
Selecting Robust Strategies in RTS Games
via Concurrent Plan Augmentation

Abdelrahman Elogeel♣ Andrey Kolobov♦ Matthew Alden♣ Ankur Teredesai♣

♣Institute of Technology
University of Washington, Tacoma

{elogeel,mealden,ankurt}@uw.edu

♦Microsoft Research
Redmond, WA, USA

akolobov@microsoft.com

ABSTRACT
The multifaceted complexity of real-time strategy (RTS) games
forces AI systems to break down policy computation into smaller
subproblems – strategic planning, tactical planning, reactive con-
trol, and others. To further simplify planning at the strategic and
tactical levels, state-of-the-art automatic techniques for this task,
such as case-based planning, produce deterministic plans for what
is inherently an uncertain environment, and fall back on replan-
ning when the game situation disagrees with the constructed plan.
A major weakness of this approach is its lack of robustness: repair-
ing a failed plan is often impossible or infeasible due to real-time
computational constraints, causing a game loss. This paper presents
a technique that selects a robust RTS game strategy by using ideas
from contingency planning and by exploiting action concurrency of
these games. Specifically, starting with a strategy and a linear tac-
tical plan that realizes it, our algorithm identifies the plan’s failure
modes using available game traces and adds concurrent branches
to it so that these failure modes are mitigated. In this manner, our
approach may train an army reserve concurrently with an attack
on the enemy, as defense against a possible counterattack. After
augmenting each strategy from an available library (e.g., learned
from human demonstration) our approach picks one with the most
robust augmented tactical plan. An extensive evaluation on the pop-
ular RTS games of StarCraft and Wargus, which shares its engine
with several other games, shows that concurrent augmentation sig-
nificantly improves win rate and lets the agent prevail in scenarios
where baseline strategy selection consistently leads to a loss.

1. INTRODUCTION
Ten years after real-time strategy (RTS) games were proposed

as a challenge for AI [2], computational state of the art in them is
still well short of the human performance level [13]. Among the
aspects that make RTS games so difficult for computers to play
well are the complexity and partial observability of the worlds they
depict, their adversarial nature, and the necessity to plan in real
time with durative actions and a high degree of concurrency. In an
attempt to make RTS game policy computation more tractable, re-
searchers have broken this problem into subproblems varying by
planning timescale (strategy, tactics, reactive control) and by their
function (opponent modeling, economy/resource management, in-
frastructure construction, and others). Some of them, e.g., planning
at micro-timescales and terrain analysis, have been tackled with
relative success using reinforcement and machine learning tech-

Appears in: Proceedings of the 14th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2015), Bor-
dini, Elkind, Weiss, Yolum (eds.), May, 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

niques [13], which affected at least one application area that shares
characteristics with RTS games, combat environments simulation
[11]. Nonetheless, AI agents in modern commercial RTS games
are still far from intelligent. A major reason for this is that, despite
progress in other areas, strategic and high-level tactical planning in
RTS games have remained largely open problems; in this paper, we
focus on them.

Selecting game strategy and high-level tactics are tightly inter-
twined tasks. On one hand, we would like to choose a strategy, i.e.,
a sequence of subgoals to achieve to win the game, for which a
tactical plan that attains these subgoals is easy to find. On the other
hand, tactical plans with a good chance of winning may be available
only for specific subgoal sequences, thereby implicitly constrain-
ing strategy selection. Case-based planning [6] and the On-line
Case-Based Planning (OLCBP) architecture derived from it [12]
are among the few automatic approaches that have attempted to
solve these planning problems jointly in RTS games.1Taking a set
of subgoal specifications and gameplay logs (e.g., generated by hu-
mans) as inputs, OLCBP builds a hierarchical task network (HTN)
[15] from them. It uses this HTN to produce a deterministic strate-
gic and tactical plan at the start of a game. It follows this plan until
the game state deviates from the plan’s expectations, in which case
OLCBP replans. While a significant step towards automating strat-
egy selection, OLCBP doesn’t explicitly attempt to maximize the
chance of winning the game. Moreover, its reliance on replanning
causes a game loss when the existing plan fails and no new one can
be found [9].

The technique we present in this paper, which we call concurrent
plan augmentation (CPA), mitigates the drawbacks of OLCBP by
aiming to select the strategy with a set of tactical plans that will
empirically least likely require replanning when executed. We im-
plement CPA in an architecture called ROLCBP (Robust OLCBP).
Like OLCBP, ROLCBP identifies promising strategies and tactical
realizations for them from game logs without using a conventional
planner. Importantly, the number of such distinct strategies in RTS
games is usually small, allowing ROLCBP to analyze each such
strategy with its tactical plans and try to address the plan’s weak-
nesses. For each strategy, ROLCBP first identifies the likely steps
at which its tactical plan will fail. Then ROLCBP searches for plans
that can be executed concurrently with parts of the strategy’s main
tactical plan and can decrease its empirical chance of failure. For
example, if the original plan calls for immediately attacking the en-
emy and the attack often fails in simulation, ROLCBP might pro-
pose to train an army reserve simultaneously with the attack so that
the player’s base does not get overrun by the opponent’s counterat-
tack if the player’s attack peters out. Augmenting the tactical plans
for each strategy and assessing their failure probability identifies

1See Related Work for a discussion of a hard-coded approaches.

155

the most empirically robust strategy, while storing the augmented
plans reduces the need to replan in critical situations. The ability
to produce robust tactical behavior automatically in the presence of
action concurrency and without reliance on conventional determin-
istic or probabilistic planners is what makes ROLCBP functionally
novel.

We conduct an extensive empirical evaluation of ROLCBP on the
popular games of StarCraft and Wargus (an open-source clone of
Warcraft II that shares its game engine with several other real-time
strategies). It demonstrates CPA’s broad applicability and shows
that, thanks to CPA, ROLCBP not only has a significantly higher
win rate against built-in AI than OLCBP, but can also win on maps
where OLCBP always loses. Moreover, whenever CPA does not
affect the strategy choice, it still improves the win rate by mak-
ing tactical plans for the selected strategy much less failure-prone.
Last but not least, the experiments reveal that ROLCBP easily wins
against opponents very dissimilar from those encountered during
training.

To sum up, our paper makes the following contributions:

• We present concurrent plan augmentation (CPA), a technique
that helps pick robust strategic and tactical plans.

• We implement CPA in an OLCBP-based architecture called
ROLCBP and extensively test it on complex commercial RTS
games. The results indicate that CPA provides quantitative
as well as qualitative win rate gains by improving decision-
making at both strategic and tactical levels.

2. BACKGROUND
Real-time strategy games. RTS games are a genre that typically
involves managing resources, building infrastructure, training an
army, and ultimately defeating other players by destroying their
units and infrastructure. StarCraft, an RTS developed by Blizzard
EntertainmentTM, and Wargus, an open-source clone of Warcraft II,
are popular games that we use as experimental testbeds in this pa-
per. In StarCraft, every player controls one of three warrior races:
Zerg, Protoss, or Terran. In Wargus, there are two of them: humans
and orcs. In both games, warriors of each race differ in their combat
characteristics and in the resources required to produce them. Ac-
cordingly, good choices of strategy and tactics vary among races,
and also depend on the world configuration, called a map, where
the game is played.

Strategic planning in RTS games. The objective of RTS game AI
is to come up with a policy — a mechanism for deciding which
actions to initiate at any point in time, given the agent’s current
belief about the state of the world and actions (both of the agent
and of the opponents) that are already being executed. RTS games
have several distinctive attributes that put them beyond the capabil-
ities of most standard game tree search and reinforcement learning
techniques: the size, complexity, and non-determinism of the game
environment, durative and concurrent action execution, partial ob-
servability, and others. In fact, even simply finding action outcome
trajectories that lead to victory under simplifying assumptions is
difficult for modern planners due to actions having durations and
being concurrent. For this reason, finding a policy in RTS games
is broken down into several layers of abstraction, which effectively
decomposes the problem into smaller, more manageable planning
tasks. Strategic planning is the highest level in this abstraction hi-
erarchy. It chooses a set of subgoals that need to be achieved to
win the game, and the order in which they need to be achieved.
While some of the lower levels of the abstraction hierarchy, e.g.,

unit control, can be tackled with automatic techniques, good strate-
gic behavior in real-time games is very difficult to come by with
existing planning technology and, as a result, is either scripted in
game AI or relies on adapting plans gleaned from human gameplay.
On-Line case-based planning is an example of the latter approach.

On-line case-based planning. OLCBP [12] is a planning architec-
ture derived from hierarchical task networks (HTN) [15] and case-
based reasoning. Its inputs, along with a game description, are a
set of subgoal specifications and gameplay logs (e.g., generated by
humans). OLCBP operates in a cycle with two main phases, be-
havior acquisition and online expansion-execution (Figure 1). Dur-
ing behavior acquisition, it heuristically matches up parts of the
logged game traces with the subgoals, thereby identifying both the
strategies used in the game and the tactical plans for achieving the
subgoals. After some additional processing, OLCBP stores the ex-
tracted plans, called cases, in its case base.

Figure 1: OLCBP cycle. Image taken from [12]

OLCBP assumes its opponents to be relatively static and views
strategy and tactics selection as a classical planning problem with a
possibility of replanning. OLCBP’s expansion-execution step is re-
sponsible for dividing this planning problem into subproblems us-
ing an HTN constructed from the provided subgoals with the help
of the game logs. The chosen strategy is passed to the retrieval sub-
module, which selects and adapts tactical plans for it from the case
base. OLCBP executes these plans until the game situation deviates
from the predicted one. In this case, it looks for a different tactical
plan, strategy or both, given the player’s current situation. Reliance
on replanning is OLCBP’s significant weakness. Replanning takes
time, but even a small delay in acting may mean losing the game.
In addition, OLCBP’s case base my not contain a back-up plan for
unforeseen circumstances, also leading to a game loss.

Contingency planning. In contingency planning [14], an agent
situated in a partially observable non-deterministic environment
needs to devise a policy for reaching the goal from any state in
which the agent may end up. Unlike in (partially observable) Markov
Decision Processes (MDPs), the agent does not know the probabil-
ities of its actions’ outcomes, only the sets of possible outcomes
themselves. In this paper we show that, despite having been con-
sidered for non-adversarial settings so far, contingency planning
can be potent in RTS game AI as well.

3. CONCURRENT PLAN AUGMENTATION
To address the drawbacks of existing strategy selection approaches

such as OLCBP, we propose a technique called concurrent plan
augmentation (CPA). CPA’s high-level idea is to start with a tac-
tical plan for each available strategy, analyze the ways in which
the game situation can deviate from it, and come up with con-
tingent plan branches that prevent the deviations from becoming

156

catastrophic, to be executed in parallel with the main plan. Repeat-
ing these steps iteratively builds a partial policy for every strategy.
This policy’s ability to avoid failure is taken as a measure of the
corresponding strategy’s robustness; based on it, a strategy selec-
tion framework, e.g., OLCBP, can choose a strategy for playing the
game. At first glance, CPA is reminiscent of contingency planning,
but has several important differences:

• Most contingency planning algorithms assume that catastrophic
failures cannot happen, i.e., that it is possible to reach the
goal (win the game) starting from any state. Even the few
exceptions such as [10] assume that failures can be fully
avoided from any state. In contrast, failures impossible to
avoid with certainty are common in RTS games, e.g., due
to opponents’ actions. For this reason, contingency planners
can usually rely on replanning, whereas CPA attempts to pre-
empt catastrophic events.

• Contingency planning mostly considers settings with no ac-
tion concurrency, where actions must be executed one after
another. CPA relies on concurrency for its operation.

• Unlike in contingency planning, which has no widely ac-
cepted measure of policy quality, characteristics of RTS games
suggest gauging policy quality with its ability to avoid fail-
ures. CPA uses one such measure, a policy’s failure probabil-
ity. Although in a game this measure is only heuristic, since
it depends on the training opponent’s play, our experiments
show that it works well in practice. In games with no draws,
as is the case for most RTS games, failure probability mini-
mization can be alternatively viewed as maximizing the win
rate.

As described, CPA leaves many details unspecified. How to find
contingent plan branches? When should a contingent branch’s ex-
ecution begin? Should the policy tree be computed eagerly before
the start of the game or lazily as the game progresses? Their an-
swers depend on the RTS game and strategy selection framework
to which CPA is applied. This paper combines CPA with the OL-
CBP framework to produce the Robust OLCBP algorithm, which
we describe next.

4. ROBUST OLCBP
The operation of CPA with OLCBP in an architecture we call

Robust OLCBP (ROLCBP) is broken down into an offline stage
(Algorithm 1) and an online stage (Algorithm 2). The offline stage
is devoted to training, while the online stage exploits the learned
knowledge for strategy and tactics selection. Throughout our expla-
nations, we will be referring to ROLCBP’s pseudocode, denoting
line l of Algorithm a as “line l : a". In the following section, we
illustrate the pseudocode’s operation with an example from Star-
Craft.

Offline stage. At this stage, ROLCBP relies on the OLCBP’s ma-
chinery to learn a set of strategies S and a case base of tactical
plans P based on a human-specified set of subgoal descriptions G,
action descriptions A, and a set of gameplay logs (line 10:1). The
details of this step [12] are beyond the scope of our paper but, im-
portantly for the rest of ROLCBP, each plan in the resulting case
base P achieves a subgoal from G assuming some other subset of
G’s goals has already been achieved. Generally, P contains several
plans that achieve a given subgoal.

After tactical plan extraction, ROLCBP gathers statistics for pol-
icy augmentation. Using a simulator for the RTS game to which

1 Input: M — a game map, G = {gi}ni=1 — a set of game
subgoals, A = {ai}mi=1 — a set of game actions,

2 L— a set of gameplay logs,
3 AugDegree — augmentation degree
4

5 Output: StarCraft strategy & high-level tactical plan
6

7 // Learn S = {Si = (gj1 , . . . , gjni
)}— a set of strategies

8 // (subgoal sequences) & P = {P g
i = (aj1 , . . . , ajmi

)} —
9 // a set of high-level tactical plans, each for some subgoal g

10 S,P ← OLCBP-Learn(G,A,L)
11

12 foreach P g
i ∈ P , aj ∈ P g

i do
13 pfail(aj , P

g
i)← ProbOfCausingFailure(aj ,P g

i)

Algorithm 1: ROLCBP: the offline stage

it is applied, ROLCBP reproduces the initial conditions of each
plan P ∈ P (i.e., generates a game state in which all subgoals
that P assumes to be achieved have indeed been achieved). Then,
with the help of game logs, it simulates the execution of P by an
OLCBP-based bot against different opponents, recording the num-
ber of times each action in P was executed and failed.

For the purposes of CPA, we define an action a’s failure prob-
ability pfail(a, P

g) as the fraction of times its execution caused a
deviation from the corresponding tactical plan P g and forced OL-
CBP to resort to replanning (lines 12:1-13:1). In reality, OLCBP’s
replanning is sometimes successful at attaining P g’s goal g. There-
fore, pfail(a, P

g) is generally a pessimistic measure of a’s quality
in P g . Nonetheless, the overestimation of a’s probability of caus-
ing an unrecoverable failure actually helps CPA produce more ro-
bust policies.

Online stage. At runtime, ROLCBP follows the MainGameLoop
method (lines 3:2-10:2). It begins by selecting a game strategy with
the most robust tactical plan (line 4:2) as explained below, using the
SelectStrategy&Tactics procedure. In addition to returning the tac-
tical plan for the chosen strategy, SelectStrategy&Tactics augments
it with concurrent contingent branches. In effect, this method con-
structs a tactical policy tree, although this tree may be only partial.
ROLCBP plays according to the chosen tactical plan, launching its
contingent branches prescribed by the policy tree, until OLCBP’s
mechanisms detect a deviation from it (line 6:2).

SelectStrategy&Tactics (lines 12:2 - 25:2) operates by iterating
over all strategies S in library S, letting OLCBP concoct a tactical
plan PS for each strategy, augmenting this tactical plan with con-
tingent branches using CPA, and evaluating the failure probability
of the policy tree based on this tactical plan. The failure probabil-
ity of a strategy’s augmented tactical plan serves as a proxy of the
strategy’s robustness; SelectStrategy&Tactics chooses the strategy
with with lowest such probability.

The CPA logic at the heart of SelectStrategy&Tactics is captured
in eponymous method (lines 27:2-41:2). CPA analyzes a tactical
plan PS by breaking it down into constituent plans P g from case
base P . Recall that at the offline stage, ROLCBP estimated failure
probabilities for each action in each such plan (lines 12:1-13:1).
With the help of these estimates, CPA identifies actions with non-
zero failure probabilities in PS (line 29:2). For each of these actions
a, CPA models the hypothetical situation immediately after a’s fail-
ure by determining the “latest” subgoal gj of strategy S that will
remain achieved in that situation (line 31:2). In order to be consid-
ered a valid contingency branch for a’s failure, a plan P+

S needs to

157

1 // See Algorithm 1 for the description of M , G, S, P , and AugDegree
2

3 MainGameLoop(M , G, S, P , AugDegree) begin
4 S, PS ←

SelectStrategy&Tactics(M , G, S, P , AugDegree)
5 while game has not ended do
6 afail, P

g ← PlayUntilActionFailure(PS)
7 PS ← ContingentBranch[afail, P

g, PS]

8 if AugDegree == 1 then CPA(M , S, PS , P)
9 else if AugDegree == 0 then OLCBP(M , S, g, P)

10 else AugDegree← AugDegree− 1

11

12 SelectStrategy&Tactics(M , G, S, P , AugDegree) begin
13 foreach S = (gj , . . . , gk) ∈ S do
14 // Compose a tactical plan for strategy S

15 // by concatenating several plans from P
16 PS = (P

gj
ij

, . . . , P
gk
ik

)← OLCBP(M , S, ∅, P)

17 LeafBranches← {PS}
18 foreach d from 1 to AugDegree do
19 NewBranches← ∅
20 foreach plan P ∈ LeafBranches do
21 NewBranches← NewBranches ∪
22 ∪ CPA(M , S, P , P)

23 LeafBranches← NewBranches

24 pfail(PS)← EvalFailProb(PS)

25 return S, PS s.t. pfail(PS) is the lowest

26

27 CPA(M , S, PS , P) begin
28 LeafBranches← ∅
29 foreach a ∈ P g ∈ PS s.t. pfail(a, P g) > 0 do
30 (g1, . . . , gj)← achieved prefix of S if a fails
31 during P g’s execution
32 // Compose a plan for S’s remaining subgoals
33 P+

S ← OLCBP(M , S, (g1, . . . gj), P)
34 // Schedule P+

S to start executing concurrently
35 // with PS ASAP after gj is achieved but
36 // before a starts executing, if possible
37 if ScheduleConcurrentExec(PS , P

+
S , gj) then

38 ContingentBranch[a, P g, PS]← P+
S

39 LeafBranches← {P+
S }

40 else ContingentBranch[a, P g, PS]← ∅
41 return LeafBranches

42

43 EvalFailProb(PS) begin
44 if PS is ∅ then return 1

45 pfail(PS)← 0

46 foreach ai ∈ PS , i ranging from |PS | to 1 do
47 pfail(PS)← pfail(ai, PS)·
48 ·EvalFailProb(ContingentBranch[ai, P g , PS])+

49 +(1− pfail(ai, PS)) · pfail(PS)

50 return pfail(PS)

Algorithm 2: ROLCBP: the online stage

achieve all subgoals of S after gj . CPA delegates it to OLCBP to
find such a plan (line 33:2).

When/if P+
S is found, it needs to be scheduled for execution. In-

tuitively, we would like to start P+
S in parallel with PS as early

as possible after gj is achieved. (By P+
S ’s construction, we cannot

start it before achieving all of S’s subgoals up to gj .) We would
also like to schedule it before a, because otherwise in case of a’s
failure, while OLCBP is looking for another plan, for some time
the player’s units will not know what to do (and hence will be
extremely vulnerable). Whether P+

S ’s execution can start in this
time window depends on game resource constraints. For example,
it may be impossible to train several kinds of units concurrently
without enough minerals. Scheduling P+

S is again delegated to OL-
CBP (line 37:2). If it turns out to be possible, P+

S is designated as
PS’s contingency for a’s failure (line 38:2). Otherwise, a’s failure
remains unaccounted for (line 40:2). Ultimately, CPA’s inability to
add contingency branches to a tactical plan may point to the plan’s,
and hence the strategy’s, inherent weaknesses.

A single CPA invocation provides back-ups for the failure of a
given tactical plan, but not for failures of the back-ups themselves.
The latter would require applying CPA recursively to the contin-
gent branches. SelectStrategy&Tactics provides the option of do-
ing that via the augmentation degree (AugDegree) parameter. The
first-degree augmentation applies CPA to a strategy’s main tacti-
cal plan only, the second-degree one — to that plan and its con-
tingent branches, and so on (lines 17:2-23:2). Intuitively, higher-
degree augmentations reveal complete contingency structure and
provide a more thorough assessment of a strategy’s robustness. In-
dependently of augmentation degree, evaluation of a strategy’s fail-
ure probability can be done in a single pass. This is due to the fact
that an augmented tactical plan is always a tree. Computing its fail-
ure probability is a matter of recursively propagating information
from the tree’s leaves to its root (lines 43:2 -50:2).

If augmentation degree is at least 1, deviating from the main
tactical plan of the chosen strategy in ROLCBP’s MainGameLoop
likely does not cause replanning, as it would in OLCBP. This is be-
cause a contingent branch for this failure has already been launched,
if this was possible given the game resource constraints. This branch
becomes the main execution plan (line 7:2). However, this plan
may be vulnerable: recall that, depending on augmentation degree,
SelectStrategy&Tactics may not have scheduled any contingencies
for it. Therefore, once ROLCBP switches to this plan, if necessary
it augments it with contingent branches (line 8:2), to avoid hasty
replanning in case of another failure.

Practical considerations. In its computations, ROLCBP iterates
over all strategies in its library S, and for each of them builds a
policy tree whose size is influenced by the augmentation degree pa-
rameter. Thus, the size of S and augmentation degree are two major
factors affecting ROLCBP’s performance. Fortunately, the follow-
ing observations imply that sensible values of these quantities are
small in practice:

• RTS games typically have few viable strategies, and OLCBP’s
learning from human demonstration naturally identifies them.
Indeed, although in theory there are many possible goal or-
derings for any scenario, human players tend to use only
those belonging to a small set of successful ones. Since ROL-
CBP’s strategy library S is populated by strategies extracted
from human gameplay logs, it ends up containing only a few
entries. This makes it possible to analyze each one of them
in a short time at the beginning of the game.

158

• High-degree augmentation does not pay off. While n high-
degree augmentation gives a better estimate of a strategy’s
robustness, and hence enables better-informed strategy choice,
its computational cost grows exponentially in augmentation
degree. ROLCBP can afford some deliberation time at the
beginning of the game, but excessively long delay before
committing to a strategy heightens the risk of the opponent’s
attack against the player’s unprepared infrastructure. More-
over, most of the contingent branches in a highly augmented
policy tree will end up not getting followed, wasting compu-
tational effort invested into them. Last but not least, high-
degree contingencies are increasingly difficult to schedule
because of the multiple resource conflict resolutions OLCBP
needs to perform. In all our tests, first-degree augmentation,
which applies CPA only to the main tactical plan of a pol-
icy, has provided the best balance of computational cost and
strategy evaluation quality. Therefore, we set AugDegree = 1
in all our experiments.

5. EXAMPLE
Suppose that after offline training (Algorithm 1), ROLCBP play-

ing the game of StarCraft starts by analyzing a strategy whose sub-
goal ordering is depicted as a sequence of dark-gray rectangles on
the left side of Figure 2. Suppose further that OLCBP, which ROL-
CBP uses to find a tactic for this strategy, composes a plan given
by the white rectangles inside the dark-gray rectangles. Namely,
the plan is [GatherPrimaryResource, BuildBarracks, TrainMarine,
AttackUnit], where several TrainMarine and several AttackUnit ac-
tions are executed in parallel. As Figure 2 shows, this tactical plan
consists of primitive plans for achieving each subgoal given the
previously achieved ones. For the simplicity of the example, each
such subplan of the main tactical plan has only one step.

Figure 2: A tactical plan (left) with a contingent branch (right).

The analysis of this plan involves computing the failure prob-
abilities of the steps that compose it. Imagine that during the of-
fline stage (Algorithm 1), ROLCBP established that the first three
subgoals, up to and including TrainArmy, are always achieved suc-
cessfully, e.g., because at the start of the game the opponent has too
little time to reach the player’s base and disrupt the plan. However,
ROLCBP may have discovered that the last subgoal of the plan,
AttackEnemy is difficult to reach: the marine units, though quick
to train, are fairly weak, and their attack often fails. When it does,
the TrainArmy subgoal also gets “unachieved”, because the army is
destroyed in the attack.

Having performed this analysis, ROLCBP decides to inject a
concurrent contingent plan before going for the AttackEnemy sub-
goal. This contingent branch needs to achieve all subgoals that re-
main unachieved if the main plan fails, i.e., TrainArmy and Attack-
Enemy. One such plan is shown on the right side of Figure 2. It
trains an army of units more powerful than marines, which requires

it to build additional infrastructure. This infrastructure takes a lot of
resources, which are unavailable while the main army of marines is
being trained, so it schedules this branch for execution right after
the marines are trained and ready to attack. If the marines fail, a
more potent army of firebats will be available to guard the base and
attack the enemy soon afterwards.

After augmenting the main tactical plan, ROLCBP evaluates its
failure probability. If more strategies are available, ROLCBP ana-
lyzes them too and picks the least likely to fail.

6. EVALUATION
We evaluated CPA by implementing it as part of ROLCBP in

software bots for StarCraft and Wargus (an open-source clone of
Warcraft II). Most of our experiments focus on StarCraft, since it
is the more complicated of the two and has a better-developed pub-
licly available experimentation infrastructure that greatly speeds up
running tests on it. At the same time, Wargus shares its game en-
gine Stratagus, the mechanism responsible for its planning capabil-
ities, with a range of other RTS games such as Aleona’s Tales, so
our successful experiments on Wargus imply CPA’s effectiveness
on all these games as well and attest to the universality of our ap-
proach. Our experiments address the following questions: (1) How
does concurrent policy augmentation affect the bot’s performance
if used purely at the tactical level when a strategy is fixed, by in-
creasing the tactical plan’s robustness? (2) How does CPA affect
the bot’s performance if used in both at the tactical and strategic
levels in ROLCBP, by guiding the strategy selection process? (3)
How successfully does CPA deal with opponents who are signifi-
cantly different from those it plays during the offline training stage
(Algorithm 1)? Note that demonstrating the overall superiority of
our bot over state-of-the-art bots for StarCraft or Wargus is not an
objective of our experiments. Building such a system would require
extensive research into components other than strategy and tactics
selection modules, which is beyond the scope of this work. Instead,
our evaluation uses simple algorithms in bot modules such as those
responsible for low-level control, and concentrates on the influence
of CPA on strategic and high-level tactical performance.

Experimental setup. We gauge the performance of ROLCBP and
the baselines (built-in AI, OLCBP, or both, depending on the ex-
periments) by running many games against an opponent and mea-
suring the win rate — the percentage of won games. Win rate sub-
sumes all other gameplay characteristics of potential interest, such
as speed or memory usage: if the player’s AI is unacceptably slow
or memory usage too high, this is reflected in a low win rate. We
identify statistically significant performance differences in win rate
with two-tailed z-test for equality of proportions at the 95% confi-
dence level.

For StarCraft, we experiment on three maps frequently used in
StarCraft tournaments: Blood Path, Binary Burghs, and Bottleneck.
Each StarCraft map is characterized by the size of its grid, which
is loosely correlated with the map’s difficulty; Blood Path has size
64x64, Binary Burghs – 96x96, and Bottleneck – 128x128 cells.
For Wargus, we use maps of similar sizes: Harrow (62x62), Hills
of Glory (96x96), and Dust Storm (128x128). In all figures, map
size increases along the x-axis. As mentioned previously, a Star-
Craft player can control one of three races and in Wargus — one of
two, each with its own characteristics. Our bot always plays the Ter-
ran race in StarCraft and orcs in Wargus. For offline acquisition of
strategies and tactical plans, our bot uses human gameplay logs. For
StarCraft, they are available at http://www.teamliquid.net/replay/.

Our implementations of ROLCBP and OLCBP are in C++. The
two differ only in strategy selection, and share all other components

159

Blood Path Binary Burghs Bottleneck
0

20

40

60

80

100

R

R R

R

R

R

M
M

M

M

M

M

W
in

ra
te

ROLCBP

OLCBP

(a) Training vs Terran/Zerg, playing vs Protoss
Blood Path Binary Burghs Bottleneck

0

20

40

60

80

100

R

R R

R

R

R

M M

M

M

M

MW
in

ra
te

ROLCBP

OLCBP

(b) Training vs Terran/Protoss, playing vs Zerg
Blood Path Binary Burghs Bottleneck

0

20

40

60

80

100

R

R R

R

R

R

M
M

M

M

M

MW
in

ra
te

ROLCBP

OLCBP

(c) Training vs Zerg/Protoss, playing vs Terran

Figure 3: Effect of CPA on the tactical performance of the rush attack (R) and mid-game attack (M) strategies in StarCraft. The advantage
of ROLCBP is statistically significant in all experiments except for rush attack on the Bottleneck map.

Blood Path Binary Burghs Bottleneck
0

20

40

60

80

100

W
in

ra
te

ROLCBP

OLCBP

(a) Training vs Terran/Zerg, playing vs Protoss
Blood Path Binary Burghs Bottleneck

0

20

40

60

80

100

W
in

ra
te

ROLCBP

OLCBP

(b) Training vs Terran/Protoss, playing vs Zerg
Blood Path Binary Burghs Bottleneck

0

20

40

60

80

100

W
in

ra
te

ROLCBP

OLCBP

(c) Training vs Zerg/Protoss, playing vs Terran

Figure 4: Effect of CPA on overall performance in StarCraft. The advantage of ROLCBP is statistically significant in all experiments.

vs Terran vs Protoss vs Zerg
0

20

40

60

80

100

W
in

ra
te

ROLCBP

OLCBP

Figure 5: Effect of CPA on overall performance in StarCraft on the
Bottleneck map with the Fabian strategy. In each case, ROLCBP
trains on two races and plays versus the remaining one. The advan-
tage of ROLCBP is statistically significant in all experiments.

(modules for extracting strategies and tactical plans from game
logs, low-level control, etc.) The augmentation degree parameter
in ROLCBP was set to 1 (see the discussion at the end of the Ro-
bust OLCBP section). The experiments were run on an Intel Core
i7 2.4GHz CPU with 12GB RAM under Windows 8.1.

Effects of Tactical-Level Augmentation. In this experiment, con-
ducted on StarCraft, we measure how the win rate of individual
strategies changes when first-degree CPA is applied to their main
tactical plans. The results are shown in Figure 3. We focus on two
strategies in this experiment. StarCraft has three different races,
and we measure each strategy’s win rate against each of the three
races separately (Figures 3a, b, and c). Our bot always plays the
Terran race.

To measure a strategy’s win rate against a given race (e.g., Zerg)
on a given map, we first run the offline training stage of ROL-
CBP and OLCBP on logs of games played against the two other
races (e.g., Protoss and Terran) controlled by StarCraft’s built-in
AI. Then we evaluate the strategy’s performance against the target
opponent race controlled by the built-in AI by comparing the win
rates of OLCBP and ROLCBP when this strategy is the only one
available in their strategy library. OLCBP and ROLCBP each ran
every strategy 100 times against each race on each map.

The two strategies we use in this experiment are known among
human StarCraft players as rush attack and mid-game attack. We
chose these strategies because our bot judged them to be the most
powerful ones it managed to extract from the game logs: in every
game in the strategy selection experiments, whose results are pre-
sented later, our bot invariably choose one of these two strategies
as the best one.

Figure 3, which summarizes the results on this experiment, re-
veals several patterns:

HarrowHills of Glory Dust Storm
0

20

40

60

80

100

W
in

ra
te

ROLCBP

OLCBP

Figure 6: Effect of CPA on overall performance in Wargus. The
advantage of ROLCBP is statistically significant in all experiments.

• For most combinations of strategies, maps, and train-test splits
in the experiment, ROLCBP’s win rate is significantly higher
than OLCBP’s, i.e., CPA significantly improves strategies’
robustness. This happens because OLCBP resorts to replan-
ning when a strategy’s execution goes awry. Replanning is
expensive, and if it does not yield a quick solution in a crit-
ical situation, the bot loses the game. CPA reduces the need
for replanning in critical situations.

• If a strategy is inherently unsuitable to a given map, applying
CPA to it does not help. For example, all tactical plans for the
rush attack strategy on the Bottleneck map have fatal flaws
that prevent them from winning even after CPA.

• CPA can improve a strategy’s tactical plan qualitatively, en-
abling it to win games that its non-augmented version would
always lose. For example, without CPA mid-game attack on
the Bottleneck map always fails, while with CPA it is able to
win a percentage (albeit small) of games.

Effects of CPA on Strategy Selection. Figures 4 and 6 show the
main experimental results of this paper, which testify to the bene-
fit of CPA for overall strategy selection in StarCraft and Wargus,
respectively. For StarCraft, the experimental setup is the same as
for the tactical-level augmentation experiments from the previous
subsection, but now we allow ROLCBP and OLCBP to consider
all strategies they extract from the game logs, instead of being re-
stricted to any specific one. Thus, the quality of strategies’ aug-
mented tactical plans determines the strategy choice for the game.
While ROLCBP makes this choice by minimizing strategies’ em-
pirical failure probability, OLCBP, our baseline, selects strategies
heuristically based on the characteristics of the map and the races
the players have picked, breaking ties randomly. In particular, for
all StarCraft maps in our experiments both the rush and the mid-

160

Blood Path Binary Burghs Bottleneck
0

20

40

60

80

100

W
in

ra
te

(a) Zerg race
Blood Path Binary Burghs Bottleneck

0

20

40

60

80

100

W
in

ra
te

Training vs. built-in AI/ playing vs. OLCBP

Training vs. OLCBP/playing vs. built-in AI

(b) Terran race
Blood Path Binary Burghs Bottleneck

0

20

40

60

80

100

W
in

ra
te

(c) Protoss race

Figure 7: Training against OLCBP and playing against static AI and vice versa.

game attack strategies turn out to match OLCBP’s criteria, so it
decides randomly between them.

As the graphs in Figure 4 demonstrate, CPA gives ROLCBP a
statistically significant advantage in strategy selection. At the same
time, similar to the tactical-level experiments, they show that if no
strategy learned from the logs is very suitable for a map, then ROL-
CBP cannot fundamentally change AI’s performance — this is the
case in the Bottleneck scenario. Fortunately, the fix for this issue
is as simple as giving ROLCBP a more diverse set of logs. To as-
certain this, we re-ran Figure 4’s experiments after adding logs with
plays of a third strategy, known among StarCraft players as Fabian,
in addition to rush and mid-game attack discussed earlier. This
strategy is not a good option on Blood Bath and Binary Burghs,
and ROLCBP indeed does not choose it there, so the results on
these two maps remain as in Figure 4. The performance on Bottle-
neck, however, shown in Figure 5, improves by a lot across each
of the three train-test splits and allows ROLCBP to beat built-in AI
most of the time. The role of plan augmentation in the decision to
choose the Fabian strategy for this map is vital. If failure probabili-
ties of the main tactical plans for mid-game attack, rush attack, and
Fabian are evaluated (lines 43-50 of Algorithm 2) against training
opponents before plan augmentation, rush attack’s failure probabil-
ity appears the lowest, implying that it is a better strategy. (Figure 3
does not reflect this, because it shows win rates of strategies against
testing opponents.) However, this map’s dynamics make deviations
from rush attack’s tactical plan hard to recover from. Performing
CPA and re-evaluating the augmented plans’ failure probabilities
reveals this and leads to the correct decision to play the Fabian
strategy.

For Wargus, due to the limitations of the testing framework, we
measure ROLCBP’s and OLCBP’s win rates against the built-in AI
playing the orc race only. ROLCBP and OLCBP, which also con-
trolled orcs, each played 20 games on each map. Results on Wargus
(Figure 6) confirm our findings from StarCraft: CPA implemented
in ROLCBP drastically improves strategy selection compared to
OLCBP. On all Wargus maps we have tested, ROLCBP wins over
half of the games against built-in AI, whereas OLCBP does not on
any single map. Last but not least, since many other RTS games
share the Stratagus game engine with Wargus, we can expect ROL-
CBP to enjoy similar advantage on them as well.

CPA’s performance against unfamiliar opponents. Besides its
ability to improve gameplay at strategic and tactical levels, the ex-
periments above hint at CPA’s robustness to previously unencoun-
tered opponents. As evidence of this, note that in the aforemen-
tioned setups ROLCBP’s win rate was evaluated on opponent races
against which it did not play during training. Nonetheless, both in
training and in testing ROLCBP’s opponents were controlled by
the same (built-in) AI, which prompts a question: does ROLCBP

perform as well when the enemy AIs in training and testing are
different?

In our final set of experiments on StarCraft, we answer this ques-
tion positively. We consider two opponent AIs: StartCraft’s built-
in AI and OLCBP. For each StarCraft race, we train ROLCBP on
game logs against that race controlled by the built-in AI, and mea-
sure its win rate against that race played by OLCBP. We also ex-
periment with the case when built-in AI’s and OLCBP’s roles are
switched. As before, we let ROLCBP play 100 games for each race,
map, and train-test AI combination.

Figure 7 presents ROLCBP’s win rates in this experiment. With
the exception of training against OLCBP and playing against built-
in AI on the Bottleneck map, OLCBP consistently and convinc-
ingly outperforms its opponents. Nonetheless, ROLCBP’s win rate
noticeably depends on the specific combination of train and test op-
ponent AIs; playing OLCBP after training on the built-in AI usu-
ally gives better results than vice versa. This is not surprising. OL-
CBP’s inferior win rates against the built-in AI in Figure 4c suggest
that the OLCBP bot is weaker. ROLCBP’s win rate suffers when it
trains against this weaker AI and then faces the stronger built-in
one. The converse also holds: note that the training provided by the
built-in AI is so powerful that ROLCBP outmatches OLCBP on
Bottleneck (Figure 7) despite the fact that, as already mentioned,
all of the strategies in its library are fundamentally unsuitable for
this map.

7. RELATED WORK
Automatic strategy and high-level tactics selection methods have

featured in several AI systems for playing RTS games; many, if
not most, are derived from case-based planning. Darmok [12], I-
Strategizer [4], and EISBot [17] use this technique with various
additions. An agent developed for the DEFCON game employs a
related technique, case-based reasoning, combining it with simu-
lated annealing and decision trees [1]. This makes case-based plan-
ning and its variants de-facto state of the art in automatic strategy
selection for RTS games.

Hierarchical Task Networks have also been used for strategy se-
lection. Besides OLCBP, which is partly based on HTNs, they have
been used for this purpose in first-person shooters [7] and role-
playing games [8].

Hard-coded techniques for strategy and tactics selection are still
strongly competitive with automatic ones, especially in complex
games such as StarCraft [13]. Finite state machines have been par-
ticularly effective for specifying fixed patterns for strategic decision-
making and other aspects of RTS games [5].

Besides strategy and tactics selection, RTS game AI’s behavior
depends on many other components, which are discussed in a re-
cent survey on this topic [13].

161

Several approaches related to CPA have been proposed in the
area of sequential decision-making under uncertainty. Possibly the
closest is incremental contingency planning, devised for planning
Mars rover missions [3]. At a high level, it operates similarly to
CPA, but considers non-adversarial environments, doesn’t face the
strategy selection problem, has different mechanisms and utility for
deciding where to add contingent branches, and, crucially, assumes
the availability of a planner to construct them.

In probabilistic planning modeled by MDPs, a related approach
is incremental plan aggregation [16]. RFF, the planner that imple-
ments it, finds a linear plan to the goal, determines states where an
agent may end up if action outcomes deviate from this plan, adds
linear plans to the goal from these states, and iteratively repeats the
process. Like ROLCBP, between iterations RFF estimates the “fail-
ure probability” of exiting the partially constructed policy tree. Un-
like ROLCBP, RFF assumes no action concurrency, which makes
choosing branching points much easier, and generates contingent
plans on-demand with a dedicated planner, whereas ROLCBP does
not need such a planner, relying on plans from its case base. Lastly,
ROLCBP’s failure probability estimates are only a heuristic for
adding contingency branches, because it works in an adversarial,
possibly non-stationary environment.

8. CONCLUSION
This paper presented concurrent policy augmentation (CPA), a

technique for addressing shortcomings of existing methods for au-
tomatic strategy and tactics selection in real-time strategy games.
These existing methods, such as OLCBP, treat strategy selection as
a hierarchical deterministic planning problem with a possibility of
replanning. Replanning in critical situations often fails, leading to
a game loss. In contrast, CPA analyzes tactical plans for available
strategies to identify their potential failure points. It attempts to mit-
igate the consequences of these failures by adding contingent plan
branches to be executed concurrently with the main plan. We imple-
mented CPA in an OLCBP-based architecture ROLCBP that selects
strategies by evaluating the failure probabilities of their augmented
tactical plans. Our experiments on popular and complex RTS games
StarCraft and Wargus show that CPA gives ROLCBP significant
advantages in win rate compared to OLCBP by improving both
tactical and strategic decision-making. It also lets ROLCBP out-
perform opponents with different behavior than those ROLCBP
encounters during training. In the future, we plan to improve our
ROLCBP implementation and turn it into a bot competitive with
entries in the StarCraft AI competition. We have discovered that
despite superior strategic performance, our bot’s low-level unit con-
trol often causes it to lose skirmishes (and hence entire games) that
state-of-the-art bots would easily win. Low-level control issues ac-
count for most of the games ROLCBP lost in this paper’s experi-
ments. Thus, despite being out of this paper’s scope, low-level con-
trol is a clear area of improvement. We believe that the usefulness
of CPA extends beyond case-based planning techniques. The hy-
pothetical advent of planners capable of efficiently generating win-
ning trajectories for RTS games would remove CPA’s dependence
on plans stored in the case base and would greatly increase CPA’s
potential.

REFERENCES
[1] R. Baumgarten, S. Colton, and M. Morris. Combining AI

methods for learning bots in a real-time strategy game. Int. J.
Computer Games Technology, 2009, 2009.

[2] M. Buro. Call for AI research in RTS games. In In
Proceedings of the AAAI Workshop on AI in Games, pages
139–141. AAAI Press, 2004.

[3] R. Dearden, N. Meuleau, S. Ramakrishnan., D. E. Smith, and
R. Wasington. Incremental Contingency Planning. In
ICAPS’03, 2003.

[4] I. Fathy, M. Aref, O. Enayet, and A. Al-Ogail. Intelligent
online case-based planning agent model for real-time
strategy games. In ISDA, pages 445–450, 2010.

[5] D. Fu and R. Houlette. The ultimate guide to FSMs in
games. AI Game Programming Wisdom 2, 2003.

[6] K. Hammond and R. Head. Case-based planning: A
framework for planning from experience. Cognitive Science,
14:385–443, 1990.

[7] H. Hoang, S. Lee-urban, and H. MuÃśoz-avila. Hierarchical
plan representations for encoding strategic game ai. In In
Proc. Artificial Intelligence and Interactive Digital
Entertainment Conference (AIIDE-05. AAAI Press, 2005.

[8] J.-P. Kelly, A. Botea, and S. Koenig. Offline planning with
hierarchical task networks in video games. In AIIDE’08,
2008.

[9] I. Little and S. Thiébaux. Probabilistic planning vs
replanning. In Workshop on International Planning
Competition: Past, Present and Future (ICAPS), 2007.

[10] C. Muise, V. Belle, and S. McIlraith. Computing contingent
plans via fully observable non-deterministic planning. 2014.

[11] J. Muñoz, G. Gutiérrez, and A. Sanchis. A human-like
TORCS controller for the Simulated Car Racing
Championship. In Proceedings 2010 IEEE Conference on
Computational Intelligence and Games, pages 473–480,
August 2010.

[12] S. Ontañón, K. Mishra, N. Sugandh, and A. Ram. On-line
case-based planning. Computational Intelligence,
26(1):84–119, 2010.

[13] S. Ontañón, G. Synnaeve, A. Uriarte, F. Richoux,
D. Churchill, and M. Preuss. A survey of real-time strategy
game AI research and competition in starcraft. IEEE Trans.
Comput. Intellig. and AI in Games, 5(4):293–311, 2013.

[14] L. Pryor and G. Collins. Planning for contingencies: A
decision-based approach. Journal of Artificial Intelligence
Research, 4:287–339, 1996.

[15] E. D. Sacerdoti. The nonlinear nature of plans. In
Proceedings of the 4th International Joint Conference on
Artificial Intelligence - Volume 1, IJCAI’75, pages 206–214,
San Francisco, CA, USA, 1975. Morgan Kaufmann
Publishers Inc.

[16] F. Teichteil-Königsbuch, U. Kuter, and G. Infantes.
Incremental plan aggregation for generating policies in
MDPs. In AAMAS’10, pages 1231–1238, 2010.

[17] B. G. Weber, M. Mateas, and A. Jhala. Building human-level
ai for real-time strategy games. In AAAI Fall Symposium:
Advances in Cognitive Systems, volume FS-11-01 of AAAI
Technical Report. AAAI, 2011.

162

	Introduction
	Background
	Concurrent Plan Augmentation
	Robust OLCBP
	Example
	Evaluation
	Related Work
	Conclusion

