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ABSTRACT
Transfer learning has proven to be a wildly successful ap-
proach for speeding up reinforcement learning. Techniques
often use low-level information obtained in the source task
to achieve successful transfer in the target task. Yet, a most
general transfer approach can only assume access to the out-
put of the learning algorithm in the source task, i.e. the
learned policy, enabling transfer irrespective of the learning
algorithm used in the source task. We advance the state-of-
the-art by using a reward shaping approach to policy trans-
fer. One of the advantages in following such an approach, is
that it firmly grounds policy transfer in an actively develop-
ing body of theoretical research on reward shaping. Exper-
iments in Mountain Car, Cart Pole and Mario demonstrate
the practical usefulness of the approach.

Categories and Subject Descriptors
I.2.6 [Learning]: Miscellaneous

General Terms
Algorithms, Performance

Keywords
Reinforcement Learning; Transfer Learning;
Reward Shaping

1. INTRODUCTION
Reinforcement learning is a paradigm that allows an agent

to learn how to control a system in order to achieve specific
goals. The agent is guided by reward/punishment received
for the behaviour it exhibits, adjusting its behaviour in or-
der to maximize the cumulative reward. In complex tasks,
or tasks with sparse rewards, learning can be excruciatingly
slow (as many learning algorithms take the tabula rasa ap-
proach), and the agent cannot do better than behaving ran-
domly until feedback is received.

A lot of research in this domain is therefore dedicated to
speeding up the learning process, relying on the incorpora-
tion of various pieces of external knowledge. Particularly
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the use of knowledge transfer [20], i.e. transferring knowl-
edge learned in a previous (source) task, has received a lot
of attention in recent years, thanks to the publication of a
few seminal papers that propose simple and intuitive tech-
niques, achieving impressive improvements in learning [7,
11, 19]. Yet, many of these techniques involve the use of low
level information obtained in the source task, which may not
be transferrable to or incompatible with the agent learning
in the new task, as the algorithms used in source and target
task may differ in many ways. In the most basic case, one
can only assume access to the learned behaviour, or policy,
in the source task, which is the output of any reinforcement
learning algorithm (and other techniques, such as learning
from demonstration). This has lead to policy transfer, i.e.
the use of an old policy to speed up learning in a new task,
without any reference to a low level algorithm-specific rep-
resentation of that policy [6, 22].

In this paper, we investigate the use of reward shaping to
achieve policy transfer. Reward shaping is another popular
approach used to speed up reinforcement learning. Shaping
means modifying the basic reward signal with some extra re-
ward to bias the agent’s exploration. Potential-based reward
shaping is a form that is firmly grounded in theory [3, 13]
and has had many empirical successes [2, 4, 5]. While many
heuristics can be easily formulated as potential functions
(e.g. height in Mountain Car), it is a lot harder to define
behaviour-based heuristics in that form without losing in-
formation (e.g. go left when the pole is leaning left in Cart
Pole). However, recent research in shaping has lead to the
development of a technique that allows any reward function
to be transformed into a potential-based shaping function,
therefore allowing any non-potential-based shaping function
to benefit from the theoretical guarantees of potential-based
shaping [8]. We exploit these results to achieve policy trans-
fer through shaping, providing a theoretical basis for this
approach to transfer. The connection between reward shap-
ing and transfer learning is not an unnatural one, as these
techniques are not only similar in purpose, but often are
so on a technical level too, as e.g. static potential-based
reward shaping is shown to be equivalent, given the same
experiences, to Q-value initialization [24], which is exactly
what many transfer learning techniques do [19, 21].

In the following sections, we provide the reader first with
preliminaries on reinforcement learning, reward shaping and
transfer learning, followed by an exposition of the proposed
approach to policy transfer. In the experimental section,
we show how this approach compares to state-of-the-art in
policy transfer on three benchmark problems.
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2. PRELIMINARIES
In this section we describe the body of research that is

relevant to the work presented in this paper.

2.1 Reinforcement Learning
Reinforcement learning (RL) [17] is a paradigm that al-

lows an agent to optimize its behaviour while operating in
a given environment. It is rewarded or punished for the
behaviour it exhibits, and its aim is to maximize the ac-
cumulated reward over time, which by definition amounts
to solving the task. More formally, the environment is de-
fined as a Markov Decision Process (MDP) 〈S,A, T, γ,R〉.
S = {s1, s2, . . .} is the set of states the environment can
be in, and A = {a1, a2, . . .} is the set of actions the learn-
ing agent can execute. Executing action a when the envi-
ronment is in state s makes it transition to state s′ with
probability T (s′|s, a), yielding R(s, a, s′) as reward for that
transition. Finally, γ, the discounting factor, defines how
important future rewards are. The goal is to learn a policy
π that probabilistically maps states to actions in such a way
that the expected discounted cumulative reward, the return,
is maximized.

Reinforcement learning algorithms either directly search
the policy space to find a policy that maximizes the re-
turn, or estimate the expected returns and derive a pol-
icy from those. The learning algorithms used in this pa-
per are of the second type, and more specifically temporal-
difference (TD) learning algorithms. These estimate state
(V ) or state-action (Q) value functions, that represent the
return expected while following some behaviour policy. Al-
gorithms such as Q-learning incrementally update these es-
timates based on the rewards observed while the agent is
interacting with the environment:

Q(s, a)← Q(s, a) + αδ

with α the learning rate, and δ the temporal-difference error:

δ = R(s, a, s′) + γmax
a′

Q(s′, a′)−Q(s, a)

Given certain conditions, such as the agent’s exploration
and learning rate going to zero, Q-learning is guaranteed to
converge to the optimal values Q∗, from which the optimal
policy π∗ can easily be derived:

π∗(s) = arg max
a

Q∗(s, a)

The basic form of this type of algorithm operates on a
table that stores the values for every (s, a) pair. In continu-
ous and/or very large state-spaces, the tabular approach is
impractical or even impossible, and function approximation
techniques are required. With linear function approximation
techniques, such as the popular tile-coding [1], states are
represented using a feature vector φs, and the Q-function is
approximated using a set of weights θ:

Q(s, a) = θTa φ(s)

The weight vector is updated using an update-rule similar
to the one used in the tabular case:

θ ← θ + αδ

2.2 Reward Shaping
Reward shaping provides the agent with an extra reward

signal F that is added to the environment’s reward R, mak-
ing the agent learn on the composite signal RF = R +

F . The shaping reward F usually encodes some kind of
heuristic knowledge, and is intended to complement the typ-
ically sparser signal R. Since the agent’s goal is defined
by the reward function (solving the task optimally means
finding a policy that achieves the maximum accumulated
reward in expectation), changing the reward signal may ac-
tually change the task. Ng et al. [13] proved that the only
sound way to shape without changing the task is through
potential-based shaping. That is, define a potential func-
tion Φ over the state space, and define F as the difference
between the potential of states s′ and s, given observed tran-
sition (s, a, s′):

F (s, a, s′) = γΦ(s′)− Φ(s)

This formulation preserves the total order over policies, and
therefore the optimality of policies.

This result was extended to shaping over state-action pairs
(s, a) by Wiewiora et al. [25]:

F (s, a, s′, a′) = γΦ(s′, a′)− Φ(s, a)

This allows for the incorporation of more specific informa-
tion, pertaining to both states and actions. Devlin et al. [3]
extended Ng’s potential-based reward shaping to dynamic
potential-based shaping, allowing the shaping function to
change over time:

F (s, t, s′, t′) = γΦ(s′, t′)− Φ(s, t)

Finally, Harutyunyan et al. [8] combine these two extensions
into dynamic shaping over state-action pairs:

F (s, a, t, s′, a′, t′) = γΦ(s′, a′, t′)− Φ(s, a, t)

All of these extensions preserve the total order over policies
and therefore do not change the task, given Ng’s original
assumptions.

Harutyunyan et al. developed this last extension to set the
stage for their paper’s main result: they show how any re-
ward function R† can be transformed into a potential-based
shaping function, by learning a secondary Q-function Φ† in
parallel on the negation of R†, and using that to perform dy-
namic shaping on the main reward R. The secondary value
function Φ† must be learned on-policy, with a technique such
as SARSA [15]:

Φ†(s, a)← Φ†(s, a) + βδΦ†

where

δΦ†
= −R† + γΦ†(s′, a′)− Φ†(s, a)

When Φ† converges, F (s, a, s′, a′) = R†(s, a) in expecta-
tion. In other words, when the secondary value function has
converged, the main value function will be supplied with a
potential-based reward shaping that is equivalent to the re-
ward function R†. Of course, even before convergence, Φ†

will reflect some useful information pertaining to R†, like
the main Q-function will reflect useful information towards
good policies before convergence to the optimal policy.

2.3 Transfer Learning
Transfer learning allows a learning agent to re-use knowl-

edge obtained in a previous task, aiming to learn faster in
the current task. Various approaches for transfer have been
proposed, varying in the learning algorithms they work with,
the type and representation of information that is trans-
ferred, allowed task differences, etc. [20].
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Typically, transfer algorithms will be provided an inter-
task mapping, to translate between the state and action
spaces of the source and target task, in order to leverage
the information transferred. Such mappings χS and χA, for
state and action spaces respectively, take a state or action
from the target task and map it onto a state or action in the
source task:

χS(starget) = ssource

and

χA(atarget) = asource

Conversely, ρ represents a mapping from source task to
target task:

ρS(ssource) = starget

and

ρA(asource) = atarget

Note that χS(ρS(ssource)) = ssource need not always be true
(and similarly for χA and ρA), as both χ and ρ need not be
injective.

In this paper, we focus on policy transfer, the most general
case with respect to the knowledge transferred, assuming
the only available knowledge from the source task is the
output of the learning algorithm, i.e. the policy. The target
algorithms we consider are any value-based algorithms that
can benefit from reward shaping.

Fernandez and Veloso [6] propose Probabilistic Policy Reuse
(PPR) to transfer a policy to a TD learner. Whereas a typi-
cal reinforcement learning agent will probabilistically choose
to either exploit the knowledge it has learned, or explore a
random action (the exploration-exploitation trade-off), PPR
adds a third option, which is the exploitation of a previous
policy. With probability ψ, an action is selected according
to the old policy; with probability 1− ψ, a standard action
selection mechanism, such as ε-greedy is used. ψ is decayed
over time to allow the learner to emphasize new knowledge
more as it learns more in the new task.1 This adds a bias
to the exploration of the agent, intended to guide it towards
good policies in the new task. To use the old policy in the
new task, the target task’s state needs to be mapped to the
source task’s state, an action needs to be selected accord-
ing to the source task’s policy, and that action needs to be
mapped to the target task:

πPPR(starget) = ρA(πsource(χS(starget))

There are other policy transfer algorithms besides PPR,
but none, to the best of our knowledge, that transfer a full
policy to TD-learners. Most such techniques will consider
learning options in the source task and transfer those to
the new task [10, 14]. Other popular transfer learning tech-
niques transfer low-level information, such as Q or V val-
ues [21].

1In the original PPR algorithm, ψ is reset at the beginning
of every episode and decays during the episode, so that the
agent relies more on the old policy in the beginning of an
episode and less at the end. This makes little sense in the
domains considered here, as one would rather want ψ to
decay over episodes, so that the agent relies more on the old
policy in early episodes and less in later episodes. PPR was
also interpreted this way in [23].

3. POLICY TRANSFER USING REWARD
SHAPING

Given these preliminaries, we go on to describe our ap-
proach to policy transfer. To achieve policy transfer using
reward shaping (PTS), we use the reward shaping technique
developed by Harutyunyan et al. [8], which turns an arbi-
trary reward function into a potential-based shaping func-
tion, see Preliminaries. As the authors note, the approach
is especially well-suited for the incorporation of behaviour-
based knowledge, which is much harder to directly describe
as a potential function without losing some information.
Since a policy is behaviour-based knowledge, we build on
this technique to realize policy transfer.

In order to use the technique, we need to define a re-
ward function Rπ in the new task that captures the policy
π transferred from the source task. The idea is to reward
the learning agent for taking action a in state s, propor-
tionally to the probability of the mapped state-action pair
(χS(s), χA(a)) in the transferred policy:

Rπ(s, a, s′) = π(χS(s), χA(a)) (1)

Even though the formulation works for stochastic as well as
deterministic policies, in this paper, we only focus on the
latter. Therefore, Rπ will always be either 0 or 1.

The negation of this reward function is then learned in a
secondary value function Φπ, whose values are used to shape
the main reward R:

RF (s, a, s′, a′) = R(s, a, s′) + Fπ(s, a, t, s′, a′, t′)
Fπ(s, a, t, s′, a′, t′) = γΦπ(s′, a′, t′)− Φπ(s, a, t)

Since this shaping is learned in parallel to the main learning,
it is advisable to use a higher learning rate for the secondary
value function, so that this information becomes available
faster [8].

Note that a simpler approach to policy transfer using
shaping could be taken, using a static potential function:

Φ(s, a) = π(χS(s), χA(, a)) (2)

The problem here, as argued in [8], is that when using this
approach, a transition between two state-action pairs (s, a)
with both high potential yields a very small shaping reward
(as F (s, a, s′, a′) = γΦ(s′, a′)−Φ(s, a)), while with the more
elaborate technique, the actual shaping reward F would be
high, which is desirable. We have evaluated the simpler
approach empirically, and it proved to be inferior to the
technique explained in this section. We omit these results
from the experimental section for clarity of exposition.

In approaching policy transfer from a reward shaping per-
spective, we are able to ground this approach in the theory
that has developed around potential-based reward shaping,
leveraging the associated convergence guarantees for sound
policy transfer.

4. EXPERIMENTS
To demonstrate the practical use of policy transfer us-

ing reward shaping as outlined in this paper, we evaluate
the technique on two common reinforcement learning bench-
marks, and a more complex domain: Mountain Car, Cart
Pole and Mario. We compare with PPR, and evaluate the
strengths and weaknesses of both techniques. Experiments
in every domain are averaged over 100 trials, and the source
task learning is rerun for every transfer trial. Whenever

183



we say methods perform differently or similarly, this is sup-
ported by the Student’s t-test (p = 0.05).

4.1 Mountain Car 3D
In the standard Mountain Car task [16], the agent is in

control of a car and needs to drive this car up a hill. Yet, the
car is underpowered, and therefore cannot drive up the hill
in one go. The agent needs to learn to build up momentum
driving the car up and down two opposite hills, until enough
potential energy has built up to drive to the top of the hill
where the goal is located. The state space is described by the
position of the car and its velocity (x, ẋ), while the actions
available to the agent involve applying either negative, pos-
itive, or no force to the car (A = {Left,Right,Neutral}).
The agent receives a per-step reward of −1, encouraging it
to find the goal as quickly as possible. The 3D version of
the task [18] (or 4D as some would have it) is very simi-
lar, except that the terrain is three dimensional, and the
car can apply force along two axes, although only one at
a time (A = {East,West,North, South,Neutral}). The
state space consists of the car’s position and velocity in two
dimensions (x, ẋ, y, ẏ).

To learn this task, we use Q(λ)-learning and SARSA(λ)
with tile-coding in the 2D and 3D tasks respectively (each
chosen because it yields the best performing base-line agent
in its respective task). In the 2D task, parameters are α =
0.1
14

, γ = 1, ε = 0.1, λ = 0.95, with 14 10× 10 tilings. In the

3D task, parameters are α = 0.2
14

, γ = 1, ε = 0.05, λ = 0.95,
with 14 10 × 10 × 10 × 10 tilings. Weights are initialized
pessimistically to − 250

14
, which yields better performance in

both base learner and agents using transfer.
In PPR, to take an action from the 2D Mountain Car

policy, first the 3D state must be mapped to the 2D state, an
action must be selected according to the transferred policy,
and then that 2D action must be mapped onto a 3D action.
Both of these mappings are ambiguous:

χS((x, ẋ, y, ẏ)) =

{
(x, ẋ) probability 0.5

(y, ẏ) probability 0.5

ρA(Left) =

{
West probability 0.5

South probability 0.5

ρA(Right) =

{
East probability 0.5

North probability 0.5

ρA(Neutral) = Neutral

This ambiguity prevents one to use the old policy to its
full potential with PPR. ψ, the parameter controlling how
frequently the old policy is used, is initially set to 1, and we
tuned ψ to decay by 0.99 after every episode.

Unlike PPR, PTS can use the old policy completely, as the
values obtained from both possible state mappings can be
combined, and actions are mapped from 3D to 2D, which is
an unambiguous mapping, as opposed to the mapping from
2D to 3D:

χA(West) = Left

χA(South) = Left

χA(East) = Right
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Figure 1: Basic Q(λ)-learner learning Mountain Car
2D. Convergence happens after about 50 episodes.

χA(North) = Right

χA(Neutral) = Neutral

The secondary reward function used for shaping is then:

Rπ(s, a, s′) =
π(χS,1(s), χA(a)) + π(χS,2(s), χA(a))

2

with χS,1 and χS,2 indicating the two possible state map-
pings. The learning rate for the secondary value function,
used for shaping, is β = 0.5

14
.

Figure 1 shows the basic Q-learner learning the 2D Moun-
tain Car task. We perform two transfer experiments, either
transferring after 25 or 100 episodes of learning in the 2D
Mountain Car task. This allows us to investigate how these
techniques perform when transferring either a suboptimal or
near-optimal policy.

Figure 2 shows how both techniques perform when using
a transferred policy that is suboptimal. Whereas PPR per-
forms worse compared to the base learner, PTS results in
faster learning, despite the transferred policy being far from
optimal. When the transferred policy is near-optimal in the
source task (Figure 3), PPR manages a big jumpstart in
performance, as it immediately starts using the transferred
policy. With the shaping approach on the other hand, a
number of experiences are required before the transferred
knowledge becomes apparrent in the learning process. De-
spite the jumpstart, PPR cannot maintain this level of per-
formance and quickly degrades before improving again (we
discuss this phenomenon at the end of the paper), while
PTS again achieves a statistically significant improvement
in learning.

Since PTS and PPR are complementary on a technical
level (the former modifies the reward signal, the latter af-
fects action selection), we can investigate how they perform
combined. During initial episodes, PTS+PPR performs the
same as PPR, as with high initial ψ, action selection is fully
controlled by PPR. As ψ decays, PTS+PPR’s performance
does not drop as much as with PPR alone.

4.2 Cart Pole
Cart Pole [12] is a task in which the agent controls a cart

with a pole on top. The goal is to keep the pole balanced for
as long as possible. The agent can move the cart either left
or right within a given interval in a single dimension. The
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Figure 2: Policy transfer to Mountain Car 3D af-
ter having learned for 25 episodes in Mountain Car
2D, i.e. before convergence to the optimal policy.
Nonetheless, PTS manages to improve performance
over the base learner, while PPR cannot.
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Figure 3: Policy transfer to Mountain Car 3D af-
ter having learned for 100 episodes in Mountain Car
2D, i.e. after convergence to a (near-) optimal pol-
icy. While PPR benefits from a jumpstart in perfor-
mance, its performance deteriorates before improv-
ing again. PTS on the other hand exhibits more con-
sistent learning, although it does not benefit from a
jumpstart in performance.

state space consists of the position of the cart, its velocity,
the angle of the pole and its angular velocity (x, ẋ, θ, θ̇). We
consider two versions of the task. The source task is the
standard Cart Pole task, while we coin the target task the
Heavy Cart Pole task, as we increase the weight of the pole
from 0.1 to 1.0, making the task much harder. Since these
two tasks only differ in transition function, no state or action
mappings are required for transfer.

To learn the task, we use Q(λ)-learning with tile-coding.
In the source task, we shape the learning with a static reward
shaping function encouraging the angle of the pole to be 0,
i.e. up (Φ(s) = 100(π − θ̄)), for faster learning; we add
π to make the potential function positive, i.e. optimistic.
Parameters are α = 0.05

32
, γ = 1, ε = 0.05, λ = 0.95, with 32

10×10×10×10 tilings for both tasks. Weights are initialized
optimistically to 0, except with PPR. For PPR, we need
to initialize the weights pessimistically to − 1

32
to avoid a
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Figure 4: Basic Q(λ)-learner learning standard Cart
Pole. It does not converge to the optimal policy
within 100 episodes.

performance drop similar to the one seen in Mountain Car
(we address this issue at the end of the paper). In PPR, ψ
is initially set to 1, and decayed by 0.99 after every episode.
In PTS, the secondary reward function is as described in
Equation 1, and its value function is learned using the same
parameters as the base learner, except with learning rate
β = 0.5

32
.

We again perform two transfer experiments, one after
learning for 25 episodes in the source task, and one after
learning 100 episodes in the source task. In neither case will
the agent have converged on the optimal policy, but the pol-
icy is much better after 100 episodes than after 25 episodes,
as shown by the base-learner performance in the standard
Cart Pole task, plotted in Figure 4.

Figure 5 shows the results for transfer after 25 learning
episodes in the standard Cart Pole task. PPR again manages
a good jumpstart in learning because it immediately starts
using the transferred policy directly, while PTS needs learn-
ing experiences before the transferred knowledge affects the
performance. Yet, PTS benefits much more from the trans-
fer, despite the transferred policy’s lack of quality, resulting
in much better learning than PPR. The results for PPR are
much better after 100 learning episodes in the source task
(Figure 6), resulting in a jumpstart, and good learning from
there on. PTS matches the performance of PPR and their
combination only after some 600 episodes. Across the two
experiments, PTS+PPR offers the best alternative.

4.3 Mario
The Mario benchmark problem [9] is a public reimplemen-

tation of the original Super Mario BrosR© game. It involves
an agent (Mario) that navigates a 2D level, collecting points
for finishing the level, finding coins, getting hurt (negative
points), etc. The goal is to collect as many points as pos-
sible. An episode is ended when time runs out, Mario dies,
or when he finishes the level. The state space in Mario is
fairly complex, as Mario observes the locations and types of
enemies on the screen, he observes all information pertain-
ing to himself, e.g. what mode he is in (small, big, fire), and
furthermore he is surrounded by a gridlike receptive field in
which each cell indicates what type of object is in it (a brick,
a coin, a mushroom, an enemy, etc.). Mario can take 12 dis-
tinct ‘super’ actions, each being a combination of one action

185



0 200 400 600 800 1000
0

200

400

600

800

1000

Episode

St
ep

s 
po

le
 u

p

 

 

Baseline
Policy Transfer using Shaping
Probabilistic Policy Reuse
PTS+PPR

Figure 5: Policy transfer to Heavy Cart Pole, after
having learned for 25 episodes in standard Cart Pole.
Despite the low quality of the transferred policy,
both PPR and PTS manage to leverage the trans-
ferred knowledge, although PTS is much more ro-
bust to the (lack of) quality of the transferred knowl-
edge.
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Figure 6: Policy transfer to Heavy Cart Pole, af-
ter having learned for 100 episodes in standard Cart
Pole. PPR outperforms PTS in this case, as it man-
ages to maintain the performance achieved after its
jumpstart, while it takes PTS much longer to get to
that level of performance.

from these three sets: {left, right, no direction}, {jump, do
not jump} and {run, do not run}.

One part of the Mario game that can have a significant
impact on performance is the presence of enemies. They are
the source of most of the negative points Mario collects, by
hurting, or worse, killing him. The latter ends the episode,
preventing Mario from collecting more points. Therefore, a
simple approach to transfer is to let Mario first figure out
how to navigate and collect points in a level without enemies,
and then transferring this information to a learning process
in a level with enemies.

In these experiments, we use tabular Q(λ)-learning. The
state-space in both source and target task consists of four
boolean variables (indicating whether Mario is able to jump,
on the ground, which direction he is facing, and whether he
is able to shoot fireballs). In the target task, there are two
additional variables indicating the relative position (x and
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Figure 7: Basic Q(λ)-learner learning standard
Mario without enemies. It converges after about
50 episodes.

y) of the closest enemy within a 21 × 21 grid surrounding
Mario, making for a total of 24 × (212 + 1) = 7072 states
(one extra for when there are no enemies in sight). Since we
omit a lot of relevant state information, the agent operates
in a non-Markovian state-space. Learning parameters are
α = 0.01, γ = 0.9, ε = 0.05, and λ = 0.5. In PPR, ψ is
initially set to 1, and decayed by 0.95 after every episode.
In PTS, the secondary reward function is as described in
Equation 1, and is learned using the same parameters as the
base learner, except for its learning rate being β = 0.05.

The state-mapping from target to source task involves se-
lecting only the four boolean variables, discarding the two
state variables pertaining to enemies.

χS(starget) = starget,{1..4}

The action spaces in source and target task are the same.
Therefore no mapping is required.

Figure 7 shows the performance of the base learner in
the Mario task without enemies (level generated with seed
0 and difficulty 0). We transfer to the same level, but with
enemies, either after 10 or 100 learning episodes in the source
task.

Results for transfer after learning only 10 episodes in the
enemy-free level are depicted in Figure 8. PPR, PTS, and
PTS+PPR all speed up learning, performing similarly, i.e.
without statistically significant differences. Figure 9 shows
the results for transferring the policy learned after 100 episodes.
Transferring the better policy, PPR achieves a much better
jumpstart, but PTS actually manages to converge to sig-
nificantly better policies, which is possible due to the non-
Markovian nature of the state-space.

5. DISCUSSION
Both Policy Transfer using Reward Shaping and Proba-

bilistic Policy Reuse try to bias the agent’s exploration in
the target task using the transferred policy to achieve faster
learning, but they do it in very dissimilar ways. PPR uses
the transferred policy directly in the target task, while PTS
rather uses the transferred policy to shape the state-action
values being learned, which in turn biases exploration. The
main advantage of PPR, is that using the transferred policy
directly from the start can result in big jumpstarts in initial
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Figure 8: Policy transfer in Mario, after having
learned for 10 episodes in the same level without en-
emies. PPR, PTS and their combination all improve
performance, showing no statistically significant dif-
ferences.
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Figure 9: Policy transfer in Mario, after having
learned for 100 episodes in the same level without en-
emies. PPR achieves a much greater jumpstart than
PTS, but PTS quickly achieves the same level of per-
formance, and actually converges to better policies
than the base learner, PPR, or their combination.

performance. PTS on the other hand can only see the effect
of the old policy after a state transition has been observed,
and not before as PPR can.2

On the other hand, the shaping approach can easily ex-
ploit ambiguous state and action mappings, by combining
the values obtained for each, while PPR is limited to taking
a single action.3 With respect to the quality of the trans-
ferred policy, PTS appeared to be more robust in our experi-
ments, outperforming the base learner in every case, despite
the suboptimality of transferred policies. PPR suffered more
from the lack of quality in the transferred policy. A likely
reason for this is that PPR always uses either only informa-

2We have experimented with initializing the Q-function with
the static potential function (Eq. 2), aiming to achieve a sim-
ilar jumpstart in PTS. This improved initial performance,
but not dramatically so.
3One could approach this problem in an ensemble fash-
ion, combining the different mappings through some voting
mechanism, but that is beyond the scope of this article.

tion from the old or the new task, while PTS always uses
a combination of both, as its decisions will always be based
on both the new environment’s reward and the transferred
policy’s shaping.

Furthermore, PTS is firmly grounded in potential-based
reward shaping theory, providing convergence guarantees for
PTS, previously proven in that literature, without requiring
special measures. PPR on the other hand needs to decrease
the use of the transferred policy to preserve convergence
guarantees.

Lastly, we need to address the drop in performance ob-
served in Mountain Car for PPR (and in Cart Pole when
not initializing pessimistically, results not included). For
PPR to be effective, it needs to be able to affect the Q-
values in such a way that its trajectories become positively
reinforced. With Mountain Car, there is a step-reward of
−1, which actually results in PPR’s trajectories being neg-
atively reinforced, except close to the goal, at least initially.
In Cart Pole, initializing optimistically with 0, and receiving
step rewards of 0, results in the old policy being unable to af-
fect the Q-values in any way (positive or negative), and thus
when the learner progressively relies less on the transferred
policy, it will have learned little from those experiences. On
the other hand, initializing the Q-values in Cart Pole to −1,
will lead to every visited state-action pair’s Q-value being
positively reinforced due to the step-reward of 0, allowing
PPR to carve a path in the Q-values.

Since PTS and PPR are compatible on a technical level,
with PTS operating on the reward signal and PPR on the
action selection mechanism, we have evaluated their combi-
nation too. PTS appears to be useful to improve the per-
formance of PPR, as in our experiments PTS+PPR always
outperformed or matched PPR performance. On the other
hand, it is not true that PTS+PPR always outperforms PTS
alone. As ψ is typically initialized to 1 (both in this paper
and other works [6, 7, 23]), initial performance is completely
determined by PPR. As ψ decays, PTS manages to affect
learning more, but can not always overcome the initial bias
set by PPR (as exemplified by the results in Mario, a non-
Markovian environment), as opposed to when using PTS
alone. Therefore, PTS appears to be a way to improve PPR,
but not the reverse.

6. CONCLUSIONS AND FUTURE WORK
We presented a novel approach to policy transfer, encod-

ing the transferred policy as a dynamic potential-based re-
ward shaping function, benefiting from all the theory be-
hind reward shaping. An experimental comparison between
Policy Transfer using Reward Shaping (PTS) and Proba-
bilistic Policy Reuse (PPR) has shown the weaknesses and
strengths of both in several domains. Because PPR uses
the transferred policy directly during action selection, it can
achieve a big jumpstart in performance, but can not always
maintain this level of performance as its effect on the value
function being learned depends on factors such as the en-
vironment’s step-reward and the value function’s initializa-
tion. PTS needs more learning experiences before the effect
of the transferred policy becomes apparent, but the tech-
nique appears much more robust against lack of quality of
the transferred policy, and does not suffer from issues sim-
ilar to PPR’s. The combination of the two techniques is a
way to improve PPR performance, while PTS alone may be
a better option in some cases.
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In a follow-up study, we are interested in looking at multi-
task transfer. Recent developments in reward shaping have
shown how learning with different shapings in parallel, and
combining their estimates using ensemble techniques can
speed up learning a lot [2]. In a transfer context, we can
transfer multiple policies using PTS, learn estimates in par-
allel, and achieve multi-task transfer using an ensemble tech-
nique.

Furthermore, we want to look at transfer between agents
using different learning algorithms (including humans), where
policy transfer makes the most sense.
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