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ABSTRACT
We study the problem of a buyer (aka auctioneer) who gains
stochastic rewards by procuring multiple units of a service
or item from a pool of heterogeneous strategic agents. The
reward obtained for a single unit from an allocated agent
depends on the inherent quality of the agent; the agent’s
quality is fixed but unknown. Each agent can only supply a
limited number of units (capacity of the agent). The costs
incurred per unit and capacities are private information of
the agents. With known qualities, a) we provide the charac-
terization for any Bayesian incentive compatible (BIC) and
Individually rational (IR) mechanism, and b) we propose an
optimal, truthful mechanism 2D-OPT. To learn the qualities
in addition, a) we provide sufficiency conditions for an allo-
cation rule to be stochastic BIC and IR, and b) we design a
novel learning, stochastic BIC and IR mechanism, 2D-UCB.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent
agents; I.2.6 [Learning]: Parameter Learning

Keywords
Optimal mechanism design, multi-armed bandit mechanism,
multi-unit procurement, strategic agents

1. INTRODUCTION
Consider a hospital (auctioneer) interested in procuring sev-
eral units of a generic drug from various pharmaceuticals
who can supply limited quantities at different costs. The
quality of the procured drug from a supplier is inherent to
the supplier. Motivated by this, we consider a procurement
scenario where a buyer wishes to procure multiple units of a
service or item from a pool of heterogeneous agents with un-
known qualities, privately held costs, and privately held lim-
ited capacities. Our goal is to design a procurement auction
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that learns the qualities of the agents, elicits true costs and
capacities from the agents, and maximizes the expected util-
ity of the auctioneer. In a non-strategic version, the classical
Multi-Armed-Bandit (MAB) techniques can be used [4]. On
the other hand, if all the agents have the same known qual-
ity (homogeneous) but with strategic costs and capacities,
the auctioneer can deploy the techniques in [2, 3].

2. NOTATION AND PRELIMINARIES
Let L denote the number of units to be procured from an
agent pool N = {1, 2, . . . , n}. Let qi ∈ [0, 1], ci ∈ [ci, ci]

and ki ∈ [ki, ki] represent the quality, the true cost and
the true capacity of agent i. Auctioneer obtains an expected
reward of Rqi on procuring an unit from agent i where R
is a fixed positive real number. Let ĉi ∈ [ci, ci] and k̂i ∈
[ki, ki] denote the reported cost and the reported capacity
respectively. We assume that the agent cannot over-report
his capacity, because it is detected eventually when the agent
fails to deliver. If all the parameters are known, then one can
solve the following optimization problem which maximizes
the utility of the auctioneer:

max
n∑
i=1

(
xiRqi − ti

)
s.t. xi ∈ {0, 1, . . . , k̂i} ,

∑
i

xi ≤ L, (1)

where, xi represents the number of units that are procured
from an agent i and ti denotes the payment given to an
agent i. We assume an independent private value model.
Let fi(ci, ki) and Fi(ci, ki) denote the joint probability den-
sity function and cumulative density function respectively
which are common knowledge. Let X and T denote the ex-
pected allocations and expected payments when expectation
is taken over bids of other agents.

3. AUCTION WITH KNOWN QUALITIES
We begin with the characterization for any BIC, IR mecha-
nism with heterogeneous known qualities.

Theorem 1 A mechanism is BIC and IR iff ∀i ∈ N ,

1. Xi(ĉi, k̂i; q) is non-increasing in ĉi, ∀q and ∀k̂i ∈ [ki, ki].
2. ρi(ĉi, k̂i; q) ≥ 0 , and non-decreasing in k̂i ∀ q and ∀ ĉi
3. ρi(ĉi, k̂i; q) = ρi(c̄i, k̂i; q) +

∫ ci
ĉi
Xi(z, k̂i; q)dz
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Using Theorem 1, we arrive at an allocation and payment
rule which ensures optimality, BIC and IR.

Theorem 2 Suppose the allocation rule maximizes
n∑
i=1

∫ c̄1

c1

. . .

∫ c̄n

cn

∫ k̄1

k1

. . .

∫ k̄n

kn

(
Rqi −

(
ci +

Fi(ci|ki)
fi(ci|ki)

))
xi(ci, ki, c−i, k−i)f1(c1, k1) . . . fn(cn, kn) dc1 . . . dcn dk1 . . . dkn

subject to conditions 1 and 2 of Theorem 1. Also suppose

Ti(ci, ki; q) = ciXi(ci, ki; q) +

∫ ci

ci

Xi(z, ki; q)dz (2)

then such a payment scheme and allocation scheme consti-
tute an optimal auction satisfying BIC and IR.

Analogous to the literature on optimal auction [2, 3], we
assume regularity on our type distribution as follows.

Definition 1 (Regularity) We define the virtual cost func-

tion ∀i ∈ N as Hi(ci, ki) := ci+
Fi(ci|ki)
fi(ci|ki)

. We say that a type

distribution is regular if ∀i, Hi is non-decreasing in ci and
non-increasing in ki.

2D-OPT mechanism: Based on Theorem 2 and using the
assumption of regularity, we propose an optimal, DSIC and
IR mechanism, 2D-OPT [1], which allocates units based on
non-increasing order of virtual costs and the payments are
externality like which computes eq. (2).

4. AUCTION WITH UNKNOWN QUALITIES
We now discuss a set of natural properties which a learning
mechanism ideally has. It also turns out that these proper-
ties are sufficient to ensure BIC and IR.

Definition 2 (Well-Behaved Allocation Rule) An allo-
cation rule x is called a Well-Behaved Allocation if:
1. Allocation to any agent i for the unit being allocated in

round j, xji , depends only on the agent’s bids and the
reward obtained for j units that are procured by the auc-
tioneer so far and is non decreasing in terms of costs.

2. For the allocation in round j and for any three distinct
agents {α, β, γ} such that jth round unit is allocated to β.
A change of bid by agent α should not transfer allocation
of jth round unit from β to γ if other quantities are fixed.

3. xi is non-decreasing with increase in capacity ki

Property 1 states that the allocation should not depend on
any future rewards which are not observed. Property 2 is
similar to Independent of Irrelevant Alternatives (IIA) prop-
erty i.e. if an agent i changes his bid then it should not affect
the allocations of other agents. Property 3 states the alloca-
tion rule doesn’t penalize an agent with higher capacity.

Theorem 3 For every well-behaved allocation rule, there
exists a transformation that produces the transformed alloca-
tion (x̃) and payment (t̃) such that the resulting mechanism
M = (x̃, t̃) is stochastic BIC and IR.

An example of such a transformation is Algorithm 2. The
transformation mechanism ensures truthfulness as it can be
shown that the expected payment satisfies eq. (2) [1].

We now propose mechanism 2D-UCB (Algorithm 3),under
regularity assumption, which procures one unit at a time,
learns the quality and makes the allocation similar to 2D-
OPT on the basis of learnt qualities so far. The payment is
computed with the help of transformed mechanism given in
Algorithm 2.

Theorem 4 2D-UCB is stochastic BIC and IR.

ALGORITHM 1: Self-resampling Procedure

Input: bid ĉi ∈ [ci, ci], parameter µ ∈ (0, 1)
Output: (αi, βi) such that ci ≥ αi ≥ βi ≥ ĉi

1 with probability (1− µ), αi ← ĉi, βi ← ĉi
2 with probability µ
3 Pick ĉ′i ∈ [ĉi, ci] uniformly at random.
4 αi ← recursive(ĉ′i), βi ← ĉ′i
5 function Recursive(ĉi)
6 with probability (1− µ), return ĉi
7 with probability µ, pick ĉ′i ∈ [ĉi, ci] uniformly at random,

return Recursive(ĉ′i)

ALGORITHM 2: Mechanism Transformation

Input: ∀i, bids ĉi ∈ [ci, ci], k̂i ∈ [ki, ki], parameter
µ ∈ (0, 1), allocation rule x

Output: Allocation rule x̃ and the payment rule t̃
1 Obtain modified bids as (α, β) using Algorithm 1

2 Allocate according to x̃(ĉ, k̂) = x(α(ĉ), k̂)

3 t̃i(ĉ, k̂) = ĉix̃i + Pi, Pi =

{
xi(α(ĉ),k̂)

µF′
i(βi(ĉi),ĉi)

, ifβi(ĉi) > ĉi

0, otherwise.

ALGORITHM 3: 2D-UCB Mechanism

Input: ∀i ∈ N , ĉi ∈ [ci, ci], k̂i ∈ [ki, ki], µ ∈ (0, 1), R
Output: A mechanism M = (x, t)

1 ∀i ∈ N , q̂+
i = 1, q̂−i = 0, ni = 1

2 Obtain modified bids as (α, β) using Algorithm 1
3 Allocate one unit to all agents to estimate quality q̂

4 q̂i = q̃i(i)/ni, q̂
+
i = q̂i +

√
1

2ni
ln(t)

5 for t = n to L do

6 Compute Hi = αi +
Fi(αi|k̂i)
fi(αi|k̂i)

7 i = arg max{js.t.kj>nj}Rq̂
+
j −Hj and Ĝi = Rq̂+

i −Hi
8 if Ĝi > 0 then

9 Procure from i, update q̂i, q̂
+
i = q̂i +

√
2
ni
ln(t)

10 else
11 break \\ Don’t allocate future units to anyone

12 T̃i = ĉini + Pi, where, Pi =

{
1
µ
ni(ci − ĉi), ifβi > ĉi

0, otherwise.

5. SIMULATIONS
We evaluate 2D-UCB via simulations and compare the ex-
pected utility per unit given by 2D-UCB against the opti-
mal benchmark 2D-OPT which is fully aware of underlying
quality. We also compare against an ε−separated mechanism
which allocates first εL units to all the agents irrespective of
their bids. The rest are allocated using 2D-OPT. The simula-
tions indicate that all the mechanisms yield average utilities
per unit which asymptotically converge to 2D-OPT [1]. The
performance of 2D-UCB however is superior in the sense
that it approaches 2D-OPT faster.
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