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ABSTRACT
Particle Swarm Optimization (PSO) has been a popular
meta-heuristic for black-box optimization for almost two
decades. In essence, within this paradigm, the system is
fully defined by a swarm of “particles” each characterized
by a set of features such as its position, velocity and ac-
celeration. The consequent optimized global best solution
is obtained by comparing the personal best solutions of the
entire swarm. Many variations and extensions of PSO have
been developed since its creation in 1995, and the algorithm
remains a popular topic of research. In this work we submit
a new, abstracted, perspective of the PSO system, where we
attempt to move away from the swarm of individual parti-
cles, but rather characterize each particle by a field or distri-
bution. The strategy that updates the various fields is akin
to Thompson’s sampling. By invoking such an abstraction,
we present the novel Particle Field Optimization (PFO) al-
gorithm which harnesses this new perspective to achieve a
model and behavior completely distinct from the family of
traditional PSO systems.
Categories:
G.1.6 [Optimization]: Global optimization;
I.2.11 [Distributed AI]: Multiagent systems
Keywords: Particle Swarm Optimization/Intelligence.

1. INTRODUCTION
The efficient use of resources is a fundamental problem

which permeates every aspect of our lives. Nearly every de-
cision we make can be interpreted, in some way, to involve
the concept of minimizing the “cost”, or maximizing the “re-
turns” of our actions. In fact, this concept can be considered
to be a core challenge of life of any kind, as resources and
energy are inherently limited, and must be used efficiently
in order to ensure long-term survival and prosperity. Any
form of “intelligence”, then, must have the ability to deal
with problems of this type.

The field of function optimization presents a formalized
framework for modelling and solving certain problems of this
type. Given an“objective”function, which takes a number of
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parameters as its input, the goal is to find the combination
of parameter values which returns the “best” value. This
framework is abstract enough that a wide variety of different
problems can be viewed as“function optimization”problems.

The objective function of an optimization problem can
be any function which maps any number of parameters to
a single final resultant value. Because of this non-specific
definition, there are an extremely wide variety of distinct
properties that these functions can have. This variety of
properties presents a significant challenge when approach-
ing function optimization. Many properties, such as discon-
tinuities, multi-modal complexity, and elaborate constraints
on the input values, render“standard”optimization methods
impossible or infeasible, and so currently, new methods must
be created and tailored to functions with specific properties.
“Black-box” optimization is a category of optimization

problems dealing with functions about which no information
is available. The fact that these functions are totally un-
known presents a unique challenge for optimization. With-
out any knowledge of the function, algebraic manipulations
(such as computing derivatives) are impossible. Thus, tra-
ditional analytical methods of discovering the optimum, no
longer apply. In fact, it is unknown whether or not a single
global optimum exists at all, and it is impossible to verify
whether any solution found is globally optimal. The task of
optimization, then, must be approached from a different per-
spective. Finding the optimal value becomes a search pro-
cess within an unknown, and often infinite, solution space.

There exist a wide variety of strategies for approaching
this search problem, each making use of its own distinct
principles and perspectives. One such strategy is Particle
Swarm Optimization (PSO). Created in 1995 as the result of
experiments modelling a “collision-less” bird-flocking swarm
behavior, the PSO algorithm has remained a popular subject
of research and development. The PSO algorithm, briefly
surveyed in Section 2.2, consists of a population of extremely
basic individuals or particles which“fly”through the solution
space. Through communication, these basic individuals find
“good” solutions to the black-box optimization problem.

Many variations of the basic PSO algorithm have been
proposed, seeking to improve the algorithm and introduce
new behaviour to the algorithm. Among these variants is the
Bare Bones Particle Swarm (BBPS), which applies an ab-
straction to the behavior of the particles within the swarm.
In this paper, we show that inherent in the BBPS algo-
rithm, there exists a previously-unexplored opportunity for
an additional level of abstraction. Indeed, we show that
each particle can be abstracted by a field or distribution,
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and where the form/parameters of the distribution are up-
dated by using a scheme akin to Thompson’s sampling, lead-
ing to a completely new and unique perspective on particle
swarm systems. Taking advantage of this new perspective,
we propose a novel search algorithm known as Particle Field
Optimization (PFO), which, to the best of our knowledge,
is both unique and pioneering.

The rest of the paper is organized as follows. Section 2
contains a fairly comprehensive overview of the field includ-
ing that of black-box optimization, meta-heuristics and the
PSO. The paper then continues to the submission of the new
PFO paradigm in Section 3. Section 4 details the experimen-
tal results obtained by testing our scheme and comparing
it with a benchmark algorithm on a set of internationally-
recognized benchmark functions. Section 5 concludes the
paper and presents possible avenues for future work.

2. SURVEY OF THE FIELD

2.1 Black-box Optimization: Meta-Heuristics
When dealing with black-box optimization, the only way

of gaining information about the objective function is to
generate and evaluate potential solutions. By observing the
results of these function evaluations, some limited informa-
tion can be deduced about the function, which can then
be used to guide the search process. The most straight-
forward approach to this would be a basic, deterministic
hill-climbing algorithm. A hill climbing algorithm simply
generates a number of “adjacent” solutions to the current
best-found solution, and updates that best-found solution if
an adjacent solution is better. The process then loops until
no better adjacent solution is discovered. This approach will
quickly guarantee convergence to some locally optimal solu-
tion, but is not well suited to the problem of black-box op-
timization, in general. The majority of real-life applications
involve functions with very complex, multi-modal solution
spaces, and since nothing is known about the function being
optimized, it must be assumed that these complexities are
present. On such functions, a hill-climbing algorithm will
perform poorly compared to other methods, exploiting the
local information but becoming stuck in local optima.

In order to perform well on unknown functions, it is es-
sential for the scheme to avoid stagnating or converging to
a suboptimal point. If we consider the hill-climbing algo-
rithm, the opposite extreme would be an algorithm which
simply generates, and evaluates, totally random solutions
within the solution space. Clearly, this strategy would not
become stuck in local optima as the hill-climbing strategy
would. However, simply generating random solutions is no
better than one which sequentially generates and tests every
possible solution, and so this strategy is not feasible either,
due to potentially-infinite size of the solution space.

We thus argue that neither the extreme exploitation phase
of a hill-climber, nor the extreme exploration phase of gen-
erating totally random solutions, are suitable for the prob-
lem of black-box optimization. To effectively and efficiently
search the unknown space of a black-box function, an algo-
rithm must strike a happy medium between these extremes.
Exploitation is necessary to find the locally optimal solution
in some area, and exploration is necessary to escape local op-
tima and locate more areas for exploitation. This strategy
of balancing exploitation with random exploration describes
a category of algorithms known as “Meta-Heuristics”.

The term“meta-heuristic” is a combination of the modifier
“meta” (“beyond”), and the word “heuristic” (“proceeding to
a solution by trial-and-error or by rules that are only loosely
defined”). In general, a meta-heuristic algorithm is one
which combines randomization with a higher-level guiding
process to perform a search of some kind. This “higher guid-
ing process” is what differentiates a meta-heuristic method
from a simple heuristic method. The heuristic process within
a meta-heuristic is modified by this guiding process, thus el-
evating the behavior to be beyond a simple heuristic.

Of particular interest to us in this work, are those algo-
rithms that model so-called“swarming”behavior. In nature,
there exist many examples of social creatures that coopera-
tively act together and display a behavior which, as a whole,
is beyond the individual capabilities of the creatures them-
selves. This phenomenon is known as “Swarm Intelligence”
(SI), and provides a very interesting perspective for prob-
lem solving. In an SI system, a population of rudimentary
or primitive “individuals” work and interact with one an-
other in order to solve a higher-level problem beyond the
capabilities of any single individual.

2.2 Particle Swarm Optimization
The core PSO algorithm consists of a population of par-

ticles, which act according to individual behavior and in-
fluence each other via communication. A PSO particle i
consists of a position �Xi within the solution space, a veloc-
ity �Vi, and a personal best found point �Pi. The algorithm
begins with an initialization stage, which is followed by an
iterative simulation stage.

During initialization, the population of particles is created
and their positions and velocities, are assigned random val-
ues. Following this, the simulation stage begins, and it runs
indefinitely unless a termination criterion is met or the algo-
rithm is manually stopped. At each step of the simulation,
particles update their velocities, move accordingly, and eval-
uate their new location. Their corresponding personal best
solution is also updated, if necessary. A particle i updates
its velocity �Vi, and position �Xi, according to the equation:

�Vi = ω �Vi + �U [0, φp]⊗ ( �Pi − �Xi) + �U [0, φg]⊗ ( �Pg − �Xi)

�Xi = �Xi + �Vi.

Once a termination criterion is met, or the simulation is
manually stopped, the position of the global best particle �Pg,
which represents the best solution found by the algorithm,
is returned as the output.

2.3 Variations/Extensions of the PSO
Due to the simple and flexible nature of the PSO algo-

rithm, countless variations and extensions have been pro-
posed since it’s initial creation, and it remains an active
topic of research today. The research and development of
the PSO algorithm is also quite varied, with many distinct
strategies and approaches being explored. Some of these
strategies seek to improve existing components of the PSO
algorithm [4], [8] [11], or to introduce adaptive behaviors to
various levels of sophistication over the core algorithm to
improve useability [15], [17], [19]. Other strategies include
hybridizing the PSO algorithm with other population-based
ideas such as genetic algorithms [1], [5], [10] [16].

Although the high level behavior of the PSO algorithm
is very complex and difficult to analyze, analyses of simpli-
fied versions have been reported [2], [8], [13], [14]. This has
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shown that the PSO algorithm displays a number of biases,
including a bias towards the center of the initialization area
[12], and a bias favoring movement parallel to the axes [18].

2.4 Bare Bones Particle Swarm
The Bare Bones Particle Swarm (BBPS) algorithm [6] is a

PSO variant which seeks to emulate the high-level behavior
of the basic PSO algorithm, while simultaneously using a
much simpler particle-update strategy. Observations of the
basic PSO system suggested that very similar behavioral
patterns could be achieved without the complicated veloc-
ity and acceleration components. Further, observations of a
single particle using the standard velocity strategy, with the
system in a state of swarm stagnation (i.e. when the per-
sonal and global best points remain constant), produced a
histogram which displayed a distinct bell-curved shape. This
phenomenon led to the conjecture that rather than dealing
with the particle velocities and accelerations, each particle
could be updated by merely sampling a random distribution
constructed to approximate the observed histogram.

The BBPS algorithm entirely eliminates the velocity com-
ponent of the particle and merely determines the particle’s
next position by sampling a Gaussian random distribution.
This Gaussian distribution is constructed and sampled indi-
vidually for each dimension. The mean of this distribution is
set to be the midpoint between the global best found point
and the particle’s own best found point, and the variance
is set as the absolute distance between the global and per-
sonal best points for each dimension. Given a particle i with
position �Xi, whose personal best point is �Pi and for which
the global best point is �Pg, the particle’s next position is
determined according to:

�Pm =
�Pi + �Pg

2
, �Xi = �N ( �Pm, �σ2),

where �N represents a function which creates a Gaussian
random vector dimension-by-dimension, centred on �Pm. �σ
is a vector of standard deviations for each dimension, set
to be proportional to the absolute values of the difference
between the �Pi and �Pg points for each dimension.

This update strategy is marginally more abstract than the
basic PSO velocity strategy, since the particles no longer
“fly” through the space, but the general behavior of the
swarm remains the same. At a higher level, the algorithm
still involves a population of particles which move through
the solution space, and which are influenced by the memo-
ries of their best found positions and the communication of
the global best found position.

3. THE PARTICLE FIELD OPTIMIZATION
(PFO) ALGORITHM

3.1 The Need for Further Abstraction
The BBPS model discards the velocity component of the

basic PSO model and introduces a more abstract method
for updating the positions of the particles. However, if we
take a closer look at the consequences of this change, it is
possible to take the abstraction to a level that is even higher,
whence one discovers a completely new perspective and new
avenues for development.

To motivate this abstraction, we first consider the issue of
what constitutes a single particle in these two models. In the

basic PSO model, an individual particle consists of: A cur-
rent position, a current velocity and a personal best found
position. Each of these components is required in order to
determine the subsequent position of the particle for the
next iteration. The particle’s position in the next iteration
depends upon its current position and the particle’s velocity.
The updated velocity, in turn, depends on the particle’s cur-
rent velocity, the particle’s personal best found position and
the population’s global best found position. Each compo-
nent of the particle contributes to the update function and
must be maintained for use in the next iteration.

In the BBPS model, the velocity term is removed and an
individual particle consists of only a current position and
a personal best found position. However, unlike the basic
PSO model, updating the particle does not require both of
these components. Specifically, the position of the particle
in the next iteration is independent of the position of the
particle in the current iteration. When updating a particle,
the next position is generated by sampling a Gaussian ran-
dom distribution, which, in turn, is constructed using the
particle’s personal best, and the communicated global best
points. After creation, the position is used for only one pur-
pose, i.e., the updating of the particle’s personal best found
point. The global best point is, thereafter, updated using
the population’s personal best found points, and so does
not rely directly on the particle’s current position either.

As a result, it is possible to remove the particle’s position
component from the model entirely. Rather than storing and
maintaining the particle’s current position, we can modify
the update operations to work directly with the particle’s
personal best point while maintaining equivalent behavior.
A new point is generated by sampling the constructed ran-
dom distribution. If the new point has a better value than
the particle’s personal best found point, the best found point
is set equal to the new point. The only difference is that this
newly generated point is temporary, rather than being main-
tained for the next iteration. The algorithm’s behavior with
this abstracted model is unchanged, but the metaphors and
concepts of the original PSO may require re-examination.

After removing the particle’s current position component,
an individual particle now consists of only a personal best
found position. The particle no longer exists as an explicit
point in space. Conceptually, the particle’s personal best
point is a memory that the particle maintains of the best
point it has evaluated so far, and the global best position
which can be thought of as being the collective memory of
the population. These two “memories” define the random
distribution used to update the particle. Though the par-
ticle no longer exists as an explicit point in space, we can,
instead, think of the particle’s “position” in that space as be-
ing defined by the random distribution itself. This is because
this distribution represents the probability field of possible
positions for the particle. From this perspective, the particle
exists as a random field defined by its own memory and the
collective memory of the population.

With the new concept of what the population individu-
als are, the high-level perspectives of the algorithm change
drastically. The metaphor of a swarm of particles “flying”
through space no longer aptly describes the high-level con-
cept of the algorithm. Rather, the algorithm now consists
of a population of “particle fields” which move throughout
the space in a different way. Because the “positions” of
these “particle fields” are defined as random distributions,
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“evaluating” a “particle field’s” current “position” is non-
deterministic, and so these“particle fields”do not necessarily
have to “move” to explore new points. These “particle fields”
remain “stationary” in the space until either the individual’s
personal best point changes, or the population’s global best
point changes. This population of “particle fields” can, it-
self, be perceived as a random field of particles defined as
a mixture distribution made up of each individual distribu-
tion. This population level distribution can be thought of as
an abstract representation of a particle swarm, representing
a probability distribution of all possible particle locations
for the next iteration. This perspective of the high-level
concept is significantly different than the BBPS algorithm,
although their behaviors are analogous. However, with this
new perspective, it is possible to explore new directions in
improving or changing the behavior of the algorithm.

3.2 How the PFO Abstraction is Affected
With this new perspective of the BBPS algorithm, we

can begin taking steps toward a new algorithm using this
abstracted philosophy. In this abstracted BBPS model, each
individual in the population would generate and evaluate a
single new point per iteration so as to maintain the concept
of an individual representing a single particle. However, it is
not necessary to maintain this metaphor in our new model,
and so we can approach the generation and evaluation of
candidate solutions from a distinct perspective.

Rather than have each individual directly representing a
candidate solution in and of itself as in traditional PSO al-
gorithms, we use the population in a more indirect way to
explore the solution space. Collectively, the population rep-
resents a complex, finite mixture distribution made up of
an underlying set of simple multivariate Gaussian distribu-
tions, which are defined by the particle field individuals.
Traditionally, each individual would generate, and evaluate
exactly one new solution. However, this population distri-
bution can be used to guide the search in a different way.

Candidate solutions are instead generated by sampling
this population-level distribution. Although the population-
level distribution is complex, the sampling process is sim-
ple. The population-level distribution is a finite mixture
distribution with known component distributions. There-
fore, sampling this complex population-level distribution is
a simple matter of sampling one of the underlying compo-
nent distributions, selected at random. In the context of the
population, this means randomly selecting a particle field
individual and then sampling the multivariate Gaussian dis-
tribution defining that particle field’s “position”.

Once the candidate solution points have been generated
and evaluated, each particle field individual in the popula-
tion is updated. Each individual is updated using the can-
didate solutions generated from that individual’s own distri-
bution. If a candidate solution is better than the individual’s
own personal best point, the personal best point is set equal
to that solution. In this way, the population defines a ran-
dom distribution which guides the search and generation of
candidate solutions, which are then used to update the pop-
ulation and redefine the search area for the next iteration.

This concept of the population guiding the search leads
us to the next step toward a new, distinct algorithm. Be-
cause the complex distribution created by the population is
a finite mixture distribution, it is a simple matter to apply
a weighting scheme to the distribution. By weighting the

contribution of each particle field to the population distri-
bution, it is possible to incorporate additional information
into the search process, independent of the underlying PSO
processes.

Finally, since the population of the particle field individu-
als no longer directly represents candidate solutions, it is no
longer necessary that the number of candidate solutions gen-
erated and evaluated at each iteration equals the size of the
population. Because of this, it is possible to further mod-
ify the behavior by using different relative population and
candidate solution point pool sizes. Due to the nature of
the population distribution, changing the number of parti-
cle field individuals in the population effects the “resolution”
of this distribution.

3.3 Implementing the PFO Abstraction
With these changes taken into account, we have now moved

away from the traditional PSO paradigm and arrived at a
new, distinct algorithm, which will be hereafter referred to as
Particle Field Optimization (PFO). This algorithm consists
of a population of “particle field” individuals and a “point
pool” of candidate solution points. The population of parti-
cle field individuals uses PSO principles to guide the search
of the solution space, which is carried out by generating
and evaluating, the pool of candidate solution points. Anal-
ogous to traditional PSO algorithms, the PFO algorithm
consists of an initialization phase and a simulation phase
which loops until some termination criteria is met, at which
point the best solution found by the algorithm is returned
as output. As its parameters, the algorithm takes an ini-
tialization range, a population size and a pool size. The
population size parameter specifies the number of particle
field individuals which form the population used to guide
the search. The pool size parameter specifies the number of
candidate solutions to be generated and evaluated, at each
step of the simulation. A weighting function may be spec-
ified, which weights the contribution of each individual to
the population-wide distribution.

The initialization phase initializes the population of par-
ticle field individuals. A particle field individual stores only
a personal best found position, and so the initialization of
these individuals is simple. Each individual is assigned an
initial personal best point by sampling a uniform random
distribution defined by the initialization range.

The simulation phase loops until a termination criteria is
met, typically the maximum number of iterations. Each it-
eration consists of two phases. In the first phase, candidate
solutions are generated. These candidate solutions are gen-
erated by sampling the mixture distribution defined by the
population of particle field individuals. For each point in the
point pool we do the following: A particle field individual is
selected at random from the population, according to some
weighting scheme. Then, the point is generated by sampling
the random distribution defined by the selected individual.
This random distribution is constructed using the individ-
ual’s personal best, and the global (or neighborhood) best
points in the same way as the BBPS method does. Given a
particle field with personal best point �Pi and for which the
global (or neighborhood) best point is �Pg, the position of
the candidate solution point, �c, is determined according to:

�Pm =
�Pi + �Pg

2
, �σ2 = | �Pi − �Pg|, �c = �N ( �Pm, �σ2).
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Once the candidate solution has been generated, the objec-
tive function is evaluated, using this generated point as its
input, in order to assign it a value. After each candidate
solution in the point pool has been generated, the second
phase begins. In this phase, the population of particle field
individuals is updated. Each individual updates its own best
found point using the set of candidate solutions generated
from its own distribution. Each individual selects the best
point from the set of associated candidate solutions. If the
best associated candidate solution is better than the indi-
vidual’s personal best found point, the individual sets its
personal best found point to be equal to that candidate so-
lution point. The pool of candidate solutions is then “emp-
tied”, and the simulation continues to the next iteration.

Once the termination criteria have been met, the global
best found point is returned as output of the algorithm. The
formal algorithm follows in Algorithm 1.

Algorithm 1 Particle Field Optimization Algorithm

Input:
Function f() to be optimized
Initialization range lbound, ubound
Particle field population size npop

Candidate solution point pool size npool

Weighting function w()
Output:

Point �Pg representing best found solution
Method:

create particle field population P with size npop

create candidate solution point pool C with size npool

for each particle field i ∈ P do
�Pi ⇐ �U [lbound, ubound]

if f( �Pi) < f( �Pg) then
�Pg ⇐ �Pi

end if
end for

while termination criteria not met do
for each candidate solution point �c ∈ C do

select particle field i ∈ P with probability
w(i)∑

p∈P w(p)

�c ⇐ �N
(

�Pi+ �Pg

2
, | �Pi − �Pg |

)

Si ⇐ Si ∪ {�c}
end for
for each particle field i ∈ P do

choose point �cmin from Si which minimizes f( �cmin)

if f( �cmin) < f( �Pi) then
�Pi ⇐ �cmin

if f( �Pi) < f( �Pg) then
�Pg ⇐ �Pi

end if
end if
Si ⇐ ∅

end for
end while
return �Pg

4. THE PFO: EXPERIMENTAL RESULTS

4.1 The Experimental Test Bed
In order to accurately measure the performance of a black-

box optimization algorithm, empirical testing must be car-
ried out on a variety of test functions. The test suite selected

Table 1: The set of the test functions used in the test suite.

Function Dim Formula

Rosenbrock 2 (1− x1)
2 + 100(x2 − x2

1)
2

Schaffer F6 2 0.5 +
sin2(

√
x2
1+x2

2)−0.5

[1+0.001∗(x2
1+x2

2)]
2

Sphere 10
∑d

i=1 x
2
i

Rastrigin
10

20

10d+
∑d

i=1

[
x2
i − 10cos(2πxi)

]

Griewank
2

20

1 + 1
4000

∑d
i=1 x

2
i −

∏d
i=1 cos

(
xi√
i

)

to evaluate the PFO algorithm consists of a variety of differ-
ent test functions commonly used for evaluating PSO related
algorithms. This suite includes the Rosenbrock, Shaffer F6,
Sphere, Rastrigin and Griewank functions. The full suite,
including the choice of the dimensionality for each function,
is presented in Table 1.

4.2 Overview of Testing Strategy
The PFO algorithm can be configured using three primary

parameters which modify the algorithm’s behavior. These
primary parameters are the “pool size” parameter, the “pop-
ulation size” parameter and the weighting scheme used by
the algorithm. It is important to recall that the number of
function evaluations performed by the PFO algorithm is dic-
tated by the pool size parameter, rather than the population
size parameter. For this reason, a single value was chosen for
the pool size parameter for each function in order to ensure
a consistent number of function evaluations. Testing was
carried out on the PFO algorithm in order to investigate
the range of behaviors possessed by the algorithm, and the
effects of each parameter on that behavior. Consequently, a
number of different values were chosen for each parameter,
and tests were performed for each combination. A detailed
justification of the parameter values and weighting schemes
chosen for testing can be found in [3], and is omitted here
in the interest of brevity.

The PFO algorithm was created by introducing a number
of changes to the BBPS algorithm. As a result, the BBPS
algorithm provides the best baseline point of comparison for
assessing the effects of these changes. In addition to this, the
BBPS algorithm takes only one parameter, which is the pop-
ulation size parameter. For each test, this parameter was set
equal to the corresponding PFO pool size in order to ensure
that the number of function evaluations remained consistent
between the algorithms. Because of this, the BBPS algo-
rithm required no parameter tuning itself, and so provides a
very straightforward and dependable baseline of comparison.

4.3 Experimental Results
We now present the results of the testing carried out on

the PFO algorithm. Due to the large number of tests re-
quired to adequately investigate the PFO algorithms, we
summarize each set of tests rather briefly and include plot-

261



Table 2: A brief overview of the results for each test function.

Function Dim BBPS Best PFO Worst PFO

Sphere 2 5.5282E−66 1.3299E−89 4.2189E−40

Rosenbrock 2 0.0170 8.1423E−5 0.4980

Schaffer F6 2 0.0100 7.6178E−3 0.0328

Rastrigin
10 4.4663 2.7609 6.5798

20 17.5572 11.0465 21.3381

Griewank
2 0.0129 5.6518E−3 0.2599

20 0.0242 0.0206 0.0282

ted results for only a portion of the tests. Admittedly, due
to space limitations, the results presented here are not com-
prehensive – a more detailed exegesis of the results of an
exhaustive set of functions, dimensions, tests and parame-
ter settings can be found in [3]. A brief overview of the best
and worst results on each test function is presented in Table
2, and depicted graphically in the respective graphs.

4.3.1 Sphere Function
PFO configurations with a particle field population size

smaller than the pool size performed best on the Sphere
function, outperforming the baseline (i.e., the BBPS) con-
siderably. When the population size was equal to the pool
size, performance was similar to the BBPS, and when the
population size was larger than the pool size, the perfor-
mance was considerably degraded. In all cases, there was a
relatively small amount of variance in performance between
the tested schemes.

4.3.2 Rosenbrock Function
For the Rosenbrock function, PFO configurations using a

population size of half the pool size performed poorly when
compared to the baseline BBPS. Despite the Rosenbrock
function being unimodal, these configurations quickly be-
came stagnant and got stuck in a sub-optimal area within
the first 50 iterations. Variations in the performance among
the weighting schemes with this population size was also
considerable, but with no particular outliers. Configura-
tions with a population size equal to the pool size performed,
on average, considerably better than the BBPS. The varia-
tion in performance among the weighting schemes with this
population size was significant, with the Average weighting
scheme performing dramatically worse than the others. All
the PFO configurations with a population size of twice the
pool size performed dramatically better than the baseline.

4.3.3 Schaffer F6 Function
In the case of the Schaffer F6 function, PFO configurations

using a population size smaller than the pool size performed
poorly compared to the baseline BBPS. The variation in
performance among weighting schemes in this group was
fairly significant, with two performing much worse than the
others. These were the Personal Best and Relative Average
weighting schemes. With a population size equal to the pool
size and to twice the pool size, the PFO showed, on average,
a small improvements over the baseline – which was a result
unique to the Schaffer F6 function.

Figure 1: A selection of performance results for the
Rosenbrock-2 function
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4.3.4 Rastrigin Function
Between the 10 and 20-dimensional versions of the Rastri-

gin function, the impact of the relative values of the particle
field population size and pool size parameters were consis-
tent. When using a population size less than the pool size,
performance was poor compared to the BBPS. With a pop-
ulation size equal to the pool size the performance was, on
average, similar to the baseline BBPS and with a population
size greater than the pool size, performance was significantly
improved over the baseline BBPS. The impact of the weight-
ing scheme on performance was relatively insignificant.

4.3.5 Griewank Function
Results on the Griewank function varied between the func-

tion’s 2 and 20 dimension versions. On the 2-dimensional
Griewank function, PFO configurations using population
sizes smaller than the pool size performed much worse than
the baseline BBPS. PFO configurations with larger popula-
tion sizes performed much better than the BBPS.

On the 20-dimensional Griewank function, the configu-
rations with different relative population sizes performed
about the same as one another. However, the smaller rela-
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tive population size performed slightly better than the pop-
ulation size equal to the pool size, which, in turn, performed
slightly better than the larger relative population size. This
would suggest that as the dimensionality of the Griewank
function increases, the larger population size becomes less
beneficial, and more detrimental. Considering this along
with the results of the Sphere function, this observation is
in line with the idea that the Griewank function becomes
“easier” as the number of dimensions is increased.

4.4 Discussions
From analyzing the results presented, it is possible to iden-

tify some patterns and gain insight into the behavior of the
PFO algorithm, as well as the effects of the algorithm’s pa-
rameters. From a cursory glance, the test results show a
great amount of variation among the different configurations
of the PFO algorithm on each test function, with many con-
figurations performing significantly better than the baseline
BBPS, and some performing significantly worse. This high
variance among results shows that the different parameter
values chosen had a significant impact on the PFO’s behav-
ior and performance.

We can summarize the overall results as below:

1. Among these results, a clear pattern emerges, suggest-
ing a significant correlation between the particle field
population size and the behavior of the PFO algo-
rithm. On all the test functions, with the exception
of the Griewank 20 function, the final results are di-
vided by the particle field population size into distinct
clusters. With the pool size parameter set as a sin-
gle value for each function, the difference in the PFO
configurations within these clusters is only the weight-
ing scheme used. This suggests that the particle field
population sizes chosen for each test “dominated” the
choice of the weighting scheme, as there was no overlap
between these groups.

2. In addition to this distinct grouping, a correlation be-
tween the relative order of these groups and the par-
ticle field population size can be observed. With the
exception of the Sphere function, a larger particle field
population size was correlated with a better best value
found. On the Sphere function, the opposite is ob-
served, where a smaller population size is correlated
with a better best value found. In addition to this
exception we observe the previously-mentioned excep-
tions of the Griewank 20 function, on which the par-
ticle field population size did not show such a distinct
clustering on the final results. These exceptions can
be explained when considering the plotted test results
showing the average best value found at each iteration.
Rather than make a correlation between the particle
field population size and the final result, it is more
accurate to correlate the particle field population size
with the “exploratory”behavior of the algorithm. This
correlation is in line with results on all test functions,
including the Sphere and Griewank functions.

3. In the case of the Sphere function, a higher“exploratory”
behavior would show poor performance compared to a
more “exploitative” behavior, due to the simplicity of
the function. This is in line with the plotted results,
as configurations with smaller particle field population

Figure 2: A selection of performance results for the
Rastrigin-10 function.
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Figure 3: A selection of performance results for the
Griewank-2 function.
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Figure 4: A selection of performance results for the
Griewank-20 function.
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sizes were observed to converge much faster than con-
figurations with larger population sizes.

4. The results on the Griewank function also suggest this
correlation, though not as clearly. The plotted results
show this correlation in the early iterations, although
the final values are not distinctly separated by the par-
ticle field population sizes. In this connection, we men-
tion that it has been shown that the Griewank function
becomes “easier” as the number of dimensions are in-
creased, and if we take this into account, these results,
which are otherwise unexplainable on the Griewank
functions, can be explained. Results on the Griewank
2 function support the correlation between the parti-
cle field population size and the “exploratory” behav-
ior, with larger population sizes yielding dramatically
better final results.

5. When comparing these observations with the results of
tests on the Griewank 20 function, a possible pattern
emerges which explains the observed exception. The
results on the Griewank 20 function are not distinctly
separated by particle field population sizes. However,
the observed relation between the average final value
for each group is, in fact, the opposite of the observed
relation on the Griewank 2 function. In this case, the
PFO configurations with a smaller population size per-
formed, on average, slightly better than those with a
larger population size. With the knowledge that the
Griewank function becomes “easier” as the number of
dimensions are increased [9], and recalling the results
of tests on the Sphere function, a possible explana-
tion for the results can be made. As the number of
dimensions increases, the Griewank function becomes
“easier”, and so as the number of dimensions increases,
“exploitative” behavior becomes more valuable than
“exploratory” behavior, explaining the PFO’s behav-
ior that its “exploitative” nature of small populations
begins to yield better results than its “exploratory”na-
ture for large populations.

6. The weighting scheme was expected to have a large
impact on the PFO algorithm’s behavior. The test re-
sults, however, show that the weighting scheme chosen
had a relatively small impact when compared with the
particle field population size parameter. By grouping
PFO configurations according to the particle field pop-
ulation sizes, the effects of the weighting schemes can
be compared within these groups.

7. In addition to the tested weighting schemes, PFO con-
figurations with no weighting scheme were tested [3] to
provide a baseline point of comparison. The effective-
ness of the weighting schemes varied greatly across the
test functions and population size groups. On some
functions there was a significant variation in perfor-
mance between the weighting functions, and on some
the variation was very small. Also, the relative perfor-
mance of the weighting schemes within their groupings
was inconsistent over the different test functions, with
no significant patterns suggesting any clear correlation
between the weighting schemes and specific behaviors.
This is addressed in more detail in Section 5.2 which
deals with the potential for more research in this area.

5. CONCLUSIONS AND FUTURE WORK
Particle swarm algorithms have been a popular topic of

research and development since the inception of the origi-
nal Particle Swarm Optimization (PSO) algorithm in 1995.
Many different strategies have been explored to change, or
improve, the PSO algorithm, with distinct motivations and
results. The initial stages of our research into these various
strategies led us to study the Bare Bones Particle Swarm
(BBPS) algorithm, which simplified and abstracted the PSO
algorithm. Upon discovering the potential for a further level
of abstraction, we have been able to determine an even
higher level of abstraction on which the particles were re-
placed by “fields”, and to investigate the implications of the
new perspective. As far as we know, such an abstraction
is both novel and pioneering in the area of swarm-like algo-
rithms, and in the field of AI, in general.

This work was written with two primary objectives in
mind. The first objective was to present an abstracted per-
spective of the behavior of the BBPS algorithm. With this
abstracted perspective came many new opportunities for the
development of the algorithm. The second objective was to
present the newly created PFO algorithm, which was de-
signed by exploring some of the new opportunities presented
by this abstracted perspective of the BBPS algorithm.

In this paper, we have thoroughly achieved and explored
both of these objectives. The abstracted perspective of the
behavior of the BBPS algorithm presents many new oppor-
tunities for development which are not evident with the tra-
ditional particle swarm perspective. With this perspective
as a foundation, we have explored a number of these new
opportunities, applying a number of changes and additions
to the BBPS algorithm, resulting in the distinct Particle
Field Optimization (PFO) algorithm. The PFO algorithm
itself is a novel contribution, proving to be effective in the
optimization of a variety of different functions of high and
low dimensionalities and differing complexities. The PFO
algorithm also presents a rich framework for further devel-
opment and research of the new and abstracted perspective.

5.1 Application of PSO Concepts to the PFO
The PFO algorithm has an overall behavior which is dis-

tinct from traditional particle swarm algorithms, but the
core particle swarm framework is still present within the
population of particle field individuals. It is thus possi-
ble to incorporate many PSO-based facets, into the PFO
paradigm. The PFO can also be applied in all the problem
domains where PSO schemes are applicable.

5.2 Improvement of Weighting Schemes
The weighting scheme parameter of the PFO algorithm

was originally intended as a way to introduce a dramatic
change in the search behavior without interfering directly
with the underlying particle swarm principles at work. How-
ever, the impact of the different weighting schemes tested
was much less significant than we had hoped. The advan-
tages gleaned were also very problem specific. Because of
this, the improvement of the weighting scheme portion of the
PFO algorithm presents a clear opportunity for further re-
search and development. The observed effects of the weight-
ing schemes were surprising, and so it is not yet clear why
these different weighting schemes did not show the expected
impact. Further investigation into the weighting schemes
themselves, then, is required to understand this.
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