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ABSTRACT
We propose a variant of arbitrary public announcement logic
which is decidable. In this variant, knowledge accessibility
relations are defined by programs. Technically, programs are
written in dynamic logic with propositional assignments. We
prove that both the model checking problem and the satisfi-
ability problem are decidable and AEXPpol-complete where
AEXPpol is the class of decision problems decided by alter-
nating Turing machines running in exponential time where
the number of alternations is polynomial. Whereas arbitrary
public announcement logic is undecidable, our framework is
decidable and we provide a proof-of-concept to show its ex-
pressiveness: we use our framework to reason about epis-
temic properties and arbitrary announcements when agents
are cameras located in the plane.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic]: Modal logic; I.2.4 [Knowledge
Representation Formalisms and Methods ]: Modal
logic; I.2.11 [Distributed Artificial Intelligence]: Multi-
agent systems

General Terms
Algorithms; Languages; Theory; Verification

Keywords
Epistemic logic; Complexity theory; Public announcement
logic; Dynamic logic

1. INTRODUCTION
In a multi-robot system, agents obtain knowledge from

what they perceive with their sensors and from the informa-
tion in some communication channel. Dynamic epistemic
logic [6][14] aims at expressing properties about the knowl-
edge of agents and at modeling dynamics of knowledge in
multi-agent settings. Public announcement logic is a frag-
ment of full Dynamic epistemic logic. For instance, in public
announcement logic, we can reason about practical situa-
tions such as robots publicly reading messages in a public
channel of communication.
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The truth of a construction Kaϕ (agent a knows ϕ) is
traditionnally given by the truth of ϕ in all possible worlds
for agent a. Here we model the set of possible worlds for
agent a as the set of reachable worlds from the initial world
by a given program πa. For instance, let us consider the
muddy children puzzle [14]. Each child can see the mud
on others but cannot see his or her own forehead. A child
imagines different possible worlds by mentally executing the
following program:

(*)
non-deterministically choose i ∈ {1, 2}
if i = 1 then clean his own forehead else put mud on it.

An interesting issue is to find out whether there exists a
piece of information we can write in the public channel such
that a given property ϕ holds, as for instance in Russian
cards problem [15]. Such scenarios are captured by arbitrary
public announcement [3].

The satisfiability problem in arbitrary public announce-
ment logic (APAL) is undecidable [11] in the general set-
tings. We propose a framework where APAL becomes de-
cidable. Our contribution is threefold:

• We propose a framework where epistemic accessibil-
ity relations are defined by programs, as above (see
(*)). Our framework combines dynamic logic of propo-
sitional assignments (DLPA) [5] for representing men-
tal programs and arbitrary public announcement logic.

• We then prove that when knowledge is defined by men-
tal programs, both the model checking and the satisfia-
bility problem are AEXPpol-complete where AEXPpol
is the class of decision problems decided by alternating
Turing machines running in exponential time where
the number of alternations is polynomial. We recall
that non-deterministic Turing machines allow for ex-
istential choices of transitions whereas alternating Tur-
ing machines allows for existential and universal choices
of transitions during the execution [9]. The class
AEXPpol is between EXPTIME and AEXPTIME =
EXPSPACE.

• We finally provide a proof-of-concept for showing the
expressiveness of the proposed logic. We use our frame-
work to reason about arbitrary public announcements
when agents are cameras located in the plane [12].

The article is organized as follows. First, in section 2, we
present our framework called LDL-PA-APAL. In section 3, we
present optimal AEXPpol procedures for the LDL-PA-APAL-
model checking problem and the satisfiability problem. In
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section 4, we prove their AEXPpol-hardness. In section 5,
we give our proof-of-concept. Section 6 presents the related
work. Finally, in section 7, we discuss our contribution and
provide directions for future research.

2. OUR FRAMEWORK

2.1 Syntax
Let ATM be a countably infinite set of atomic proposi-

tions whose typical members are denoted by p, q, p1, p2, . . . .
The language of LDL-PA-APAL is defined by the following
BNF:

ϕ ::= > | p | ¬ϕ | (ϕ ∨ ϕ) | K̂πϕ | 〈ϕ!〉ϕ | 3ϕ

π ::= p←⊥ | p←> | β? | π;π | π ∪ π

where p ∈ ATM and β is a propositional formula. As usual,
we introduce the following abbreviations:
(ϕ ∧ ψ) := ¬(¬ϕ ∨ ¬ψ), (ϕ → ψ) := (¬ϕ ∨ ψ), (ϕ ↔ ψ) :=

(ϕ→ ψ)∧ (ψ → ϕ), Kπϕ := ¬K̂π¬ϕ, [ϕ!]ψ := ¬〈ϕ!〉¬ψ and

�ϕ = ¬3¬ϕ. The construction K̂πϕ is read ‘there is an
execution of π such that ϕ holds after it’. The construction
Kπϕ is read ‘for all executions of π, ϕ holds’, or ‘all exe-
cutions of π lead to a ϕ-world’, or ‘agent a knows ϕ where
agent a uses π as the program for computing mental states’.
Programs π aim at representing syntactically how agents are
able to reach one of their mental states. Intuitive meanings
of program constructions are given in the following table:

p←⊥ we set p to false
p←> we set p to true
β? test whether β is true
π;π′ we execute π then π′

π ∪ π′ we execute non-deterministically π or π′

For instance, the following program non-deterministically
chooses values for atomic propositions in {p1, ..., pn}:

ch(p1, ..., pn) = (p1←⊥∪ p1←>); . . . ; (pn←⊥∪ pn←>).

Note that operators Kπ are not dynamic operators. Even
if they are indexed by a program π, the program π only
specifies how one agent goes from the current world to a
possible world but it does not change the model.

On the contrary, 〈ϕ!〉 and 3 are dynamic operators. The
construction 〈ϕ!〉ψ means ‘ϕ is true and ψ holds after the
public announcement of ϕ’. The construction 3ϕ means
‘there exists a true public announcement such that ϕ holds
after the announcement’. For all formulas ϕ, let ATM (ϕ)
be the set of atomic propositions appearing in ϕ.

Example 1. Let us focus on the muddy children example
given in the introduction. Let pa be the proposition denoting
‘a’s forehead is muddy’. The program (*) that corresponds to
change the current mental state for child a is ch(pa). Thus,
the construction Kch(pa)ϕ is read as ‘agent a knows ϕ’. The
LDL-PA-APAL-formula

3〈(¬Kch(pa)pa ∧ ¬Kch(pb)pb)!〉Kch(pa)pa

is read ‘there is a public announcement such after having
announced that agent a does not know a is muddy and agent
b does not know b is muddy, agent a knows a is muddy’.

{pa, pb} {pb}

{pa} ∅
Jch(pa)K
Jch(pb)K

Figure 1: Set of valuations for the muddy children
example with child a and child b

2.2 Semantics
Let Wall = 2ATM be the set of all valuations.

Definition 1. Let W ⊆ Wall. We define JϕKW and JπK
by structural induction as follows:

J>KW = Wall;
JpKW = {w ∈Wall | p ∈ w};
J¬ϕKW = 2ATM \ JϕKW ;
Jϕ ∨ ψKW = JϕKW ∪ JψKW ;

JK̂πϕKW =

{
w ∈Wall |

there exists u ∈ W , (w, u) ∈
JπK and u ∈ JϕKW

}
;

J〈ϕ!〉ψKW = JϕKW ∩ JψKW∩JϕKW ;

J3ϕKW =

{
u ∈W | there exists a formula ψ such

that u ∈ J〈ψ!〉ϕKW

}
;

Jp←⊥K =
{

(w, u) ∈W 2
all | u = w \ {p}

}
;

Jp←>K =
{

(w, u) ∈W 2
all | u = w ∪ {p}

}
;

Jπ;π′K = JπK ◦ Jπ′K;
Jπ ∪ π′K = JπK ∪ Jπ′K;
Jβ?K =

{
(w,w) ∈W 2

all | w |=PL β
}

where w |=PL β means that the propositional formula β is
true in the valuation w.

We write W,w |= ϕ for all w ∈ JϕKW . W denotes the current
set of valuations. After the announcement of ϕ, we restrict
the set of possible valuations to those where ϕ holds. After
an arbitrary announcement, we restrict the current set of
valuations to an arbitrary subset U containing the current
valuation.

Remark 1. Actually, the definition of J3ϕKW (see Defi-
nition 1) is equivalent to the following truth condition:

J3ϕKW =

{
u ∈Wall |

there exists U such that
{u} ⊆ U ⊆W and u ∈ JϕKU

}
because all subsets of valuations U restricted to the finite set
ATM (ϕ) can been described by a formula by

ψ =
∨
u∈U

 ∧
p∈u∩ATM (ϕ)

p ∧
∧

p∈ATM (ϕ)\u

¬p

 .

Example 2. Figure 1 shows the set of valuations for the
muddy children example and relations Jch(pa)K and Jch(pb)K
that are the epistemic accessibility relations for respectively
agent a and b.

When we execute a program, we do not require that the
valuation is in W at each step. According to Definition 1,
we only require the valuation at the end of the execution of a

1472



program π in a construction of the form K̂πϕ to be in W . In-
deed, when we define knowledge with programs, only the ef-
fect of the whole program matters. Intermediate valuations
during the execution of a program have no specific meaning.
In the example of Figure 1, after having announced that the
state of heads are the same, only valuations in {∅, {pa, pb}}
remain. We have {∅, {pa, pb}}, {pa, pb} 6|= K̂pa←⊥K̂pb←⊥>.

But we have {∅, {pa, pb}}, {pa, pb} |= K̂pa←⊥;pb←⊥>
although the valuation {pb} obtained after having executed
pa←⊥ is not in {∅, {pa, pb}}.

2.3 Decision problems
The LDL-PA-APAL-model checking problem is formally de-

fined by:
• Input: a valuation w and a LDL-PA-APAL-formula ϕ;
• Output: yes if and only if Wall, w � ϕ.

The LDL-PA-APAL-satisfiability problem is formally defined
by:
• Input: a LDL-PA-APAL-formula ϕ;
• Output: yes if and only if there exists a valuation w

such that Wall, w � ϕ.

3. UPPER BOUNDS
We recall that AEXPpol stands for the class of problems

computable on an alternating Turing machine running in
exponential time with a polynomial number of alternations.
The aim of this section is to prove the following theorems:

Theorem 1. The LDL-PA-APAL-model checking problem
is in AEXPpol.

Theorem 2. The LDL-PA-APAL-satisfiability problem is in
AEXPpol.

Theorem 1 will be proven after having defined the main
model checking procedure Mc, and having proven its cor-
rectness (Proposition 1) and its complexity (Proposition 2).
Mc calls the sub-procedures mcyes and mcno described in

Figure 2 and if w ∈W , the call mcyes(W,w,ϕ) (respectively
mcno(W,w,ϕ)) fails if and only if W,w 6� ϕ (respectively
W,w � ϕ). If the call mcyes(Wall, w, ϕ) does not fail, the
call Mc(w,ϕ) succeeds. Alternating algorithms contain non-
deterministic choices, also called existential choices
((∃) choices) and universal choices ((∀) choices).

In the case where ϕ is of the form K̂πψ, the procedure
mcyes guesses a valuation u, then calls a subroutine ispathyes
shown in figure 3 checking whether u is reachable from w by
executing the program π and checks whether ψ holds in u.
If there is no such u the subroutine fails. In the same case,
the procedure mcno checks whether for all u ∈ W , either u
is not reachable from w by π (that is ispathno(w, u, π) does
not fail) or ψ does not hold in u. Remark that in ispathyes
and ispathno, the model checking of propositional formulas
(w |=PL β) is implemented by a deterministic function in
polynomial time.

In the case where ϕ is of the form 3χ, the procedure mcyes
guesses a subset W ′′ of W containing w and checks whether
χ holds in w when we restrict to worlds in W ′′. Similarly,
in the same case, the procedure mcno checks that for all
subsets W ′′ of W containing w, χ does not hold in w when
we restrict to worlds in W ′′.

In the case where ϕ is of the form 〈ψ!〉χ, the procedure
mcyes first check that ψ holds. Then JψKW is computed

procedure Mc(w,ϕ)
mcyes(Wall, w, ϕ)
accept

procedure mcyes(W,w,ϕ)
match ϕ with

case ϕ = p: if p 6∈ w then reject
case ϕ = ¬ψ: mcno(W,w,ψ)
case ϕ = ψ1 ∨ ψ2:

(∃) choose i ∈ {1, 2}
mcyes(W,w,ψi)

case ϕ = K̂πψ:
(∃) choose u ∈W
ispathyes(w, u, π)
mcyes(W,u, ψ)

case ϕ = 〈ψ!〉χ:
mcyes(W,w,ψ)

(∃) choose W ′ ⊆W\{w}
W ′′ = W ′ ∪ {w}
(∀) choose u ∈W ′′
(∀) choose v ∈W\W ′′
mcyes(W,u, ψ)
mcno(W, v, ψ)

mcyes(W
′′, w, χ)

case ϕ = 3χ:
(∃) choose W ′ ⊆W\{w}
W ′′ = W ′ ∪ {w}
mcyes(W

′′, w, χ)

procedure mcno(W,w,ϕ)
match ϕ with

case ϕ = p: if p ∈ w then reject
case ϕ = ¬ψ: mcyes(W,w,ψ)
case ϕ = ψ1 ∨ ψ2:

(∀) choose i ∈ {1, 2}
mcno(W,w,ψi)

case ϕ = K̂πψ:
(∀) choose u ∈W
(∃) choose i ∈ {0, 1}
if i = 0 then

ispathno(w, u, π)
else

mcno(W,u, ψ)
case ϕ = 〈ψ!〉χ:

(∃) choose i ∈ {0, 1}
if i = 0 then

mcno(W,w,ψ)
else

(∃) choose W ′ ⊆W\{w}
W ′′ = W ′ ∪ {w}
(∀) choose u ∈W ′′
(∀) choose v ∈W\W ′′
mcyes(W,u, ψ)
mcno(W, v, ψ)

mcno(W
′′, w, χ)

case ϕ = 3χ:
(∀) choose W ′ ⊆W\{w}
W ′′ = W ′ ∪ {w}
mcno(W

′′, w, χ)

Figure 2: The main model checking procedure Mc
and the two dual model checking sub-procedures
mcyes and mcno.
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procedure ispathyes(w, u, π)
match π with

case π = p←⊥:
if u 6= w \ {p} then reject

case π = p←>:
if u 6= w ∪ {p} then reject

case π = π1;π2:
(∃) choose a valuation v ∈Wall.
ispathyes(w, v, π1)
ispathyes(v, u, π2)

case π = π1 ∪ π2:
(∃) choose i ∈ {1, 2}
ispathyes(w, u, πi)

case π = β?:
if w 6= u or w 6|=PL β
then reject

procedure ispathno(w, u, π)
match π with

case π = p←⊥:
if u = w \ {p} then reject

case π = p←>:
if u = w ∪ {p} then reject

case π = π1;π2:
(∀) choose a valuation v ∈Wall.
(∃) choose i ∈ {1, 2}
if i = 1

then ispathno(w, v, π1)
else ispathno(v, u, π2)

case π = π1 ∪ π2:
(∀) choose i ∈ {1, 2}
ispathno(w, u, πi)

case π = β?:
if w = u and w |=PL β
then reject

Figure 3: The two dual path searching procedures
ispathyes and ispathno.

and assigned to W ′′. More precisely, after the dashed block,
the only execution that does not fail is the execution where
W ′′ = JψKW . It guesses the candidate subset W ′′ of W con-
taining w that should be JψKW . Then we actually check that
W ′′ is actually JψKW . We finally check that χ holds when
we restrict to worlds in W ′′. Similarly, in the same case, the
procedure mcno checks that either ψ does not hold or that
〈ψ!〉χ does not hold even if ψ holds. Suppose that ψ holds
(corresponding to i = 1). Then, it guesses the candidate
subset W ′′ of W containing w that should be JψKW in the
same way as in mcyes (note that the existential choice in
mcyes for W ′ is not turned into a universal one and we use
exactly the same instructions put in the dashed box). We
finally check that χ does not hold when we restrict to worlds
in W ′′.

Proposition 1. Mc(w,ϕ) succeeds iff Wall, w � ϕ.

Proof. We proceed by induction on the structure of ϕ
by proving the following hypothesis:

Hmc(ϕ) :

 for all W ⊆Wall and w ∈W,
mcyes(W,w,ϕ) fails if and only if W,w 6� ϕ.
mcno(W,w,ϕ) fails if and only if W,w � ϕ.

mcyes and mcno use the procedures ispathyes and ispathno,
so we need to prove this lemma first:

Lemma 1. For all w, u ∈Wall,

• ispathyes(w, u, π) fails if and only if there is no π-path
from w to u;

• ispathno(w, u, π) fails if and only if there is a π-path
from w to u.

Details are left to the reader.

Proposition 2. The procedure Mc is implementable by
an alternating Turing machine running in exponential time
and with a polynomial number of alternations.

Proof. To prove this proposition, we first need to ana-
lyze the complexity in time of the functions ispathyes and
ispathno. Both ispathyes and ispathno can be implemented
by an alternating Turing machine in polynomial time, be-
cause choosing a valuation is doable in polynomial time. All
remaining operations in the algorithm introduce polynomial
factors. To ease the presentation, we bound their complexity
by an exponential. Without loss of generality we have:

Tispath(w, u, π) ≤ 2(#ATM+1)×|π|

where Tispath(w, u, π) is the time of execution for
ispathyes(w, u, π) and ispathno(w, u, π). Now we prove that
mcyes and mcno are running in exponential time by prov-
ing by induction on ϕ that the following proposition H(ϕ),
in which Tmc(W,w,ϕ) stands for the time of execution for
mcyes(W,w,ϕ) and mcno(W,w,ϕ) is true:

for all W ⊆Wall, w ∈W,Tmc(W,w,ϕ) ≤ 2(#ATM+1)×|ϕ|.

Details of the proof are left to the reader. Now in the call
Mc(w,ϕ), Wall is constructed with respect to the atomic
propositions in ϕ, so we assume that #ATM ≤ |ϕ|. To

sum up, the time of Mc(w,ϕ) is bounded by 2|ϕ|
2+|ϕ|, so

the problem of model checking LDL-PA-APAL-formulas is in
AEXPTIME.

Concerning the number of alternations, we remark that
each symbol in ϕ introduces at most 2 alternations in the
execution. So the number of alternations is linear. To con-
clude, the problem is in AEXPpol.

In order to prove Theorem 2, we polynomially reduce
the LDL-PA-APAL-satisfiability problem to the LDL-PA-APAL-
model checking problem as follows: an instance ϕ of the
former is translated in the instance ∅, K̂ch(ATM (ϕ))ϕ of the
latter.

4. LOWER BOUNDS
The aim of this section is to prove the two following the-

orems:

Theorem 3. The LDL-PA-APAL-model checking problem
is AEXPpol-hard.

Theorem 4. The LDL-PA-APAL-satisfiability problem
is AEXPpol-hard.

Note that we can polynomially reduce the LDL-PA-APAL-
model checking problem to the LDL-PA-APAL-satisfiability
problem as follows: an instance w,ϕ of the former is trans-
lated in the instance ϕ ∧

∧
p∈w∩ATM (ϕ) p ∧

∧
p6∈ATM (ϕ)\w ¬p

of the latter. Hence Theorem 4 is implied by theorem 3.
The rest of the section is about the proof of 3.
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First we tackle the lower bound of the fragment L13 of
LDL-PA-APAL-formulas of the form 3ϕ where ϕ does not
contain any announcement. Finally we show the AEXPpol-
hardness for the whole logic.

4.1 NEXPTIME-hardness with one arbitrary
announcement

Proposition 3. The L13-model checking problem
is NEXPTIME-hard.

Proof. Let L be a NEXPTIME problem. We are going
to define a polynomial reduction tr from L to the L13-model
checking problem. Let M be an non-deterministic Turing
machine running in exponential time that decides L. Let
P be a polynomial function such that for all inputs ω, the
length of any execution of M on ω is bounded by 2P (|ω|).
Note that the length of the non-empty part of the tape is
bounded also by 2P (|ω|) at any step of the execution. Let ω
be an instance of L. We encode the existence of an accepting
execution of M for ω (that is, which ends in the state accept)
in an L13-model checking instance tr(ω). We suppose that
we loop on the state accept. Here, we represent an execution
of M in an array depicted in Figure 4a.

The integers x and t in
{

0, . . . , 2P (|ω|) − 1
}

respectively

represent a cell index on the tape and the time index. We
identify x and t with their binary representations respec-
tively expressed by means of the atomic propositions
x1, . . . , xn and t1, . . . , tn where n = P (|ω|).

We also use these atomic propositions to represent a con-
figuration of M :

• states: M is in the state s (s could be the initial state
init, the accepting state accept or any other state of
the finite state space of the Turing machine);

• cur: the cursor of the tape is in position x at time t;

• tapea: the symbol a is stored at position x at time t;

• trq,a,e,b,d: the transition starting from state q and go-
ing to state e, reading the symbol a on the tape and
writing b, moving the cursor on direction d is going to
be executed at time t.

The set of the above atomic propositions is noted ATM ′.
Remark that there are unfitting valuations in Wall: for in-
stance, valuations in which both tapea and tapeb for a 6= b
are true. The idea goes as follow. We perform an arbitrary
public announcement so that the remaining valuations de-
scribe an accepting execution for ω of M . Each remaining
valuation describes the content of one cell on the tape at a
given time.

We define the following abbreviations:

• There is a unique true proposition among {p1, ..., pn}:

∃!(p1, ..., pn) :=
∨

i∈{1,...,n}

pi ∧∧
j 6=i

¬pj

;

• x=i, x≥i, etc. are formulas whose intended meaning
is that the values of propositions x1, . . . , xn are such
that the number x is equal to i, greater or equal than
i, etc.

• Non-deterministically choose values for {p1, ..., pn} such
that at least one pi’s value changes:

1. ∃!(stateq)q∈Q(where Q is the finite set of states of M)
in each world, we have only one state

2. ∃!(tapea)a∈Σ(where Σ is the finite tape alphabet)
in each world, only one letter is written

3. ∃!(trδ)δ∈∆(where ∆ is the finite set of transitions of M)
in each world, only one transition is considered

4. K̂ch(x,tape,cur,tr)cur
on each possible tape, there must be a cursor

5. cur → Kch6=(x,tape,cur,tr)¬cur
on each possible tape, there is only one cursor

6.
(
statet → Kch(x,state,tape,cur,tr)statet

)
on each possible tape, only one state is considered

7.
∧
δ

(
trδ → Kch(x,state,tape,cur,tr)trδ

)
on each possible tape, only one transition is considered

8. K̂x←x+1∪x=2P (|ω|)−1?> ∧ K̂t←t+1∪t=2P (|ω|)−1?>
the model contains a grid

9. tapea → Kch(tape)tapea
on each cell, there is no world in which all atomic propositions are the

same except the letter written in the cell

10. (cur → Kch(cur)cur) ∧ (¬cur → Kch(cur)¬cur)
on each cell, there is no world in which all atomic propositions are the

same except cur

11.
∧
a(¬cur ∧ tapea → Kt←t+1tapea

The cells where the cursor is not remain unchanged

12.
∧

(q,a,e,b,d)∈∆ trq,a,e,b,d → stateq
The transition is compatible with the current state

13.
∧

(q,a,e,b,d)∈∆ trq,a,e,b,d ∧ cur → tapea
The transition is compatible with the cell under the cursor

14.
∧

(q,a,e,b,d)∈∆ trq,a,e,b,d ∧ cur → Kt←t+1tapeb
The transition is compatible with the written symbol

15.
∧

(q,a,e,b,d)∈∆ trq,a,e,b,d → Kt←t+1statee
The transition is compatible with the next state

16.
∧

(q,a,e,b,+1)∈∆ trq,a,e,b,d ∧ cur → Kt←t+1;x←x+1cur
Behavior of the cursor for moving to the right

17.
∧

(q,a,e,b,−1)∈∆ trq,a,e,b,d ∧ cur → Kt←t+1;x←x−1cur
Behavior of the cursor for moving to the left

18.
∧

(q,a,e,b,0)∈∆ trq,a,e,b,d ∧ cur → Kt←t+1cur
Behavior of the cursor for staying at the same cell

Table 1: Formulas that constraint the set of valua-
tions in order to represent an execution

ch 6=(p1, ..., pn) := ((p1?; p1←>) ∪ (¬p1?; p1←⊥)) ;
... ;
((pn?; pn←>) ∪ (¬pn?; pn←⊥)) ;
ch(p1, ..., pn) ;¬ ∧

i∈{1,...,n}

(pi ↔ pi)

?

where p1 . . . pn are new propositions;

• Non-deterministically change values for all atomic propo-
sitions:
U = ch(ATM ′);

• x←x−1, x←x+1 and t←t+1 are programs of polyno-
mial size in |ω| that respectively decrements x, incre-
ments x and increments t. We suppose that x←x+1
is not executable when x = 2P (|ω|) − 1 and so on;

The instance tr(ω) is of the form
(w,3KU (ϕinit ∧ ϕaccept ∧ ϕexe)) where:
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should be in an accepting state

initial configuration

2P (|ω|)

x

t a c a a c

a. NEXPTIME case

should be in an accepting state

0th part (existential)

1st part (universal)

2nd part (existential)

(A(ω)− 1)th part

...

initial configuration
2F (|ω|)

2F (|ω|)

2F (|ω|)

2F (|ω|)

x

t

b. AEXPpol case

Figure 4: Execution of M

• w is the valuation {tapeω0 , cur, stateinit};
• ϕinit := t=0→ [(x=0→ (cur ∧ tapeω0))∧∧|ω|−1

i=1 (x=i→ (¬cur ∧ tapeωi))∧
(x≥|ω| → (¬cur ∧ tape ))]

where is the blank symbol;

• ϕaccept :=
(
t=2P (|ω|)−1

)
→ stateaccept;

• and the formula ϕexe states that the resulting valua-
tions represent an execution of M . Formula ϕexe is the
conjunction of the formulas in the table 1.

The valuation w represents the most-left tape cell in initial
configuration of M (note that w � (x = 0∧ t = 0)). Formula
ϕexe (see formula 8 of Table 1) imposes that the surviving
valuations contain a grid (see Figure 4a) starting from w and
representing an execution of M . Formula ϕinit says that the
row for t = 0 is the initial configuration for word ω. Formula
ϕaccept says that the row for t = 2P (|ω|)−1 is an accepting
configuration.
tr(ω) is computable from ω in polynomial time in |ω| and

is a positive instance of L13-model checking problem if and
only if ω is a positive instance of L.

4.2 AEXPpol-hardness for the full language
Now we are ready to prove Theorem 3. The proof is sim-

ilar to that of proposition 3. The difference is that we will
use both 3 and 2 (its dual) operators to simulate the alter-
nation in the execution of the Turing machine.

Proof. Let L be a problem in AEXPpol. We are going to
define a polynomial reduction tr from L to the LDL-PA-APAL-
model checking problem. Let M be an alternating Turing
machine running in exponential time that decides L with a
polynomial number of alternations. Let A be a polynomial
function such that for all inputs ω, the number of alterna-
tions of any execution starting from ω is bounded by A(|ω|).
Without loss of generality, we suppose that the number of
alternations is exactly A(|ω|) and that the initial state is
existential. The execution is segmented into maximal parts
in which each configuration is of the same type: either all
states are existential states or all are universal states. Let
F be a polynomial function such that for all inputs ω, the
length of any such part is bounded by 2F (|ω|).

We transform the machine M so that the length of any
part of an execution is exactly 2F (|ω|) in the following way.
For all transitions δ from an existential state to a universal
state, we add an intermediate existential state iδ as pictured
below:

∃ ∀
δ

=⇒ ∃
iδ

∃ ∀

We do the same transformation for transitions that go
from a universal state to an existential state. Figure 4b
shows the shape of an execution of M .

Now we use the notation of the proof of proposition 3 but

now numbers x and t ranges over
{

0, . . . , A(|ω|)×2F (|ω|)
}

so

we take the number n of digits of the numbers x and t to be
F (ω)+log2(A(ω))+1. Now we define formula ϕ∃exe which is
similar to formula ϕexe (see proof of theorem 3) except that
we impose end states of transitions to be existential. We
define formula ϕ∀exe which is similar to formula ϕexe except
that we impose end states of transitions to be universal.

We define the following abbreviations:

• Go to the kth part:

Uk := U ;
((
k×2F (|ω|)≤t

)
∧
(
t<(k+1)×2F (|ω|)

))
?

• Go after the kth part:

U after
k := U ;

(
t>k×2F (|ω|)

)
?

• A formula saying that all valuations concerning the kth

part and beyond exist (i.e. the parts from the kth part
are unfixed):

ϕkunfixed := KU after
k


K̂x←x+1∪(x=A(|ω|)×2F (|ω|))?>∧
K̂t←t+1∪t=A(|ω|)×2F (|ω|)?>∧∧
p∈ATM ′\{x1,...,xn,t1,...,tn}(
(p→ Kch(p)p)∧
(¬p→ Kch(p)¬p)

)


• Transitions at time (k + 1)×2F (|ω|)−1 only end into
universal states:
ϕ∃→∀exe,k :=

(
t=(k + 1)×2F (|ω|)−1

)
→ ∃!(trδ)δ∈∆|δ ends in a universal state

• Transitions at time (k + 1)×2F (|ω|)−1 only end into
existential states:
ϕ∀→∃exe,k :=

(
t=(k + 1)×2F (|ω|)−1

)
→ ∃!(trδ)δ∈∆|δ ends in a existential state

Now we define a sequence of formulas (ψk)k∈{0,...,A(|ω|)}
that describe the execution of the Turing machine M one
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part after another. Assuming the execution is already de-
fined until the time 2k × 2F (|ω|), the formula ψ2k chooses
the next transitions to execute in the (2k)th part so that the
last transition executed in the (2k)th part leads to a uni-
versal state. Moreover, it leaves all valuations in remaining
parts unfixed so that formula ψ2k+1 is carrying on the rest
of the execution. Assuming the execution is already defined
until the time (2k + 1) × 2F (|ω|), the formula ψ2k+1 checks
that all possible executions in the (2k + 1)th part are ac-
cepting. Assuming the execution is defined until the end,
the last formula ψA(|ω|) checks that the last state is accept.
Formally:

• ψA(|ω|) := KUA(|ω|) [(t = A(|ω|)×2F (|ω|))

→ stateaccept];

• for all k such that 2k + 1 < A(|ω|),
ψ2k+1 := �

((
KU2k+1

(ϕ∀exe ∧ ϕ∀→∃exe,2k+1) ∧ ϕ2k+2
unfixed

)
→ ψ2k+2);

• for all k such that 0 ≤ 2k < A(|ω|),
ψ2k := 3

(
KU2k

(ϕ∃exe ∧ ϕ∃→∀exe,2k) ∧ ϕ2k+1
unfixed ∧ ψ2k+1

)
;

For all k ∈ {0, . . . , A(|ω|)}, we define the following prop-
erty P (k):

For all W ⊆Wall, such that W defines a unique configu-
ration c at time t = k×2F (|ω|) and contains all valuations
for t > k × 2F (|ω|), W,w |= ψk if and only if c is an ac-
cepting configuration.

We can prove by induction on k that P (k) is true for all
k ∈ {0, . . . , A(|ω|)}.

The instance tr(ω) is of the form (w,ϕ) where:

• w is the valuation {tapeω0 , cur, stateinit};

• ϕ = 3
(
KU ϕinit ∧ ϕ0

unfixed ∧ ψ0

)
.

The formula ϕ ensures that the initial configuration (t =
0) is fixed, leaves all valuations concerning t > 0 unfixed
and ψ0 checks whether the initial configuration is accepting.
tr(ω) is computable from ω in polynomial time in |ω|. We
have that ω is a positive instance of L if and only if the initial
configuration for ω in M is accepting if and only if (w,ϕ)
is a positive instance of the LDL-PA-APAL-model checking
problem. Hence the LDL-PA-APAL-model checking problem
is AEXPpol-hard.

5. PROOF-OF-CONCEPT: AUTONOMOUS
CAMERAS

We are interested here in general scenarios involving epis-
temic properties, public announcements and arbitrary public
announcements where agents are autonomous cameras that
see cones, as depicted in figure 5. The framework defined in
[12], called Big brother Logic, enables reasoning about epis-
temic properties when agents are cameras. First we extend
Big Brother Logic with public announcements and arbitrary
announcements. Secondly, we want to show that reasoning
in this extension is decidable. It is not relevant to embed it
into the abstract version of arbitrary public announcement
logic since it is undecidable [11]. Instead, we show how to
embed the extension into LDL-PA-APAL in order to obtain
decidability.

a

b

d
c

e

Figure 5: Five cameras and their sectors of vision

5.1 Extension with public and arbitrary an-
nouncements

We extend the language introduced in [12] and [4] with
public announcement and arbitrary public announcement
operators:

(LBBL-APAL) ϕ ::= a�b | ¬ϕ | ϕ ∨ ϕ | Kaϕ | 〈ϕ!〉ϕ | 3ϕ

where a, b are agents. The atomic proposition a�b is read
“agent a sees agent b”. The construction Kaϕ is read “agent
a knows ϕ” and 〈ϕ!〉ψ and 3ϕ are respectively the construc-
tions of public announcement and arbitrary announcement.

In [12], the semantics is given in term of models where
each agent has a position, an angle of cone and a direction
of view and there is common knowledge of the positions and
the angles of cones. The authors give also an abstraction
that goes as follows. For all agents a, the set Sa denotes the
possible vision sets, that are the sets of agents that a may
see. From positions and angles of cones, we can compute sets
of vision sets (Sa)a∈AGT in polynomial time in the number
of agents. That is, the collection (Sa)a∈AGT gives all the
abstract information for reasoning about what agents see
and know.

Example 3. In figure 5 we have (trust us about the an-
gles):

• Sa = {∅, {b}, {b, d}, {b, d, e}, {d, e, c}, {e, c}, {c}}
(that is, a can see nobody, can see only b, can see only
b and d, etc., depending on a’s direction)

• Sb = {∅, {a}, {e}, {e, c}, {c, d}, {d}}.

Now, given vision sets (Sa)a∈AGT, we define a Kripke model.

Definition 2. Given (Sa)a∈AGT, a vision-based abstract
model is a triple M = (W,∼, σ) where:

• W = {(Γa)a∈Agt | for all a ∈ Agt, Γa ∈ Sa};

• ∼ maps each agent a to the equivalence relation over
W defined by:
(Γa)a∈Agt ∼a (Γ′a)a∈Agt iff Γa = Γ′a and for all b ∈ Γa,

Γb = Γ′b;

• for all (Γa)a∈Agt ∈W , (Γa)a∈Agt ∈ σ(b�c) iff c ∈ Γb.

In the Kripke model, W is the set of possible worlds and
a world is a function which map each agent a to a vision
set Γa of Sa. For instance, figure 5 depicts the world where
Γa = {c, d, e},Γb = ∅,Γc = ∅,Γd = {c},Γe = {b, d, a}.

1477



The relation ∼a is the indistinguishability relation for agent
a: two words w = (Γa)a∈Agt and u = (Γ′a)a∈Agt are ∼a-
equivalent, if and only if agent a sees the same thing and
agents seen by a see the same thing in both words. σ is the
valuation. Now we consider updated models of M. Given
∅ ( U ⊆W , the modelMU is defined as (U,∼|U , σ|U ) where
∼|U a

= ∼a ∩U ×U and σ|U is such that for all b, c ∈ AGT,
σ|U (b�c) = σ(b�c) ∩ U . The truth conditions are defined
as follows:

• MU , w |= b�c iff w ∈ σ|U (b�c);

• MU , w |= Kaϕ iff for all u ∈ ∼|U a
(w), MU , u |= ϕ;

• MU , w |= 〈ϕ!〉ψ iff MU , w |= ϕ

and M{u∈U|M
U ,u|=ϕ}, w |= ψ;

• MU , w |= 3ϕ iff there exists {w} ⊆ U ′ ⊆ U such that

MU′
, w |= ϕ.

5.2 Embedding into LDL-PA-APAL

In this subsection we restrict ourselves to a finite set of
agents AGT that contains all the agents of the formulas we
want to translate into LDL-PA-APAL. Let S = (Sa)a∈AGT be
a set of possible vision sets for all agents. Let ϕS be the
following formula:

∧
a∈AGT

∨
Γa∈Sa

 ∧
b∈Γa

a�b ∧
∧
b6∈Γa

¬a�b


This formula states that for all agents a, there is a vision

set Γa and a sees agents Γa and only these ones. When ϕS
is announced, the vision sets become common knowledge.
Now, we can obtain a ∼a-equivalent world (Γ′a)a∈Agt from
(Γa)a∈Agt by changing what agents that are not seen by a
see. This operation is performed by the following DL-PA
program:
πa = (a�b1? ∪ (¬a�b1?; ch(b1�a, b1�b1, . . . , b1�bn))) ; ..

...; (a�bn? ∪ (¬a�bn?; ch(bn�a, bn�b1, . . . , bn�bn)))
where {b1, . . . , bn} = AGT \ {a}.
We then define the translation tr by:

• tr(b�c) = b�c;

• tr(Kaψ) = Kπatr(ψ);

• tr(〈ψ!〉χ) = 〈tr(ψ)!〉tr(χ);

• tr(3ψ) = 3tr(ψ).

Theorem 5. Let M be the vision-based abstract model
corresponding to S. Let ϕ be a LBBL-APAL-formula. We
have:

M, (Γa)a∈Agt |= ϕ if and only if
Wall, {b�c | c ∈ Γb} |= 〈ϕS !〉tr(ϕ).

Details of the proof are left to the reader. Theorem 5 shows
a polynomial reduction from the LBBL-APAL-model checking
to the LDL-PA-APAL-model checking problem.

Hence:

Corollary 1. Both the LBBL-APAL-model checking and
the LBBL-APAL-satisfiability problem are in AEXPpol.

6. RELATED WORK
The idea of executing programs for accessing possible

worlds has already been sketched in [3], [4] and [12] but
we here provide a more general framework. In order to syn-
tactically express such programs, we propose to use DL-
PA that originates from theoretical computer science as a
variant of Propositional Dynamic Logic PDL with concrete
programs. DL-PA has assignments of truth values to propo-
sitional variables instead of the abstract atomic programs of
PDL [10]. Some of the theoretical properties of DL-PA were
investigated recently [5]. In particular, it is known that both
the model checking and the satisfiability problem in DL-PA
without the Kleene star are PSPACE-complete.

The reader should be aware that an extension of DL-PA by
epistemic operators [16] was already considered in the field of
dynamic epistemic logics [17] where DL-PA are ontic actions.
We insist on the fact that in this paper, DL-PA-programs are
not ontic actions but mental actions for accessing different
mental states. That is why we use the notation Kπ instead
of the traditional [π] in dynamic logic. For instance, the
operator [p←⊥] in [16] modifies publicly the real world so
that p is false whereas here, Kp←⊥ does not modify the real
world: p←⊥ is the program that is used by an agent to go
from the actual world to a possible world without changing
the actual world.

Contrary to the abstract case of arbitrary public announce-
ment logic which is undecidable [11], here knowledge is de-
fined via grounded programs π. The shape of the model is
determined by the formula we want to satisfy, that is why we
obtain decidability and AEXPpol-completeness of the satis-
fiability problem. The reader may refer to [13], [7] and [8]
for more information about AEXPpol.

7. CONCLUSION
In this article, we propose a variant of arbitrary public an-

nouncement logic, LDL-PA-APAL, where knowledge is repre-
sented by mental programs. Contrary to standard arbitrary
public announcement logic whose satisfiability problem is
undecidable, our framework is proven to be decidable. We
claim that reasoning about arbitrary public announcements
can be done in practice. Interestingly, as a proof-of-concept,
we show that when we extend the framework for reasoning
about epistemic properties over cameras proposed in [12]
with arbitrary public announcement logic , we still have a
decidable logic.

We proved that both the LDL-PA-APAL-model checking
problem and the LDL-PA-APAL-satisfiability problem
are AEXPpol-complete (theorems 1, 2, 3 and 4). Future
work may concern arbitrary group announcements where
public announcements are restricted to what agents of a
group J actually know. It has recently been proven that
the satisfiability problem is undecidable [1]. We conjecture
that we can adapt algorithms of section 3 to the case of arbi-
trary group announcements when knowledge is represented
by DL-PA programs. We conjecture that the upper bound
remains AEXPpol for arbitrary group announcement logic.

Recently, epistemic planning has been proved to be un-
decidable in the general case [2]. It would be interested
to investigate the decidability of epistemic planning when
knowledge is defined by mental programs.
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