
A Prototype for AUV Post-mission Debrief Generation from
Metadata (Demonstration)

Zhuoran Wang
Toshiba Research Europe Ltd,

Cambridge, UK
zhuoran.wang@crl.toshiba.co.uk

Helen Hastie
School of Mathematical and Computer Sciences,

Heriot-Watt University, Edinburgh, UK
h.hastie@hw.ac.uk

ABSTRACT
A prototype system will be demonstrated that can auto-
matically generate natural language reports from metadata
from Autonomous Underwater Vehicles (AUVs). The sys-
tem takes time-series sensor data, mission logs, together
with mission plans as its input, and generates post-mission
debriefs for human operators in a concise and easy-to-understand
manner. The state-of-the-art systems tackling similar issues
are usually designed for simulated environments or can only
interpret plans. To the best of our knowledge, this is the
first system that directly deals with noise-prone real data
from mission logs combined with mission plans.

Categories and Subject Descriptors
I.2.9 [Robotics]: Autonomous vehicles, Operator interfaces;
I.2.1 [Applications and Expert Systems]: Natural lan-
guage interfaces
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1. INTRODUCTION
As autonomous systems become more common place, it

is important to address the lack of opacity and trust be-
tween the system and the human operator. Autonomous
systems by their very nature are able to adapt, modifying
preset plans and behaving in a less observably determinis-
tic fashion [1]. Previous attempts have been made to build
state-of-the-art natural language interfaces to bring mission
states and purposes closer to human operators in simulated
environments for pre-mission verifications for Autonomous
Underwater Vehicles (AUVs) [1, 2]. However, in real world
missions, the data collected by AUVs will be more noise-
prone, due to imperfect sensors and irregular trajectories
(partially caused by noisy environmental factors). There-
fore, in this paper, we introduce a prototype system that
can generate natural language debriefs for real AUV mis-
sions and is able to achieve reasonable robustness to data
noise. The prototype system described here is rule-based at
this stage, but could feasibly be extended by applying ad-
vanced machine learning techniques to this problem. Other
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Figure 1: The overall architecture of the system.

previous work has looked at enabling the mission plan to be
more scrutable and less opaque [4]. However, this work looks
at explaining only the plans whereas our work combines the
plans with from logs of real missions in order generate accu-
rate reports of what actually happened.

2. SYSTEM ARCHITECTURE
The prototype system takes three types of data sources

as its input, including the mission plan, time-series sensor
data and mission logs1. The overall system architecture is
illustrated in Figure 1.

Firstly, the system starts from a Plan Event Extrac-
tor that describes the events of interest in the mission plan.
However, as vehicles are enabled with more autonomy and
as missions plans are not always executed exactly, it is im-
portant to look at the data from the mission in conjunction
with the plan. Therefore, given a sensor data stream from
the logs, a sequence of events of interest is extracted by the
Data Event Identifier. This sequence of events is then
aligned to the sequence of events of interest recognised in
the plan using the Smith-Waterman algorithm. We give de-
tailed description of the Data Event Identifier and the
Plan Event Aligner below.

The set of aligned events are then sent to the NLG com-
ponent. This is broken down into a number of individ-
ual reporter modules that use rule-based generation. The
Plan Success Reporter debriefs the planned events suc-
cessfully executed by the AUV. If any unplanned events are
conducted by the vehicle, these will be reported by the Out-
of-plan Event Reporter. When a mission is recognised
as aborted, the Abort Reporter seeks the reason for the

1These data are exported from the REMUS Vehicle Interface
Program (REMUS VIP).
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Figure 2: The hierarchical classifier for event identi-
fication from real sensor data (the Data Event Iden-
tifier)

Table 1: Performance of the Data Event Identifier

Precision Recall
Lawnmower Scan 0.948 0.848

Traditional Reacquisition 0.933 0.609
Octagonal Reacquisition 0.704 0.528
Overall Event Accuracy 0.743

Mission Accuracy 0.720

abort from the mission log, locates and reports the aborted
mission objective. In addition, important messages in the
mission log, such as automatic parameter adjustments by
the AUV, the thruster controller errors during the mission,
etc., are summarised by the Mission Log Reporter, while
potential errors identified in the sensor data such as coordi-
nate jumps (e.g. due to LBL failures) are reported by the
Data Error Reporter.

Our system focuses on three major event types: lawn-
mower scans, traditional multi-view reacquisitions and oc-
tagonal spiral reacquisitions [3] (see Figure 3 for examples).

3. EVENT IDENTIFICATION FROM REAL
SENSOR DATA

In order to identify events of interest in noise-prone real
sensor data, we construct a rule-based hierarchical classi-
fier as shown in Figure 2. To relieve the error accumulation
problem, each layer is designed to be robust to imperfect
labels from the previous layer. In addition, there are a set
of approximate geometric functions specifically designed for
this problem to confer robustness to data noise (such as
unevenness in row scans or coordinate jumps during naviga-
tions).

We tested this Event Identifier on a set of 215 real world
REMUS AUV missions conducted by the Heriot-Watt Oceans
Systems Lab. These missions were manually annotated with
event sequences. Table 1 shows the performance with the
overall event accuracy of around 74% and high Precision and
Recall for lawnmower scans and traditional reacquisitions.
72% of the missions have all events accurately identified.

4. DEMONSTRATION
The prototype will demonstrate the generation of debriefs

from AUV missions, showing the mission tracks, events iden-
tified and generation process. Two examples of such debriefs
generated by the system are shown in Figure 3. The graph-
ical illustrations are exported from the REMUS VIP soft-

(a) This mission includes a lawnmower scan and a reac-
quisition. The target to reacquire is [26.5134,
-30.38255]. The mission was successful. A few thruster
controller errors were noticed, but not critical. The
vehicle altitude was adjusted from 2.5M to 3M to opti-
mise scan range. Minimum altitude was reached during
lawnmower scanning, therefore some inshore legs were
shortened. Navigation jumps due to LBL error might lead
to imperfect data coverage.
(b) This is an unknown test mission. A lawnmower scan
was conducted in addition to the planned mission. Extra
reacquisitions were conducted around objects [26.3825,
-35.27893], [52.3822, -6.27864] and [51.3818,
-35.27895]. The mission was aborted before the vehicle
navigated to [51.383, -20.27577], due to time out.

Figure 3: Example debriefs generated for two real
missions.

ware, where the magenta lines indicate the plan trajectories
and the dark bold lines are the actual trajectories travelled
by the AUV.
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