages in both solution

quality and runtime compared with the MIBLP formulation, we use

BeRRA to evaluate the performance of RSE strategy.

Solution Quality in Worst Case Figures 3(a) and 3(b) show the

solution quality of RSE strategy in the worst case — the attacker

attacks target i = argminj∈Sp(c) Ud(j, c). We compare its per-

formance with the SSE strategy, Maximin strategy and the robust

strategy against interval uncertainty of Uc
a(i) and Uu

a (i) [9]. For

values of the intervals, we tried different intervals ranging from 1
to 20 and pick the best one among them.

Figure 3(a) shows how the performance comparison changes with

different number of resources m. The RSE strategy significantly

outperforms all of the other strategies. Since the robust strategy a-

gainst interval uncertainty considers some type of “robustness”, it

outperforms the SSE strategy and the Maximin strategy. However,

since the interval uncertainty does not fully capture the risk aver-

sion of the attacker, it is worse than the RSE strategy. The Maximin

strategy is a more conservative strategy compared with the SSE s-

trategy, leading to better performance when compared with SSE.

Figure 3(b) shows the performance comparison with differen-

t α. It shows the similar patten that RSE > Interval Uncertainty >

Maximin > SSE as in Figure 3(a). Another observation is that the

difference between these four strategies becomes less as α increas-

es, and when α = 1, these four strategies perform the same, as is

proved in Theorem 46.

10 20 30 40
−40

−20

0

20

40

Number of Resources

A
v
e
ra

g
e
 R

e
w

a
rd

SSE

Maximin

Interval Uncertainty

RSE

(a) α = 0, n = 50

0 0.2 0.4 0.6 0.8 1.0
−30

−20

−10

0

10

α

A
v
e
ra

g
e
 R

e
w

a
rd

SSE

Maximin

Interval Uncertainty

RSE

(b) m = 20, n = 50

Figure 3: Solution Quality of RSE in Worst Case

Solution Quality in Average Case Figures 4(a) and 4(b) show

the solution quality of the RSE strategy in the average case — the

attacker randomly attacks a target i in Sp(c). We explore this

case since unknown risk-averse attackers in the real world would

not necessarily minimize the defender’s reward. The performance

comparison of these four strategies in the average case shows simi-

lar patterns compared with that in the worst case. Thus even in the

average case, the RSE strategy still performs the best among them.

10 20 30 40
−20

−10

0

10

20

30

Number of Resources

A
v
e

ra
g

e
 R

e
w

a
rd

SSE

Maximin

Interval Uncertainty

RSE

(a) α = 0, n = 50

0 0.2 0.4 0.6 0.8 1.0
−20

−10

0

10

α

A
v
e
ra

g
e
 R

e
w

a
rd

SSE

Maximin

Interval Uncertainty

RSE

(b) m = 20, n = 50

Figure 4: Solution Quality of RSE in Average Case

10. CONCLUSION
This paper presents a model and algorithm to compute robust de-

fender strategy in security games against risk-averse attackers with

uncertainty in the degree of risk aversion. We find that the intuitive

MIBLP formulation only finds locally optimal solutions and is un-

able to scale up. Inspired by the MIBLP formulation, we develop

our BeRRA algorithm which finds globally ǫ-optimal solutions by

solving O(n log(1
ǫ
) log(1

δ
)) linear feasibility problems. The key

idea of our BeRRA algorithm is to reduce the problem to minimiz-

ing the number of resources needed for a given reward, which can

be solved efficiently using special properties of the problem. Al-

though the BeRRA algorithm is designed for risk-averse attackers,

it also applies to other risk-aware attackers, e.g., risk-seeking at-

tackers. In addition, we also show that we do not need to consider

the attacker’s risk attitude in zero-sum games.

11. ACKNOWLEDGEMENT
This research is supported by the United States Department of

Homeland Security through the National Center for Risk and Eco-

nomic Analysis of Terrorism Events (CREATE) under award num-

ber 2010-ST-061-RE0001 and MURI grant W911NF-11-1-0332.

6Interval Uncertainty = Maximin can be proved with similar tech-
niques in the proof of Theorem 4.

1348

REFERENCES

[1] M. Aghassi and D. Bertsimas. Robust game theory.

Mathematical Programming, 2006.

[2] J. F. Bard. Practical bilevel optimization: algorithms and

applications. Springer, 1998.

[3] N. Basilico, N. Gatti, and F. Amigoni. Leader-follower

strategies for robotic patrolling in environments with

arbitrary topologies. In AAMAS, 2009.

[4] G. S. Becker. Crime and punishment: an economic approach.

Journal of political economy, 1968.

[5] M. K. Block and V. E. Gerety. Some experimental evidence

on differences between student and prisoner reactions to

monetary penalties and risk. The Journal of Legal Studies,

1995.

[6] C. Camerer. Behavioral game theory: Experiments in

strategic interaction. Princeton University Press, 2003.

[7] V. Conitzer and T. Sandholm. Computing the optimal

strategy to commit to. In EC, 2006.

[8] J. Grogger. Certainty vs. severity of punishment. Economic

Inquiry, 1991.

[9] C. Kiekintveld, T. Islam, and V. Kreinovich. Security games

with interval uncertainty. In AAMAS, 2013.

[10] C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordóñez, and

M. Tambe. Computing optimal randomized resource

allocations for massive security games. In AAMAS, 2009.

[11] D. Korzhyk, V. Conitzer, and R. Parr. Complexity of

computing optimal stackelberg strategies in security resource

allocation games. In AAAI, 2010.

[12] J. Letchford and Y. Vorobeychik. Computing randomized

security strategies in networked domains. In Applied

Adversarial Reasoning and Risk Modeling, 2011.

[13] R. D. McKelvey and T. R. Palfrey. Quantal response

equilibria for normal form games. Games and economic

behavior, 1995.

[14] R. D. McKelvey and T. R. Palfrey. Quantal response

equilibria for extensive form games. Experimental

economics, 1998.

[15] T. Nguyen, A. Jiang, and M. Tambe. Stop the

compartmentalization: Unified robust algorithms for

handling uncertainties in security games. In AAMAS, 2014.

[16] T. H. Nguyen, R. Yang, A. Azaria, S. Kraus, and M. Tambe.

Analyzing the effectiveness of adversary modeling in

security games. In AAAI, 2013.

[17] P. Paruchuri, J. P. Pearce, J. Marecki, M. Tambe, F. Ordonez,

and S. Kraus. Playing games with security: An efficient exact

algorithm for bayesian stackelberg games. In AAMAS, 2008.

[18] P. Phillips. The preferred risk habitat of al-qa’ida terrorists.

European Journal of Economics, Finance and Administrative

Sciences, 2010.

[19] P. J. Phillips. Applying modern portfolio theory to the

analysis of terrorism. computing the set of attack method

combinations from which the rational terrorist group will

choose in order to maximise injuries and fatalities. Defence

and Peace Economics, 2009.

[20] P. J. Phillips. The end of al-qa’ida: rationality, survivability

and risk aversion. International Journal of Economic

Sciences, 2013.

[21] B. Von Stengel and S. Zamir. Leadership with commitment

to mixed strategies. 2004.

[22] R. Yang, C. Kiekintveld, F. Ordonez, M. Tambe, and

R. John. Improving resource allocation strategy against

human adversaries in security games. In IJCAI, 2011.

[23] Z. Yin, M. Jain, M. Tambe, and F. Ordonez. Risk-averse

strategies for security games with execution and

observational uncertainty. In AAAI, 2011.

[24] Z. Yin and M. Tambe. A unified method for handling

discrete and continuous uncertainty in bayesian stackelberg

games. In AAMAS, 2012.

1349

