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ABSTRACT

We present a novel data-driven agent-based modeling frame-
work to study innovation diffusion. Our first step is to learn
a model of individual agent behavior from individual adop-
tion characteristics. We then construct an agent-based sim-
ulation with the learned model embedded in artificial agents,
and proceed to validate it using a holdout sequence of collec-
tive adoption decisions. Finally, we exemplify the proposed
method can be used to explore and analyze a broad class of
policies aimed at spurring innovation adoption.
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1. INTRODUCTION

Rogers’ [13] theory of innovation diffusion aims to explain
how, why, and at what rate new ideas and technology spread
through social systems. Bass outlined essence the theory and
proposed one of the most influential diffusion models [2].
However, models of this kind treat diffusion at aggregate-
level. It hardly handle individual-level data missing the key
to understand innovation adoption.

Agent-based modeling (ABM) is introduced to study ag-
gregate properties of complex systems arising from micro be-
haviors [3, 10]. Moreover, the emergence of “Big Data” offers
new opportunities to develop agent-based models entirely
data-driven. Data from various sources can be combined to
make a high-fidelity dataset and train agent behavior mod-
els using machine learning techniques. We propose a novel
data-driven agent-based modeling framework for study of
innovation diffusion, which can be quantitatively validated
and reliably used for policy analysis.

2. RELATED WORK

While typical “agent-base” approach uses simple agent
models to derive complexity from individual interactions,
our method departures from this treatment to developing so-
phisticated predictive agent models based on empirical data
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entirely. It is novel in the field of innovation diffusion, i.e.,
none of state-of-the-art agent-based models is developed by
rigorous machine learning techniques [4, 8, 12, 11, 9, 17].
Three related efforts are somewhat closer in spirit to our
method. Kearns and Wortman [6] develop a theoretical
model of learning from collective behavior, which however
does not address the general problem of learning from a sin-
gle observed sequence of collective behavior. Judd et al. [5]
use machine learning to predict behavior of participants in
social network coordination experiments, but are only able
to match the behavior qualitatively. Torrens [14] uses ma-
chine learning to calibrate individual walking models from
real and synthetic data, which however does not consider the
subsequent problem of policy evaluation and optimization.

3. DATA-DRIVEN AGENT-BASED MODEL-
ING

We now propose a general framework, data-driven agent-
based modeling (DDABM), which is introduced to efficiently
learn agent models from a sequence of individual behaviors.
The method explicitly divides data into “calibration” and
“validation” to ensure sound and reliable model validation
and automates agent model training by cross-validation. *

We start with a data set of individual agent behavior over
time, D = {(%it,Vst)}i,t=0,..., 7, where i indexes agents, t
time through some horizon T and ¥, indicates agent i’s
decision, i.e., 1 for “adopted” and 0 for “did not adopt” at
time ¢.

1. Split dataset D into calibration D. and wvalidation D,
parts along the time horizon: D. = {(xit, yst) }ie<T.

and D, = {(zit, yit) }s,t>7, where T, is a threshold.

Learn a model of agent behavior h on D.. Use cross-
validation on D, for model (e.g., feature) selection.

Instantiate agents in ABM using h learned in step 2.

4. Initialize the ABM to state =7, for all agents j.

5. Validate the ABM by running it from x7, using D,,.

We applied the DDABM in the context of spatial-temporal
solar adoption dynamics in San Diego county [16]. Figure
1 (left) illustrates that the agent-based model successfully

!We assume: a) discrete time, b) homogeneous agent and c)
independent decision-making at any time ¢, conditional on
state x.



forecasts solar adoption trends and provides a meaningful
quantification of uncertainty about its predictions. More-
over, likelihood ratio in Figure 1 (right) shows that our
model significantly outperforms a baseline model.
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Figure 1: likelihood ratio R of our model
(lasso) relative to the baseline. Right: spread of
sample runs of our model, with heavier colored re-
gions corresponding to higher density, and the ob-
served average adoption trend.

4. POLICY ANALYSIS

The proposed DDABM framework can support a variety
of policy experiments. Generally, agent model would include
features, such as, temporary economic variable, peer mea-
sures, individual characteristics etc. A policy could leverage
these economic variables, i.e., subsidy programs, group buy
discount etc. Based on peer effect, seeding policy, i.e. giving
away free systems, can be designed and evaluated. Targeted
marketing strategies, that aim to target influential subpop-
ulation based on demographics is also testable. In addition,
finding optimal policy can be highly complex, not only be-
cause the model is data-driven, but also multi-agent simu-
lation is heterogeneous and nonlinear. Our work reveal that
simple algorithm can be developed to find optimal seeding
policy in a general dynamic influence maximization setting,
but however it loses efficacy to other heuristics subject to a
more realistic model [15].

5. CONCLUSIONS

We introduced a DDABM framework demonstrating its
efficacy in modeling rooftop solar adoption. The model was
validated quantitatively and shown to support analysis of
a variety of policy schemes. In future, graphical models,
i.e. Bayesian networks, can be a remedy to avoid estima-
tion of multiple unknown variables to fit a logistic regres-
sion model. Thus, a real-time decision support system based
upon probabilistic inference and influence diagrams can be
envisioned [7]. Moreover, design of efficient algorithms to
find optimal or near-optimal policy is indeed necessary. Re-
inforcement learning algorithms might be used to estimate
action utilities and speed up the search [1]. Finally, we would
like to apply the developed DDABM framework in a differ-
ent domain of innovation diffusion.
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