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ABSTRACT

Traditionally, traffic assignment allocates trips to links in a traffic

network. Nowadays it is also useful to recommend routes. Here,

it is interesting to recommend routes that are as close as possible

to the system optimum, while also considering the user equilib-

rium. To compute an approximation of such an assignment, we use

a hybrid approach in which an optimization process based on an

evolutionary algorithm is combined with multiagent reinforcement

learning. This has two advantages: first, the convergence is acceler-

ated; second, the multiagent reinforcement learning resembles the

adaptive route choice that drivers perform in order to seek the user

equilibrium. In short, our hybrid approach aims at incorporating

both the system and the user perspectives in the traffic assignment

problem. Results confirm that this hybridization accelerates the

computation and delivers an efficient assignment.
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1. INTRODUCTION
There are several ways to perform traffic assignment. One of

them is based on the fact that drivers perform experimentation in

order to assess the utility of a given number of alternative routes:

self-interested drivers adapt their route choices for the n-th day

based on the travel time (or any other utility function) of the pre-

vious days. This is the basis of the the so-called user equilibrium

(UE) or Nash equilibrium. Another possibility is to compute an as-

signment that minimizes the average trip time for all drivers. The

assignment resulting from this principle is called system optimum

(SO). While in a real, congested, urban traffic network the observed
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flows are more likely to be close to an user optimum (though this

varies greatly), traffic authorities strive to obtain the SO because

this is socially more efficient. One way to achieve the SO is via

traffic information and recommendation. However, because not ev-

eryone has access to such information, part of the drivers will still

tend to perform adaptive route choices that lead to their individual

best.

In this paper we take advantage of the fact that more and more

information is being collected by some actor in the traffic system

(be it a traffic authority or an independent actor such as Waze or

Google traffic), and that route guidance is becoming a reality. In

order to recommend routes, an assignment must be computed. It is

then in the interest of the collectivity that such guidance aligns with

the SO. However, since this normally means that some drivers are

assigned to routes that are not in their particular interests (i.e., are

far from the UE for these particular drivers), our approach is a hy-

brid between the SO and the UE. While fundamentally computing

the SO, this approach also considers individual UEs.

In our hybrid traffic assignment method, the SO is computed via

a genetic algorithm (GA). To account for drivers experimentation,

some solutions of the pool are composed by routes that would have

been computed by drivers themselves in their process of seeking

the UE. In our case this is computed via Q-learning (QL). Because

each choice is likely to affect the reward of many others, this is a

typical multiagent reinforcement learning (RL) problem.

Due to lack of space we omit concepts related to the traffic as-

signment problem (TAP). We only remind about the complexity of

computing Nash equilibria in general, and consequently that the

UE is computed via approximations. Similarly, analytical methods

to compute an exact solution to the SO (e.g., based on convex op-

timization) are not always feasible. For a discussion on this and an

overview on related work, see [1].

2. METHODS
To deal with the computation of the SO, here a GA is employed,

in which the objective function is to minimize the average travel

time over all drivers. A solution for the TAP is the allocation of

given portions of the flows to determined edges of a network. One

important point that has motivated our approach is that giving rec-

ommendations simply from the point of view of the performance of

the system may hit some drivers since their individual travel times

may increase. These will tend to unilaterally divert to other routes.

Therefore, our approach takes this into account: when assembling

the population of solutions that takes part in the selection process

of the GA, our approach includes solutions that are computed the
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Algorithm 1 Pseudo-code for the GA+QL approach

1: INPUT: population size, elite size, mutation and crossover

probabilities (for the GA); learning rate, initial value and de-

cay rate on ǫ (QL)

2: INPUT: k shortest paths that are available as action selection

for each flow

3: generate GA population

4: while generation < max_nb_generations do

5: evolve (elitism, reproduction, mutation, crossover)

6: // QL:

7: for each trip or group of trips do

8: ε-greedy action selection: action is randomly chosen with

probably 1− ε or route is the one with highest Q-value

9: end for

10: for each trip or group of trips do

11: simulate trip, collect travel time, update Q-table

12: end for

13: substitute GA’s worst individual by one formed by the indi-

vidual route choices resulting from QL action selection

14: end while

way an individual driver would, if he would learn to select routes

individually. As mentioned, QL is used for this purpose. Here, the

reward of each agent is its individual travel time, not the average

travel time. Each agent has to select an action from its action set.

These sets are composed by k routes that are computed using a k

shortest path algorithm to travel from the agent’s origin to its des-

tination. For action selection we use ǫ-greedy, starting with high

exploration. To this aim we initialize ǫ with a high value, and allow

it to decay smoothly by a rate d.

The computation of the SO is as follows. Each individual of the

population of solutions is a set of shortest paths, one for each trip

(i.e., one for each agent). Thus the length of the chromosome (that

represents each solution) is the number of trips, and each position

can take an integer value between 0 and k − 1. A chromosome

is, for instance, 3 7 0 6 6 4 ...0 1 (here for k = 8). Then, given

a population containing p chromosomes, the GA evolves this pop-

ulation so that the average travel time is minimized. The evolu-

tion is made in a standard way with selection for crossover pairing

with probability c and a mutation probability pm, plus elitism. The

pseudo-code for our approach (called GA+QL) is as Algorithm 1.

In order to illustrate the approach, a non-trivial traffic network

is used, namely the one suggested in Chapter 10 of [2] (Exercise

10.1), where 1700 trips and four flows are considered: from nodes

A and B to nodes B and M. Henceforth this network is referred as

OW network. To compute the travel times, the following volume-

delay function is used: te = te0 + 0.02 · qe, where te is the travel

time on edge e, te0 is the travel time per unit of time under free flow

conditions, and qe is the flow using e. This simple scenario goes

far beyond simple two-route scenarios that are commonly used. It

captures properties of real-world scenarios, like interdependence

of routes with shared edges, heterogeneous demand throughout the

complete network, and it has more than a single flow.

3. EXPERIMENTS AND RESULTS
To assess the efficiency of the proposed method, the main per-

formance measure is the same as used in [2]: travel times averaged

over all trips as well as over trips in each flow.

Regarding the parameters of the GA, a population of size 100

was used, with elitism (the 5 best solutions were transferred to the

next generation without change). For the remaining 95 individuals,

Table 1: Average Travel Time per Flow: all-or-nothing, incre-

mental assignment, GA-only, and GA+QL (k = 8, pm = 0.001,

c = 0.2, α = 0.9, d = 0.9)

All-or- Incre- GA GA+QL

Flow nothing mental (gen. 100) (gen. 100)

AL 114 75.92 78.67 70.86

AM 94 70.18 71.27 65.22

BL 98 77.96 82.43 69.58

BM 71 62.48 69.21 62.42

all 96.35 71.77 75.31 67.14

selection was done using crossover rate c = 0.2 and mutation rate

pm = 0.001; k = 8.

We do not show the plots of travel time along generations, but

note that if the GA is not hybridized with the QL, the convergence

happens much later than when the GA+QL approach is used. This

can be seen at the last two columns in Table 1: at generation 100

(in case of α = 0.9 and d = 0.9), travel times computed by the GA

are higher than those computed by GA+QL. In particular, when all

trips are considered (last line in the table), the travel time of the GA

is 11% higher than that of the GA+QL. For sake of comparison,

Table 1 also includes the results related to two standard methods

to deal with the TAP: all-or-nothing (which disregards congestion),

and the incremental method (see [2]). Results referring to the use

of QL alone (not shown) are good in many cases, but there is an

exploration phase where random actions are selected. Therefore it

takes more time for the QL alone to reach the same performance of

the GA+QL approach.

As mentioned previously, not only the average travel time over

all drivers matters, but also travel times in each of the four flows.

Table 1 (lines 1–4) shows these values. In particular, for flow BL,

there is a gain of 16% when GA+QL is used (versus GA).

4. CONCLUSIONS AND FUTURE WORK
When recommending routes for drivers, it is interesting that these

are aligned with a traffic assignment that approximates the system

optimum. However, some self-interested drivers may still perform

adaptive route choice at individual level, seeking to minimize their

own travel time. To address this, our approach combines GA with

QL, where routes that are learned at individual level accelerate the

convergence of the GA. Our results show that this hybrid approach

is able to find solutions (in terms of average travel time) that are

better than other methods, and that this is done faster.

Future works relate to simulating the learning process of hetero-

geneous trips, as for instance those associated with different learn-

ing paces by their drivers, and/or, adherence to route recommen-

dation. This is barely addressed in the literature but is important

because in reality, the population of drivers is heterogeneous.
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