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ABSTRACT
We consider one-way vehicle sharing systems where customers can
pick a car at one station and drop it off at another (e.g., Zipcar,
Car2Go). We aim to optimize the distribution of cars, and quality of
service, by pricing rentals appropriately. However, with highly un-
certain demands and other uncertain parameters (e.g., pick-up and
drop-off location, time, duration), pricing each individual rental be-
comes prohibitively difficult. To overcome this difficulty, we pro-
pose a new approach for vehicle sharing based on a bidding mech-
anism reminiscent of Priceline or Hotwire.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Planning and Scheduling—Planning
under Uncertainty

General Terms
Algorithms, Theory, Management

Keywords
One-way vehicle sharing; Dynamic rebalancing; Intelligent trans-
portation management

1. INTRODUCTION
One-way vehicle sharing system is an urban mobility on demand

(MOD) platform which effectively utilizes usages of idle vehicles,
reduces demands to parking spaces, alleviates traffic congestion
during rush hours, and cuts down excessive carbon footprints due to
personal transportation. The MOD vehicle sharing system consists
of a network of parking stations and a fleet of vehicles. Customers
arrive at particular stations can pick up a vehicle and drop it off at
any other destination station. Existing vehicle sharing examples in-
clude Zipcar , Car2Go and Autoshare for one-way car sharing, and
Velib and City-bike for one-way bike sharing.

Despite the apparent advantages of one-way vehicle sharing sys-
tems they do present significant operational problems. Due to the
asymmetric travel patterns in a city, many stations will eventually
experience imbalance of vehicle departures and customer arrivals.
To maintain the quality of service, many existing fleet management
strategies empirically redistribute empty vehicles among stations
with tow trucks or by hiring crew drivers. Still, this solution is ad-
hoc and inefficient. In some cases, these scheduled re-balancing
strategies may cause extra congestion to road networks as well.

In the next generation one-way vehicle sharing systems, demand-
supply imbalance can be addressed by imposing incentive pricing
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to vehicle rentals. A typical incentive pricing mechanism would
be each station adjusts its rental price based on current inventory
and customers’ requests. Rather than passively balancing demand
and supply by adjusting rental prices at each station, here we study
a bidding mechanism to vehicle rentals where at each station cus-
tomers place bids based on their travel durations and destinations,
and the company decides which bids to accept.

There are several methods in literature to address demand-supply
imbalance in one-way vehicle sharing system by relocating vehi-
cles. The first suggested way is by periodic relocation of vehicles
among stations by staff members. This method had been studied
by [1], using discrete event simulations. [3] explored a stochastic
mixed-integer programming (MIP) model with an objective of min-
imizing cost for vehicle relocation such that a probabilistic service
level is satisfied. Experimental results showed that these systems
improved efficiencies after re-balancing. Similar studies of static
rebalancing in vehicle sharing can also be found in [2], However
with empirical re-balancing strategies, improvements in throughput
performance are unstable, and this approach increases the sunk cost
by hiring staff drivers. This motivates our research on designing a
next-generation one-way ride sharing platform based on choosing
customers’ bids.

2. MATHEMATICAL MODEL
Suppose the company has C vehicles, indexed from 1, . . . , C,

and S stations, indexed from 1, . . . , S. The company’s policy only
allows each passenger to rent for a maximum of T time slots and
the maximum fare for each rental period is F .

In this paper, we consider a discrete time model t = 0, 1, . . . ,.
At time t ≥ 0, there is a multi-variate (four-dimensional) stationary
probability distributions Φ with domain {1, . . . , S}×{1, . . . , S}×
[0, T ] × [0, F ], representing the customers’ origin station, desti-
nation, rental duration and proposed travel fare. We assume the
multi-variate probability distribution Φ is known in advance. If
the multi-variate distribution is unknown, it can easily be empir-
ically estimated by kernel estimation. Since the vehicle sharing
system can at most accept C requests, we generate C i.i.d. random
variables from Φ: ((O1

t ,G
1
t ,T

1
t ,F

1
t ), . . . , (OC

t ,G
C
t ,T

C
t ,F

C
t )).

If Tk
t = 0, it represents that there are no customers picking the kth

vehicle at time t. For j ∈ {1, . . . , S}, denote by Aj
t the number of

customers arriving at time t who wish to travel to station j. Based
on the definition of random variable Tk

t , one easily sees that this
quantity can be expressed as Aj

t :=
∑C

k=1 1{T
k
t > 0,Gk

t = j}.
This model captures both concepts of renting and rebalancing.

Notice that the random price offered by the customer k, i.e., Fk
t

for k ∈ {1, . . . , C} can either be positive or negative. When this
quantity is positive, it means that the customer is willing to paying
Fk

t to rent a vehicle for Tk
t periods to travel from station Ok

t to Gk
t .

If this quantity is negative, it means that the company is paying Fk
t

to the kth customer, if a vehicle is needed to re-balance from station
Ok

t to Gk
t in Tk

t periods.
Since (O1
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t ) are i.i.d. ran-
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dom vectors, intuitively there is no difference in assigning any spe-
cific vehicles to corresponding potential customers if the customers’
information is not known in advance. Rather, based on the vehicle
biding mechanism in our problem formulation, the company ob-
tains the stochastic customer information vector ωt before decid-
ing any actions on renting, parking or rebalancing. Therefore at
each destination station, it has a pre-determined passenger ranking
function to select “better customers”, i.e., customers which max-
imize revenue (or minimize rebalancing cost) and minimize vehi-
cle usage. We define f j

rank as the customer ranking function for
destination station j ∈ {1, . . . , S} based on the price-time ratio:
1{F ≥ 0}F/T + 1{F ≤ 0}FT for T 6= 0. Specifically, for any
arbitrary customer information vector

ω = ((O1,G1,T1,F1), . . . , (OC ,GC ,TC ,FC)),

the customer ranking function f j
rank(ω) assigns score −∞ to the

elements with Tk = 0 or Gk 6= j, for k ∈ {1, . . . , C} in ω, and
assigns score 1{Fk ≥ 0}Fk/Tk + 1{Fk ≤ 0}FkTk to other
elements whose destination station Gk = j for k ∈ {1, . . . , C}.
2.1 State Variables

The operator makes decisions based on the stochastic inputs gen-
erated from the environment and the following system observations
of each vehicle in the fleet:
• For i ∈ {1, . . . , C} and t ≥ 0, qit ∈ {1, . . . , S} is the desti-

nation station and τ it ∈ {0, 1, 2, . . . , T } is the current travel
time remaining to destination of the ith vehicle. Also define
qt = (q1t , . . . , q

C
t ) and τt = (τ1t , . . . , τ

C
t ) as the stochastic

state vectors of {qit} and {τ it} respectively.

2.2 Decision Variables
At any time slot t, the company makes a decision to park, re-

balance or to rent vehicle to any potential passengers:

• For each station j ∈ {1, . . . , S}, uj
t ∈ {0, 1, . . . , C} is a

decision variable that represents the number of vehicles to
dedicate to destination station j at time t. Also define the de-
cision ut = (u1

t , . . . ,u
S
t ) as the operator’s decision vector.

These decision variables have the following constraint to upper
bound the decision variable at time t ≥ 0: uj

t ≤ A
j
t , ∀j ∈

{1, . . . , S}. Furthermore, the number of vehicle assignment equals
to C, i.e.,

∑S
j=1 u

j
t = C, ∀j ∈ {1, . . . , S}.

2.3 State Dynamics
Before stating the state dynamics of (qt, τt), we start by con-

structing a destination allocation function for each vehicle. De-
fine the quota index Q = (Q1, . . . ,QS) whose domain lies in
{0, 1, . . . , C}S . For each k ∈ {1, . . . , S}, Qk is a quota in-
dex that counts the number of vehicle assignments to destination
station k. Recall the arbitrary information vector ω. At any ori-
gin j ∈ {1, . . . , S}, construct an allocation function G(ω,Q, j) :
Ω× {0, 1, . . . , C}S × {1, . . . , S} → {1, . . . , S} × {1, . . . , S} ×
[0, T ] × [0, F ] for which this function examines the current origin
station of each request and outputs the corresponding information
based on the available quota and maximum score. Specifically, let
ωj ={(O,G,T,F) : (O,G,T,F) ∈ ω, O = j} be a sub-vector
of ω whose elements have origins at j ∈ {1, . . . , S}. Then, define
Assign(f j′

rank(ω
j)) = (O,G,T,F) as a function that finds an ele-

ment in ωj with maximum score corresponding to destination sta-
tion j′, where {vj

′
}j′∈{1,...,S} is a shorthand notation for vector

(v1, . . . , vS). If there exists a destination station j′ ∈ {1, . . . , S}
with Qj′ > 0 and max f j′

rank(ω
j) 6= −∞, then

G(ω,Q, j) = arg max
j′∈{1,...,S}:Qj′>0

{
Assign(f j′

rank(ω
j))
}

j′∈{1,...,S}
.

Otherwise, G(ω,Q, j) = (NIL,NIL,NIL,NIL). Then, we have
the following algorithm that assigns state updates (qit+1, τ

i
t+1) for

each vehicle.

Algorithm 1 State Updates at Time t
Input: Customer information vector ωt and Decision variable
u1
t , . . . ,u

S
t

Initialize quota index Q = (Q1, . . . ,QS) such that Qj = uj
t at each

station j ∈ {1, . . . , S}, available customer information ω = ωt and
stage-wise revenue function R(qt, τt, ωt,ut) = 0
for i = 1, 2, . . . , C do

for j = 1, 2, . . . , S do
Compute

(
j, j∗, T i

t ,F i
t

)
= G(ω,Q, j)

if qit = j and τ it = 0 and j∗ 6= NIL then
Set (qit+1, τ

i
t+1) = (j∗, T i

t ), R(qt, τt, ωt,ut) =

R(qt, τt, ωt,ut) + Fi
t ,

Update Qj∗ ← Qj∗ − 1 in Q, replace the corresponding ele-
ment (j, j∗, T i

t ,Fi
t ) in ω with (j, j∗, 0,Fi

t ) and break
else

Set (qit+1, τ
i
t+1) = (qit,max(τ it − 1, 0))

end if
end for

end for
return State updates: (qt+1, τt+1)

2.4 Bidding Based Vehicle Sharing Problem
Recall the stage-wise revenue function from Algorithm 1, the

total average revenue generated is given by

lim
T→∞

1

T
E

[
T−1∑
t=0

R(qt, τt, ωt,ut)

]
.

We also impose the following set of service level agreement con-
straints that upper bounds the average number of customers at each
station j ∈ {1, . . . , S} for rental purposes, i.e.,

lim
T→∞

1

T
E

[
T−1∑
t=0

(
C∑

i=1

1{Gi
t = j,Ti

t > 0,Fi
t > 0} − uj

t

)]
≤ dj ,

where {dj}Sj=1 is the vector of quality-of-service thresholds, pre-
specified by the system operator.

Our objective for this problem is to maximize the expected rev-
enue collected by renting vehicles while satisfying the customer
service level agreement constraints at each station. More details
can be found in our working paper.

3. CONCLUSIONS AND FUTURE WORK
In this project we proposed a detailed mathematical framework

for bidding based one-way vehicle sharing systems. In contrast to
existing approaches where the system operator at different stations
dynamically set the price, we aim to control demand-supply im-
balance via an active bidding approach. Derivations of solutions
algorithms and implementations will be left as future work.
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