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ABSTRACT
Multi-Agent Reinforcement Learning (MARL) is a widely-used
technique for optimization in decentralised control problems, ad-
dressing complex challenges when several agents change actions
simultaneously and without collaboration. Such challenges are ex-
acerbated when the environment in which the agents learn is inher-
ently non-stationary, as agents’ actions are then non-deterministic.

In this paper, we show that advance knowledge of environment
behaviour through prediction significantly improves agents’ perfor-
mance in converging to near-optimal control solutions. We propose
P-MARL, a MARL approach which employs a prediction mecha-
nism to obtain such advance knowledge, which is then used to im-
prove agents’ learning. The underlying non-stationary behaviour of
the environment is modelled as a time-series and prediction is based
on historic data and key environment variables. This provides infor-
mation regarding potential upcoming changes in the environment,
which is a key influencer in agents’ decision-making.

We evaluate P-MARL in a smart grid scenario and show that a
92% Pareto efficient solution can be achieved in an electric vehicle
charging problem, where energy demand across a community of
households is inherently non-stationary. Finally, we analyse the
effects of environment prediction accuracy on the performance of
our approach.
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1. INTRODUCTION
Multi-Agent Reinforcement Learning (MARL) is being increas-

ingly used in various domains such as computer networks, vehic-
ular traffic, resource management, robotic teams and distributed
control in general [1]. Many of these situations pose complex chal-
lenges to multi-agent systems due to the dynamicity of the envi-
ronment, even more when the environment itself is characterised
by non-stationary behaviour. Adding to the complexity in such cir-
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Figure 1: P-MARL Algorithm Architecture

cumstances is the situation where one might not only encounter dy-
namicity generated by stochastic interactions between agents; an-
other level of stochasticity may occur independently of agent ac-
tions due to a continuously changing environment.

The latter problem impacts on the convergence of a MARL, as
agents encounter new situations all the time, for which they were
not prepared in the exploration stages. There are previous proposals
to deal with such non-stationary environments through partial mod-
els of the environment and context detection [2,3], but these do not
actually address the problem of handling environments where the
number of environment states is infinite, thus not requiring a fixed
number of models.

We propose to tackle the problems of such highly dynamic en-
vironments through an active prediction module. Our hypothesis
is that prediction of future environment behaviour provides agents
with a sufficiently good a priori training model in order to im-
prove upon their performance in real-time. In this paper we pro-
pose Predictive-MARL (P-MARL), an online MARL augmented
with environment prediction and pattern change detection capabil-
ities for complex non-stationary environments.

2. P-MARL
P-MARL’s architecture comprises three key components, illus-

trated in Fig. 1. Firstly, a prediction model component consid-
ers recent historic values and key environment variables that are
correlated with the environment’s historic behaviour in order to
provide an estimate of future behaviour. Our particular model is
a hybrid solution, and as such takes advantage of several tech-
niques’ strengths for time-series prediction [6]. Secondly, a pat-
tern change detection and matching component detects when the
prediction model fails in providing reasonable estimations of the
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future state of the environment. The current behaviour of the envi-
ronment is continuously evaluated. If the behaviour is classified as
anomalous, adjustments need to made be since the prediction can
become inaccurate. This triggers a new estimate which is particu-
lar to the anomalous class [5]. Finally, there is a multi-agent sys-
tem (MAS) component which is based on reinforcement learning
(RL). This employs the previous components as an input in order
to improve its performance in non-stationary environments. The
RL agents are implemented as a multi-objective W-Learning pro-
cesses [4], where each objective is implemented separately as an
independent Q-Learning process. Q-Values are obtained for each
state-action pair. At every time-step an action is nominated based
on these values. Through W-Learning, the winning action is se-
lected based on the importance of all objectives.

From the first two components, an estimate of the environment’s
future expected behaviour is provided. The agents evaluate the fu-
ture behaviour and attempt to optimally reach their goals with re-
spect to the imposed estimate. A process of exploration-exploitation
is performed by the agents based on the provided environment es-
timate. This helps them learn the best behaviour for the expected
states of the environment. Once agents reach a near-optimal so-
lution, they are ready to switch to online mode. Even though the
actual environment they will face will differ, the previously ob-
tained knowledge will help them perform well as conditions in the
environment are similar to the the ones in the estimate.

3. EXPERIMENTAL STUDY
We apply P-MARL to a non-stationary environment, a real-world

scenario occurring in the Smart Grid. The state of the environ-
ment is characterised by energy consumption, which introduces
a certain amount of randomness due to the behaviour of human
users. The environment can be represented as a time-series, which
exhibits non-stationary characteristics. We consider a neighbour-
hood of 230 residential users which contains a set of 90 EVs, each
controlled by an intelligent agent; the task of each EV agent is to
achieve a desired battery charge for the next day’s trip. Addition-
ally, this charging process might be constrained by periods of high
demand which occur in particular during the evening, when charg-
ing is to be avoided. Three charging algorithms are evaluated in this
scenario: a benchmark Centralised solution, which computes an
optimal charging scheme for each EV given an initial environment
estimate; a Night Tariff-Aware Greedy solution - which charges the
EVs as soon as possible starting from 23:00, by adjusting to a night-
saver time tariff; and the P-MARL solution based on decentralised
control through intelligent agents.

The experiments are run over 3 different sub-cases involving an

Figure 2: Algorithm Performance in Reprediction Case

Table 1: Comparison of Performance
Method P-MARL N. Greedy Centralised
Perfect Pred. 92.4% 83.1% 100%
Repredicted 92.2% 83.5% 97.6%
Simple Pred. 89.6% 83.8% 97.9%

anomalous day: assuming simple prediction of demand (less accu-
rate), reprediction of demand (more accurate), and finally assuming
perfect prediction of the day’s demand as input to MARL.

The reprediction sub-case is presented in Fig. 2. The centralised
solution attempts to evenly schedule the EV’s demand over the
available hours (18:00-9:00) based on a forecast of the baseload.
The resulting load shows some irregularities due to errors in fore-
casting. For the greedy solution all vehicles start charging at 23:00
resulting in a peak in demand higher than the evening peak, an un-
desired situation. As for P-MARL, once the base demand is low
enough several EV agents start charging, but since this leads to
high demand a few of them immediately back off. Once the base
demand lowers, more EVs start to charge.

The performance of the algorithms in terms of Pareto optimal-
ity is summarised in Table 1. The best performance is for the two
methods relying on prediction (P-MARL and Centralised), and is
achieved assuming perfect prediction of the future power demand.
The increase in forecasting errors comes with a price, as P-MARL
performance is brought down to 89.6% Pareto optimality in the case
of simple prediction. It is worth noting that having perfect predic-
tion improves the MARL performance only by 0.4% compared to
the accurate reprediction.

4. CONCLUSIONS
This paper presents P-MARL, a prediction-based solution which

improves MARL performance in non-stationary environments. P-
MARL’s performance is closely related to the ability to accurately
forecast future states of the environment. The loss in accuracy re-
sults in diminished performance, therefore good environment pre-
diction mechanisms are essential in achieving efficient solutions.
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