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1. INTRODUCTION
Georgia Testbed for Autonomous Control of Vehicles (GaTAC)

[7] is a test bed for multi-agent planning under uncertainty. Pre-

viously GaTAC simulations have been performed in FlightGear,

a flight simulation software, using realistically simulated aircraft.

We enhance GaTAC’s versatility by enabling simulations with fully

autonomous off-the-shelf robots. Scenarios may include multiple

robotic drones interacting with each other while flying over a grid

of configurable size. Each drone is controlled via a networked client

process. Modules are available for simulations with virtual drones

in a robotic simulator and autonomous quadcopters as we show in

Figs. 1 and 2. Virtual agents allow for scenarios to be constructed

and tested quickly and easily while robotic ones allow for higher

impact demonstrations and exhibitions. The networked, modular

architecture of GaTAC allows a client program to control either

type of agent with no additional overhead for the user.

GaTAC agents may be controlled either interactively by a human

or with a pre-specified policy. Policies may be generated by an op-

timal decision-making framework or manually specified as desired.

In our demonstration scenarios, we use an interactive POMDP (I-

POMDP) [3] framework or DEC-POMDP [1] to find optimal poli-

cies for all agents as appropriate.

2. DEMONSTRATION SCENARIOS
To demonstrate GaTAC’s multi-agent simulation capability we

choose a simple fugitive reconnaissance game. The fugitive is at-

tempting to reach a safe-house in a known location but is uncertain

as to its own position and the location of two UAV’s searching for

it. We divide the state space into a 5 by 5 grid, similar to sectors in

a combat theater, in which these three agents operate (see Fig. 3).

The two UAV’s know their own location but not that of the other

agents. All agents can, however, detect each other when located in

the same grid cell. The simulation run is over when either the fugi-

tive is detected or it manages to reach the safe-house undetected.

For simplicity, the agents move in the four cardinal directions

(North, South, East, West) only, and all agents know the location

of the safe-house. An agent can perform a Listen action which will

tell it whether another agent is detected one cell away from it (in

the cardinal directions), though not the identity of the other agent.

We will demonstrate a robotic simulation of this scenario live for

conference attendees using three quadcopter drones. Additionally,

conference attendees will be allowed to interact with similar simu-
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Figure 1: GaTAC simulation with numerous virtual UAVs

Figure 2: GaTAC simulation with two Parrot R© AR.Drones

lations performed and visualized with virtual agents. They can do

so by dictating drone actions with a keyboard while the simulation

is running or by designing a policy for use by one of the agents. A

preview of the demo is at http://youtu.be/lRDx-2jsXe8.

Our scenario exercises the recursive reasoning abilities of a hu-

man or artificial agent as they must reason about what the other

agents in the system are in turn reasoning about them. This can

readily be seen in Fig. 3: as the UAVs know the fugitive is trying

to reach the safe-house it makes sense to move toward and listen

around this area. The fugitive, however, knowing that the two UAVs

are trying to catch it, may react by avoiding a direct path to the safe-

house area, thus changing where the UAVs expect to find it and so

on. This adds a degree of difficulty and interest not present in single

agent or non-strategic multi-agent scenarios.

As an additional scenario, we will present a cooperative game in

which both UAVs are required to work together as a team to capture

the fugitive. The policies of the UAVs for this demonstration will be

generated using a DEC-POMDP solver, with motion of the fugitive

modeled as simple noise.

3. ARCHITECTURE
As we see in Fig. 4, GaTAC is a simulation system built on a

client/server architecture. Each individual client controls one agent,

communicating with the server over UDP using a custom C++ li-

brary to send commands and receive percepts. As a result, clients

are unaware of whether virtual or physical robotic agents are per-
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Figure 3: Scenario state space showing the fugitive, safe-house loca-

tion, and two UAVs

Figure 4: GaTAC clients communicate with our server-based simula-

tion system using UDP/IP. The server may be easily configured to use

virtual or real robots with no changes to the clients

forming the simulation. We have implemented a number of clients

including random motion, human control, and policy control.

The server coordinates the clients and allows the simulation to be

switched between virtual agents and robotic ones. It is built on the

Robotic Operating System (ROS) [6] version Hydro, which allows

each component to be modularized into a separate package.

3.1 Virtual Robotic Agents
TUM_simulator, a plugin for the Gazebo [5] robot simulator, is

used to provide virtual robotic agents with simulated physics, sen-

sors and actuators. Robots are controlled with our custom controller

called THINC SMART that is based on the motion of a damped

spring. A cropped screenshot of this simulation can be seen in

Fig. 1. Varying sizes of maps may be chosen for a scenario and

the number of agents (each with their own client) is configurable.

Currently up to 12 have been tested but more is possible with suit-

ably powerful computer hardware.

All code used in this demo is open source and will be made avail-

able for general use after our demonstration.

3.2 Autonomous UAVs
For simulations involving physical agents we use three Parrot R©

AR.Drones (both version 1.0 and 2.0) as can be seen in Fig. 2.

These small, inexpensive quadcopters are safe for indoor use and

have an open-source library available for programming. The ROS

package ardrone-autonomy provides a driver with which to com-

municate with each drone. Control is provided by THINC SMART

and the package TUM-ardrone which implements a PID controller

allowing the drone to be reliably moved to a given goal.

The drones come with an array of sensors including downward

facing and forward facing cameras, accelerometers, gyroscopes,

magnetometers and additionally a GPS module is available. Due

to our indoor setting and small map size, however, GPS is not a

viable method of localization. Instead each drone uses its avail-

able sensors to estimate its location in real time using feature-based

SLAM [8] provided by the ROS package TUM-ardrone. This pack-

age makes use of parallel tracking and mapping (PTAM) [4] as a

single-camera based simultaneous localization and mapping (SLAM)

solution. A feature map is created, updated, and used for localiza-

tion to correct for movement errors during flight. To aid with map

making in the presence of many moving humans, the drones will

be flown constantly oriented towards one side of the map where we

will have strategically placed some small non-moving objects.

3.3 Multi-Agent Planning
GaTAC clients can execute policies created by decision-making

frameworks that model varied sources of uncertainty. For example,

if the combined state space of the agents is fully observable, a DEC-

MDP may be used. Depending upon the scenario, policies created

by different frameworks may be used to control the agents and their

performance directly compared.

Our demonstration scenarios incorporate uncertainty due to the

unknown location of multiple agents, imperfect localization of the

fugitive, and critically the agent interaction involved. As such, we

model the scenarios as a DEC- or I-POMDPs as appropriate. In

I-POMDPs, beliefs of the other agents, which a given agent is un-

certain about, is a part of the state space. As the other agents are as-

sumed to be reasoning about the beliefs of the given agent as well,

this sets up a recursive state space which dramatically increases the

difficulty of obtaining an optimal policy. We solve this I-POMDP

with point-based value iteration (I-PBVI) [2] and obtain an optimal

policy for the subject agent.
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