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ABSTRACT
We consider an autonomous POMDP agent facing a multi-
agent environment with unknown opponents, that are mod-
eled as finite state controllers. The agent first learns the
models from (imperfectly) observed behavior, and subse-
quently exploits them in planning for its own optimal pol-
icy by constructing an interactive POMDP. In the learning
phase, Bayesian nonparametric methods are used to sample
from the posterior distribution over the infinite-dimensional
space of all possible controllers, resulting in models whose
size scales with the complexity of observed behavior. Ex-
perimental results show that learning improves the agent’s
performance, which increases with the amount of data col-
lected during the learning phase.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems
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1. INTRODUCTION
An autonomous POMDP agent operating in a multiagent

environment must accurately predict the actions of other
agents in order to achieve good performance. We consider
an agent that maintains explicit models of other agents to
generate such predictions.

Previous work [4] proposes maintaining a distribution over
other agents’ intentional models, that specify the other agents’
own POMDP tuples, to be solved recursively. The proba-
bility space of all such models is very complex, especially if
little is known about the other agents’ preferences.

An alternative we pursue in this paper is to consider subin-
tentional models, intended as stochastic processes underly-
ing the other agents’ behavior, without considering their be-
liefs or preferences. In particular, we consider a class of fi-
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nite state controllers with deterministic transitions between
nodes and stochastic action generations, named probabilistic
deterministic finite state controllers (PDFCs), which provide
a good trade-off between complexity and expressive power.
Each node represents an internal state of the modeled agent
that summarizes its past history, and contains a probabilis-
tic mapping to the action space.

We assume realistically that our protagonist agent (i) has
no a priori knowledge of the other agent’s (j) model. This
implies that the agent must learn a probability distribution
over the set of all possible PDFCs. For this reason, we adopt
Bayesian nonparametric methods (BNP) [5], which make it
possible to specify a distribution over objects with an un-
bounded number of parameters. Intuitively, BNP methods
allow the learned representations to grow with the observed
complexity of the data. Since the problem we tackle is too
complex to be amenable to conjugate analysis, we use the
computational implementations of Bayesian inference based
on the Dirichlet process and Gibbs sampling.

Although we view an on-line scenario in which the agent
simultaneously learns about others and plans its own op-
timal policy as the most realistic, in this work we separate
the learning and planning phases in order to assess the prop-
erties and merits of the learning methodology in isolation,
and not subject to complications arising from a fully online
approach, such as dealing with adaptive agents. During the
learning phase our agent i accumulates its own observations
which probabilistically depend on the state of the world and
j’s action. Using this training sequence, the agent computes
a sample posterior distribution over j’s models using Gibbs
sampling. During the second phase the agents interact, and
agent i exploits the learned models of j using a specialization
of the interactive POMDP (I-POMDP) framework [4].

Our work is related to research in plan recognition [2] and
goal-based POMDPs [7]. Moreover, similar BNP techniques
have been applied to partially observable model-based re-
inforcement learning problems [3]. In game theory, finite
automata have been used to represent agents in presence
of bounded rationality with observable actions, such as the
heuristic algorithm in [1]. In comparison, our framework
tackles more general interactive settings, and does not rely
on equilibrium-based solutions concepts, assuming instead a
more procedural, behavioral perspective [8].
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2. OVERVIEW OF METHODOLOGY
The protagonist agent learns over a class C of PDFCs

which represent j’s policy, given a sequence of observations
ωi
1:T from the environment. The task is to infer the posterior

distribution over all possible models c ∈ C:

p(c|ωi
1:T ) ∝ p(ωi

1:T |c) p(c). (1)

To enable learning over controllers of unknown complex-
ity, a nonparametric distribution p(c) is used, based on the
stick-breaking construction of the Dirichlet process. Theo-
retically, this distribution places an exponentially decreas-
ing probability over an infinite set of objects (the nodes in
the PDFC), each with its own parameters (the stochastic
mapping to actions.) In practice, only a finite number of
parameters will be instantiated from finite observation se-
quences. Dirichlet process priors lend themselves to efficient
sampled-based inference via the “Chinese restaurant pro-
cess” (CRP) conditional distribution, utilized in our Gibbs
sampling learning algorithm. Additionally, a number of un-
observed variables need to be inferred to enable sampling
from the CRP, namely the sequences of world states s1:T ,
and j’s actions aj

1:T and own observations ωj
1:T .

The result of this inference is an ensemble of sampled mod-
els Cj that approximates the posterior distribution of Eq. 1.
These models are used to augment the set of world states
S in the subsequent planning phase, forming the interac-
tive state space S̄i = S × Mj . Unlike the more general,
recursive I-POMDP framework, it is possible to construct
a flat I-POMDP model on this augmented space, that can
be solved using existing algorithm. Given that the inter-
active state space is much larger than the original S, but
can be easily factorized, POMDP algorithms that work on
factorized representations such as symbolic Perseus [6] are
particularly useful.

3. RESULTS
We present results for the Multiagent Tiger Problem [4] in

three instances, corresponding to different levels (0.96, 0.85,
0.7) of j’s hearing accuracy, resulting in optimal controllers
of size 3, 5, and 7 respectively, from which j’s behavior is
generated. In all three cases we evaluate i’s performance for
different lengths of observed sequence, averaged over 40 tri-
als each. Fig. 1 reports the reward accumulated by i when
interacting with j. Agent i operates accordingly to the so-
lution to the I-POMDP augmented with j’s learned models
as described above, while j actually uses its real model. The
vertical bars in the plots indicate the standard deviation over
the different simulation trials, while the red line represents
the reward that i would obtain if it were to know j’s actual
model. We observe that the increased length of the obser-
vation phase Tlearn allows agent i to learn better quality
models of j, resulting in increased performance. Moreover,
we note that it takes a longer sequence to achieve good per-
formance when the opponent’s behavior is generated by a
more complex policy (7-state controller in the right plot.)

4. CONCLUSIONS AND FUTURE WORK
We have presented a learning and planning framework for

multiagent POMDP problems, where little is known about
the other agents, using statistical models of their behavior
in the form of finite controllers. Preliminary results vali-
date the proposed methodology and motivate further inves-

Figure 1: Agent’s performance with respect to
length of observed sequence.

tigation in this direction. Future efforts will concentrate on
demonstrating the scalability of the methods presented here
by using more complex examples, and enabling the modeling
agent to interleave on-line learning and interaction.

REFERENCES
[1] D. Carmel and S. Markovitch. Learning models of

intelligent agents. In Proceedings of the 13th National
Conference on Artificial intelligence, pages 62–67, 1996.

[2] E. Charniak and R. P. Goldman. A Bayesian model of
plan recognition. Artificial Intelligence, 64(1):53–79,
Nov. 1993.

[3] F. Doshi-Velez, D. Pfau, F. Wood, and N. Roy.
Bayesian nonparametric methods for
partially-observable reinforcement learning. Pattern
Analysis and Machine Intelligence, IEEE Transactions
on, 37(2):394–407, Feb 2015.

[4] P. J. Gmytrasiewicz and P. Doshi. A framework for
sequential planning in multi-agent settings. Journal of
Artificial Intelligence Research, 24(1):49–79, July 2005.

[5] N. L. Hjort, C. Holmes, P. Müller, and S. G. Walker,
editors. Bayesian Nonparametrics. Cambridge
University Press, Apr. 2010.

[6] P. Poupart. Exploiting Structure to Efficiently Solve
Large Scale Partially Observable Markov Decision
Processes. PhD thesis, University of Toronto, Toronto,
Ont., Canada, 2005. AAINR02727.

[7] M. Ramirez and H. Geffner. Goal recognition over
POMDPs: inferring the intention of a POMDP agent.
In International Joint Conference on Artificial
Intelligence, pages 2009–2014, 2011.

[8] J. R. Wright and K. Leyton-Brown. Behavioral game
theoretic models: a bayesian framework for parameter
analysis. In International Conference on Autonomous
Agents and Multiagent Systems, Valencia, Spain, pages
921–930, 2012.

1876




