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ABSTRACT
Determining the contribution of an agent to a system-level objective
function (credit assignment) is a key area of research in cooperative
multiagent systems. Multi-objective optimization is a growing area
of research, though mostly focused on single agent settings. Many
real-world problems are multiagent and multi-objective, (e.g., air
traffic management, scheduling observations across multiple explo-
ration robots) yet there is little work on their intersection.

In this work, we leverage recent advances in single-objective
multiagent learning to address multi-objective domains. We focus
on the impact of difference evaluation functions (which extracts an
agent’s contribution to the team objective) on the Non-dominated
Sorting Genetic Algorithm-II (NSGA-II), a state-of-the-art multi-
objective evolutionary algorithm. We derive multiple methods for
incorporating difference evaluations into the NSGA-II framework,
and test each in a multiagent rover exploration domain, which is
a good surrogate for a wide variety of distributed scheduling and
resource gathering problems. We show that how and where differ-
ence evaluations are incorporated in the NSGA-II algorithm is crit-
ical, and can either provide significant benefits or destroy system
performance, depending on how it is used. Median performance of
the correctly used difference evaluations dominates best-case per-
formance of NSGA-II in a multiagent multi-objective problem.
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1. INTRODUCTION
Cooperative multiagent systems focus on determining how best

to employ all agents in a system to efficiently produce a desirable
system level outcome. A key step in this process is the credit as-
signment problem, where the contribution of each agent to the sys-
tem is assessed. Credit assignment operators have been studied
in a wide variety of experimental domains [1]. However, in each
of these cases, the agent optimize a single well-defined objective
function. In the real world, it is unlikely that a single value can be
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optimized while ignoring all other concerns, and instead, multiple
must be considered simultaneously. In non-multiagent problems,
algorithms have been developed for handling multiple objectives
simultaneously. One of the most successful of these is the Non-
dominated Sorting Genetic Algorithm-II (NSGA-II) [2], which has
been used in a very wide variety of applications, from facial recog-
nition to HIV therapy to rain water reuse.

Many interesting problems involve multiple agents and multi-
ple objectives. In this work we focus on the impact of difference
evaluations — a state-of-the-art credit assignment operator — on
NSGA-II. We show that difference evaluations provide complimen-
tary benefits to NSGA-II in a multi-objective multiagent system.

2. DIFFERENCE EVALUATION FUNCTIONS
The global evaluation function (G) is the system performance

of the team as a whole. Training on this signal encourages the agent
to act in the system’s interest, but includes a large amount of noise
from other agents acting simultaneously.

The difference evaluation function (Di) is a shaped reward sig-
nal that helps an agent quickly learn the consequences of its actions
on the system [1]. It is defined as:

Di(z) = G(z)−G(z−i) (1)

where G(z) is the global system performance for the system con-
sidering the joint state-action z, and G(z−i) is G(z) for a theoreti-
cal system without the contribution of agent i. Any action taken to
increase Di simultaneously increases G, while agent i’s impact on
its own reward is much higher than its relative impact on G [1].

3. NSGA-II
NSGA-II functions on a two-stage sorting operator. For each

point it calculates a “non-domination rank" based on the points
which dominate it, and a “crowding distance", based on its proxim-
ity to other points with the same non-domination rank. Points are
sorted first by non-domination rank, and secondarily by crowding
distance [2]. Difference evaluations require a real value to function
as defined, so we first derived a real-valued function that provides
an equivalent total order of policies to NSGA-II.

4. EXPERIMENTAL RESULTS
We present Empirical Attainment Functions [3] over 100 statis-

tical runs for NSGA-II in a multiagent system using (Fig. 1) Global
Evaluations, (Fig. 2) Difference Evaluations before NSGA-II, and
(Fig. 3) Difference Evaluations after NSGA-II. The team’s goal is
to maximize the each objective of the two objectives, so an EAF
that covers more area in the objective space is better performance.

1635



Figure 1: Global NSGA-II EAF; Decentralized.

Figure 2: NSGA-II Calculation after Difference Evaluation
EAF; Decentralized

The domain is a version of the Continuous Rover Domain [1] with
two different types of data that the team must collect simultane-
ously. We simulated a team of 10 rovers observing 50 POIs that
each contain one of two types of data.

Global Evaluation.
Figure 1 shows that the team achieves moderate performance us-

ing the global evaluation, but due to the credit assignment problem,
the individuals on the team cannot effectively determine their best
policies, and the team’s performance as a whole suffers.

Difference→ NSGA-II.
Figure 2 shows that the team achieves significantly better perfor-

mance by first calculating the difference evaluation on each objec-
tive individually, and then using these values in an NSGA-II cal-
culation. This effectively solves the credit assignment problem,
and creates worst-case performance that dominates best-case per-
formance using the global evaluation.

NSGA-II→ Difference.
Finally, Figure 3 shows that if the order of operations of NSGA-

II and difference evaluations are simply reversed, taking a “dif-
ference of NSGA-II values", produces catastrophic effects on the
overall system performance. This is due to the underlying structure
of NSGA-II, where the value of a particular solution is not a func-
tion of its own values so much as it is a function of the points that
dominate it, and its neighbors in the objective space. This creates
a series of perfectly flat plateaus, and each agent individually does
not have enough effect on the system performance to move the per-
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Figure 3: NSGA-II Calculation before Difference Evaluation
EAF; Decentralized

formance to a different plateau. This results in equivalent (zero)
feedback given to many agents, even those who are improving sys-
tem performance on both objectives simultaneously.

5. CONCLUSION
In this work we have presented a novel method for integrating

the successful multi-objective algorithm NSGA-II into multiagent
systems. We first derived a real-valued fitness assignment evalu-
ation that is equivalent to NSGA-II for use with additional calcu-
lations. We then used this formulation in tandem with difference
evaluations, and showed that difference evaluations and NSGA-II
can provide complimentary benefits to system performance: dif-
ference evaluations address the credit assignment problem, while
NSGA-II effectively handles multiple objectives simultaneously.
We also discovered that because of the formulation of NSGA-II,
where many neighboring points in the objective space are valued
equivalently, the order of operations when incorporated with differ-
ence evaluations is paramount, and can either lead to strong benefits
to system performance, or destroy system performance.

We show that credit assignment is of paramount importance in a
multiagent, multi-objective setting, and mechanisms must be used
that address both problems simultaneously. Furthermore, the mech-
anisms used to address these problems may have unforeseen inter-
actions.

We are currently expanding this work to consider other multi-
objective evolutionary algorithms and their interactions with credit
assignment and fitness shaping.
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