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ABSTRACT
Daily deals are very popular in today’s e-commerce. In

this work, we study the problem of mechanism design for
a daily deal website to maximize its revenue and obtain
the following results. (1) For the Bayesian setting, we first
design a revenue-optimal incentive-compatible (IC) mecha-
nism with pseudo-polynomial time complexity. Considering
the high computational complexity of the mechanism, we
then develop a greedy mechanism that is much more com-
putationally efficient yet maintains a constant competitive
ratio regarding the Bayesian optimal revenue in expecta-
tion. (2) For the prior-independent setting, we first propose
a randomized IC mechanism with a pseudo-polynomial time
complexity that can achieve a constant competitive ratio.
Then, by leveraging the greedy mechanism designed for the
Bayesian setting, we come up with a new mechanism that
can achieve a good tradeoff between computational efficiency
and competitive ratio. After that, we discuss the robustness
issue regarding the two mechanisms (i.e., they both use the
trick of random partition and may perform badly for the
worst-case partition) and propose an effective way to guar-
antee a constant competitive ratio even for the worst-case
partition.
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J.4 [Computer Applications]: Social and Behavioral

Sciences–Economics
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Economics, Theory

Keywords
Mechanism Design, Daily Deals

1. INTRODUCTION
Daily deal services (e.g., Groupon) have become very pop-

ular nowadays. In daily deal services, a merchant demands
and pays for a chunk of user impressions. 1 The demand of

1In daily deal services, merchants usually target at conver-
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a merchant can be specified by a pair (l, u), where l and u
denote the minimum and maximum numbers of user impres-
sions that she would like to buy. The daily deal website can
collect revenue from the merchant if the number of user im-
pressions allocated to him/her (denoted as x) satisfies l ≤ x:
if x < l, the merchant will pay nothing because the deal is
not tipped on; if x > u, the merchant will not pay extra
money for the user impressions beyond u.

Daily deal services have been studied from many different
perspectives, such as merchants’ reputation [7] and prof-
itability [11, 12], and customers’ behaviors [6, 27, 21, 26].
Different from those work, we focus on the problem of rev-
enue maximization by means of designing auction mecha-
nisms.

1.1 Daily Deal Auctions
We define the Daily Deal Auctions (DDAs) as follows.

Let N be the supply from the daily deal website, i.e., there
are N web users visiting the website during a specific time
period. Denote K as the maximum number of slots where
the website can show deals to each web user. We follow
the convention in previous work [13, 1, 19] and assume the
qualities of the slots to be different from each other (e.g.,
a deal shown at the top slot is more likely to attract users’
attention). Specifically, we use λk to denote the quality
of slot k and assume that the slots are numbered in the
descending order of their qualities: 1 ≥ λ1 > λ2 > · · · >
λK ≥ 0.

If a deal is shown to x users at slot k, we say that the
deal has obtained xλk effective impressions. We define Nk =
Nλk as the number of effective impressions of slot k in the
entire time period (another way to understand Nk is to re-
gard it as the expected number of users who have paid at-
tention to the k-th slot). For simplicity and without much
loss of accuracy, we assume Nk to be an integer. It is clear
that N1 > N2 > · · · > NK .

Let M be the number of candidate deals participating
in the auction. Each deal i is characterized by a tuple
(li, ui, vi), where li and ui denote the minimum and maxi-
mum number of effective impressions demanded by the deal,
and vi denotes the per-effective-impression value. We focus
on the single-parameter setting, in which a merchant may
strategically misreport her value vi through a bid bi.

sions/purchases, which can be easily transformed to impres-
sions. For example, 10000 impressions is equivalent to 100
conversions if the conversion rate of the deal is 0.01. We
choose to use the term impression throughout the paper
because it is what the daily deal website can allocate in
practice.
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Upon receiving the bids {bi}i∈[M ] from all the merchants,
the website determines how to allocate the slots and how
to charge merchants by using a mechanism. Let xi be the
number of effective impressions allocated to bidder i and pi
be the payment of bidder i. Then the utility of bidder i is

Ui = 1{li ≤ xi}(min{xi, ui}vi − pi),

where 1{} is the indicator function, and the revenue of the
auctioneer is

∑
i∈[m] pi. Note that the utility of any bidder

should be non-negative for individual rationality.
A feasible allocation for DDAs must satisfy two condi-

tions: (1) no more than one deal can be assigned to a slot for
any user; (2) no deal can be assigned to more than one slot
for any user. These feasibility conditions can be mathemat-
ically expressed by the following majorization constraints
[19]: ∑i

j=1
x[j] ≤

∑i

j=1
Nj , ∀i ∈ [M ],

where x[j] denotes the j-th largest element in {xi}i∈[M ], and
Ni = 0,∀K < i ≤M .

The goal of our work is to design computationally efficient
mechanisms for DDAs, which are incentive compatible to
the bidders and can (approximately) maximize the revenue
of the auctioneer.

1.2 Our Results
Our main results can be summarized as follows.
We start with the Bayesian setting. (1) We first pro-

pose an incentive compatible (IC) mechanism M1 with a
pseudo-polynomial time complexity, which can achieve the
optimal expected revenue. This mechanism leverages the
dynamic program proposed in [19] for the allocation, and
uses a novel algorithm to calculate the payment. (2) Con-
sidering the high complexity of M1, we further propose a
greedy mechanism M2 that is highly computationally effi-
cient (e.g., O(M3)) and can achieve a competitive ratio of
1/4.

We then consider the prior-independent setting. (1) Based
on M1, we design a randomized IC mechanism M3 with a
pseudo-polynomial time complexity and a competitive ra-
tio of β−1

β
, where β > 1 is a fixed constant. (2) To reduce

the computational complexity of M3, we develop a greedy
mechanism M4 with complexity is O(M3) and a competi-
tive ratio of β−1

4β
. (3) Considering that the above two mecha-

nisms rely on random partition of the bidders and only have
performance guarantee in the expected case, we then dis-
cuss how to improve their robustness, i.e., how to guarantee
their performances even for the worst-case partition. As a
showcase, we develop a mechanism M5 that can achieve a
competitive ratio of 3

7
and a robust ratio (see Definition 10)

of 1
4
.

2. RELATED WORK
Daily deal services have been studied from many differ-

ent perspectives. [7] studies how daily deal sites affecting
the reputation of a business using evidences from Yelp re-
views. [6] investigates hypotheses such as whether daily deal
subscribers are more critical than their peers. [11] tries to
answer the the question whether group-buying deals would
be profitable for businesses. [12] finds that offering vouchers
is more profitable for merchants which are patient or rela-
tively unknown, and for merchants with low marginal costs.

There are several papers [27, 21, 26] studying consumer pur-
chase/repurchase behaviors towards daily deals. It is easy
to see that the focuses of existing pieces of work are very
different from ours. We stand on the position of a daily deal
site and focus on the problem of revenue maximization by
means of designing auction mechanisms.

A closely related work is [8], in which the authors also
design auction mechanisms for daily deals. The difference
is that they target at the maximization of a combination
of the revenue of the auctioneer (website), welfare of the
bidders (merchants), and the utility of the consumers, while
we focus on the revenue of the website. Besides, they ignore
the dynamic demand of merchants (i.e., from li to ui) and
do not consider the impression allocation problem.

The impression allocation problem in our work is related
to the classical knapsack problem [9], which can be viewed as
our special case by setting li = ui and K = 1. While some
recent work on stochastic knapsack problem [10] consider
items with stochastic volumes, the allocation of an item is
binary (i.e., pack it or not). Our work is different in the
sense that the allocation of a deal is not binary (zero or lower
bounded by li and upper bounded by ui). Our work is also
highly related to [19] and [20], except that they ignore the
incentive issues and assume that bidders truthfully report
their valuations.

From the perspective of auction design, DDAs are related
to knapsack auctions as studied in [2]. In fact, our problem
will degenerate to the problem under their investigations by
(1) setting li = ui,K = 1 and (2) assuming bidders’ pri-
vate value are deterministic and fixed. Recently, [25] studies
knapsack auctions in the Bayesian setting and obtain sev-
eral approximation results, yet it is still a special case of our
setting (li = ui and K = 1). DDAs are also related to multi-
unit auctions [22, 16]. The difference is that the allocation
in DDAs have a lower (li) and an upper (ui) constraint.

[5] and [4] are the early pieces of work that consider pay-
ment computation in truthful mechanisms. Both of them
and our work face the hinder that the computation involves
the integral of a step function with possibly exponential
breakpoints. Our method is different from them and we
solve this issue in the specific setting of daily deal auctions.

The concept of competitive ratio comes from [18], which
evaluates the performance of a mechanism by comparing
its expected revenue against the Bayesian optimal expected
revenue. The concept of “prior-independent setting” also
comes from [18]. Our designed mechanisms for the prior-
independent setting are inspired by [14], [15] and [3] in which
bidders are partitioned into several sub markets to estimate
the value distribution. Again, different from these pieces of
work on digital goods, we consider bidders with dynamic
demands (ranging from li to ui).

3. PRELIMINARIES

3.1 Settings and Notations
We mainly investigate on two settings for DDAs, and use

competitive ratio to measure the expected revenue that an
auction mechanism can achieve.

In the Bayesian setting, it is assumed that the valuation vi
of bidder i is independently sampled from a distribution Fi,
which is known to both the auctioneer and all the bidders.
In this setting, the competitive ratio of a mechanism M is

defined as Rev(M)
OPT

, whereOPT denotes the optimal expected
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revenue of an incentive compatible mechanism and Rev(M)
is the expected revenue of M. Note that both expectations
are taken over the joint distribution F1 × F2 × · · · × FM .

In the prior-independent setting, it is assumed that the
valuations of all the bidders are independently sampled from
the same distribution F , but this distribution is unknown
to the auctioneer. In this setting, the competitive ratio of a

mechanism M is defined as infF
Rev(M,F )
OPT (F )

, where OPT (F )

denotes the optimal expected revenue of an incentive com-
patible mechanism and Rev(M, F ) is the expected revenue
of M. Both expectations are taken with respect to the dis-
tribution F .

In addition, throughout the paper, we use v−i to denote
the valuation profile of all the other bidders except i, use
xi(vi) = Ev−i [xi(vi, v−i)] to denote the expected number of
effective impressions allocated to bidder i when her valuation
is vi, use pi(vi) to denote the expected payment, and use
ui(vi) = vixi−pi to denote the expected utility. Since all the
mechanisms designed in this paper are Bayesian incentive
compatible, we will interchangeably use the valuation profile
v and bid profile b, and so for vi and bi.

3.2 Myerson’s Lemma
As mentioned in the introduction, we are concerned with

the single-parameter auctions, in which each bidder’s private
information can be expressed by a one-dimensional value
vi. We can exploit the classical Myerson Lemma to design
incentive compatible mechanisms for single-parameter auc-
tions:

Lemma 1. The sufficient conditions for a mechanism to
be Bayesian incentive compatible are as follows.

1. Allocation monotonicity: for all i and vi > v′i, xi(vi) ≥
xi(v

′
i).

2. Payment identity: for all i and vi, pi(vi) = vixi(vi)−∫ vi
0
xi(v)dv.

Furthermore, we can leverage the following lemma to de-
sign incentive-compatible revenue-optimal mechanisms.

Lemma 2. [24] In a Bayesian incentive compatible mech-
anism with allocation rule x(·), the expected payment of agent
i satisfies Ev[pi(v)] = Ev[φi(vi)xi(v)], where we denote the

virtual value φi(vi) = vi − 1−Fi(vi)
fi(vi)

, and fi and Fi are

the probability density function and cumulative distribution
function separately for bidder i’s valuation.

Following the common practice [24, 23] in mechanism de-
sign, we assume that the valuation distributions (all Fi’s in
the Bayesian setting and F in the prior-independent setting)
are regular (i.e., the virtual value φi(vi) is monotone with
respect to vi).

4. BAYESIAN SETTING
In this section, we design mechanisms for DDAs in the

Bayesian setting. The goal is to (approximately) maximize
the revenue through incentive compatible mechanisms.

4.1 Bayesian Optimal Mechanism
We design a mechanism M1 that leverages the dynamic

program proposed for the Chunked Allocation Problem in
[19] , together with a tie-breaking trick, to find the virtual

surplus maximizing allocation, and charges bidders accord-
ing to Eqn. (2). The details of the allocation and payment
rules are discussed in Section 4.1.1 and 4.1.2 respectively.
For ease of reference, we denote the dynamic program pro-
posed in [19] as DP-CAP.

As will be shown in Section 4.1.3, M1 is Bayesian in-
centive compatible. In addition, because the allocation rule
maximizes the virtual surplus, this mechanism is revenue
optimal according to Lemma 2.

Algorithm 1 A Bayesian Optimal Mechanism (M1)

Input: {Nk}k∈[K], {bi, li, ui, Fi}i∈[M ]

Output: xi, the number of effective impressions allocated
to bidder i, and pi, the payment of bidder i.

1: Compute bidders’ virtual values, and remove bidders
with negative virtual values.

2: Find an allocation that maximizes virtual surplus using
DP-CAP plus the tie-breaking trick described in Section
4.1.1. Let xi be the number of effective impressions al-
located to bidder i.

3: for each bidder i ∈ [M ] do
4: if xi = 0 then
5: pi ← 0.
6: else
7: For all a ∈ {0, li, li + 1, · · · , xi}, compute Φ−i(a),

the maximum virtual surplus generated from all
other bidders except i under the condition that i
is allocated with exactly a effective impressions.

8: Construct a convex hull by intersecting xi − li + 2
half planes: fa(y) = ay+Φ−i(a) ≥ 0,∀a ∈ {0, li, li+
1, · · · , xi}. Each corner point of the convex hull
can be represented by a pair, the first element of
which indicates the virtual value of bidder i, and
the second element of which is the number of effec-
tive impressions allocated to bidder i. We can get
a set of pairs: (0, 0), (t1, k1), ..., (tq, kq), (φi(bi), xi),
where 0 < t1 < t2 < · · · < tq < φi(bi).

9: pi ← xi · zq −
∑q
j=1 kj · (zj − zj−1), where zj =

φ−1
i (tj).

10: end if
11: end for
12: return {xi, pi}i∈[M ]

4.1.1 The Allocation Rule
While the allocation rule ofM1 looks quite simple since it

leverages an existing algorithm to find an optimal allocation,
we would like to point out an unobvious pitfall here. Please
note that the direct application of DP-CAP cannot guarantee
the monotonicity of the allocation rule, when the optimal
allocations are not unique. For example, suppose φi(bi) =
φi(b

′
i) for b′i < bi. Since there may be multiple allocations

that achieve the optimal virtual surplus, it is possible that
for bidder i, the allocation that she obtains when bidding bi
is less than the allocation when bidding b′i.

To address this issue, we need to break the ties so as to
ensure the unique output of DP-CAP, and therefore ensure
the monotonicity of the allocation rule ofM1. Here we take
the simple case of K = 1 (i.e., there is only one slot) as
an example for illustration. For the case of multiple slots
(K > 1), the same tie-breaking trick also applies.
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Figure 1: Computation of the Payment Rule

In this simple case, the transition equation of DP-CAP is

V S(i, n) = max
xi

(V S(i−1, n−xi)+xiφi) xi ∈ [li, ui]∪{0},

(1)
where V S(i, n) represents the maximum virtual surplus from
n effective impressions and bidders {1, 2, ..., i}.

The key of ensuring the unique output of DP-CAP is
as follows. When multiple xi’s make V S(i − 1, n − xi) +
xiφi maximal, we simply choose the minimum one among
them. The optimal allocation is the one associated with
max(V S(M,n)) for n ∈ [N ]. If there are multiple n’s that
achieve the maximum, we choose the minimum n.

4.1.2 The Payment Rule
According to Lemma 1, the payment rule for a Bayesian

incentive compatible auction is:

pi(vi) = vixi(vi)−
∫ vi

0

xi(v)dv. (2)

At first glance, given the above result, it seems trivial
to design the payment rule for our problem. For exam-
ple, when xi takes binary values (e.g., win or lose), similar
to the classical VCG payment [17], we can simply exploit
the approach proposed in [18] to calculate the payment: let
p′i = OPT (v−i)−OPT−i(v), where OPT (v−i) is the optimal
virtual surplus when i has been removed and OPT−i(v) is
the original optimal virtual surplus minus i’s virtual surplus,
and charge i with the price pi = φ−1

i (p′i).
However, we note that in daily deal auctions, xi does not

necessarily take binary values. In fact, it can take any value
from{0, li, li + 1, ...,min(ui, allocated Nj)}. In this case, the
design of the payment rule becomes harder, and we need to
explore the structural properties of the allocation rule. Since
the allocation rule is monotone, fixing the bids of all the
other bidders, xi is a piecewise constant function of bi. For
simplicity, we call those bids corresponding to the change of
xi as breakpoints. To compute pi(vi) in Eqn. (2), we need to
know all the breakpoints of bidder i. As shown in Steps 7-9
ofM1, we can find all the breakpoints by calling DP-CAP for
at most xi(vi)−li+2 times, and thus the total complexity of
payment computation is Poly(N,M,K). The remaining part
of this subsection explains how Steps 7-9 work.

Consider the payment of bidder i when she is allocated
with xi > 0 effective impressions. Let Φ−i(a) denotes the
part of the maximum virtual surplus generated from all the

other bidders under the condition that a fixed number of
effective impressions (denoted as a) are allocated to bidder
i. Φ−i(a) can be easily calculated by calling DP-CAP and
setting all its states with xi 6= a to negative infinity. Then
for each allocation a ∈ {0, li, li + 1, ..., xi(vi)}, the maxi-
mum virtual surplus (conditioned on that i gets a effective
impressions) can be expressed as a · φi + Φ−i(a), which is
a linear function of φi with slope a and bias Φ−i(a). After
calling DP-CAP for xi(vi)− li+2 times, we get xi(vi)− li+2
lines with slopes {0, li, li+1, ..., xi(vi)} and biases {Φ−i(0) ≥
Φ−i(li) ≥ Φ−i(li + 1) ≥ ...,≥ Φ−i(xi(vi))}.

As shown in Figure 4.1.2, the horizontal axis is the virtual
value of bidder i and the vertical axis is the corresponding
virtual surplus. First we set Cur to be the line with the
largest slope (in Figure 4.1.2 it is line 1) and set (cx, cy)
to be the point (φi(vi),Φ−i(xi) + xi · φi(vi)). In each step,
we can calculate the intersection points between the line
Cur and other lines in O(N) time, and choose the upmost
point on the left side of the point (cx, cy). We use a pair
to denote this upmost point: the first element of the pair
is the virtual value of bidder i at the point and the sec-
ond one is the number of effective impressions allocated to
i. We then update (cx, cy) to be this point and update
Cur to be the corresponding intersecting line. We termi-
nate the process when cx ≤ 0. Since each line can become
Cur in at most one step, the procedure will terminate in
O(N) steps. Finally, we find those points (and their asso-
ciated pairs) that build the convex hull of the lines (in Fig-
ure 4.1.2, they are point1, ..., point5). Assume those pairs
are (0, 0), (t1, k1), ..., (tq, kq), (φi(vi), xi(vi)), where 0 < t1 <
t2 < · · · < tq < φi(vi). We set t0 = 0. For all j ∈ {0, ..., q},
we set zj = φ−1

i (tj), and compute the payment of bidder i
as below:

pi(vi) = xi(vi) · zq −
∑q

j=1
kj · (zj − zj−1).

4.1.3 Incentive Compatibility

Theorem 3. M1 is Bayesian incentive compatible.

Proof. Lemma 1 has given the sufficient conditions for
a mechanism to be Bayesian incentive compatible. It is easy
to see that the payment rule ofM1 satisfies the second con-
dition. Therefore we only need to prove that M1 satisfies
the first condition: its allocation rule is monotone.

Let x∗(b) denote the unique optimal allocation vector out-
putted by the dynamic program for the bid profile b, and
x∗i (b) denote the number of effective impressions allocated
to bidder i. Without loss of generality, we assume x∗i (b) > 0.
Let Φ(x, b) denote the virtual surplus when the bid profile
is b and allocation is x.

Now we prove the monotonicity of x∗() by contradiction.
If x∗() is not monotone, there exist some i, b−i, bi < b′i such
that x∗i (b) > x∗i (b

′), where b = (bi, b−i) and b′ = (b′i, b−i).
If φi(bi) = φi(b

′
i) the allocation of i will not change, thus

we can assume φi(bi) < φi(b
′
i). Since x∗i (b) > 0 is the op-

timal allocation for b and x∗(b′) is the optimal allocation
for b′, we have Φ(x∗(b), b) ≥ Φ(x∗(b′), b) and Φ(x∗(b′), b′) ≥
Φ(x∗(b), b′). Then we get

Φ(x∗(b), b)− Φ(x∗(b), b′) ≥ Φ(x∗(b′), b)− Φ(x∗(b′), b′).

⇒ x∗i (b)(φi(bi)− φi(b′i)) ≥ x∗i (b′)(φi(bi)− φi(b′i))
⇒ x∗i (b) ≤ x∗i (b′)

Thus we arrive at a contradiction.
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4.2 A Greedy Mechanism
AlthoughM1 is revenue optimal, it suffers from the huge

computational complexity. Because it relies on DP-CAP to
find the virtual surplus maximizing allocation, its running
time is quadratic to N . This is not practically feasible be-
cause a typical publisher for daily deal auctions may have
millions (even hundreds of millions) of user impressions ev-
ery day. In this subsection, we propose a simple greedy
mechanismM2 (see Algorithm 2), which is much more com-
putationally efficient and has a revenue guarantee.

Algorithm 2 A 1
4
-Approximation Mechanism (M2)

1: Calculate bidders’ virtual value. Remove those bidders
with negative virtual values. Let S = {1, ..., t} denote
the remaining t bidders.

2: Sort bidders according to their virtual bidding values,
w.l.o.g φ1(b1) ≥ φ2(b2) ≥ ... ≥ φt(bt).

3: Partition S into K̃ parts: {1, ..., t1}, {t1 +

1, ..., t2}, ..., {tK̃−1 + 1, ..., tK̃}, {tK̃ + 1, ..., t} (K̃ < K if
and only if tK̃ = t) as follows:

N1 + ut1 ≥ u1 + u2 + ...+ ut1 > N1

N2 + ut2 ≥ ut1+1 + ut1+2 + ...+ ut2 > N2

... ≥ ...+ ...+ ...+ ... > ...

NK̃ + ut
K̃
≥ ut

K̃−1
+1 + ut

K̃−1
+2 + ...+ ut

K̃
> NK̃

4: for each slot i ≤ K̃ do
5: With probability 1/2, each bidder j ∈ {ti−1+1, ..., ti−

1} gets uj effective impressions on slot i with payment
computed according to Case 1 in Section 4.2.1 (here
we set t0 = 0).

6: With probability 1/2, bidder ti gets min(Ni, uti) ef-
fective impressions on slot i, with payment computed
according to Cases 2 and 3 in Section 4.2.1.

7: end for
8: return {xi, pi}i∈[M ].

4.2.1 Payment Computation
While the allocation rule is simple and clearly described in

Algorithm 2, the payment rule is much more complicated.
To compute the payments of all the winning bidders, we
need to consider the following three cases.

Case 1: For bidder j ∈ {ti−1 + 1, ..., ti − 1}, if j’s ex-
pected allocation is non-zero, we calculate a set of critical
bids {bj(0), bj(s), bj(s + 1), · · · , bj(K̃)} for him/her, where
s = arg mink(Nk < uj), bj(0) is the minimum bid for bidder
j to win

uj
2

effective impressions in expectation when oth-
ers’ bids are fixed, and bj(k) is the minimum bid for him/her

to win Nk
2

effective impressions in expectation when others’
bids are fixed. It is easy to verify that bj(0) > bj(s) >

bj(s + 1) > · · · > bj(K̃). bj(k) can be calculated by enu-
merating the bid from {φ−1

j (φm(bm))}tm=1 and finding the
new slot that bidder j is allocated to. The complexity of
calculating the set bj() for j is O(M2). Then the payment
for bidder j is

pj = bj(0)·uj−(bj(0)−bj(s))·Ns−
∑K̃

l=s+1
(bj(l−1)−bj(l))·Nl.

Case 2: For bidder ti, if ti’s expected allocation is non-
zero and min(Ni, uti) = uti , the payment can be computed
in the same way as in the first case.

Case 3: For bidder ti, if ti’s expected allocation is non-
zero and min(Ni, uti) = Ni, we can compute the set of crit-
ical bids in the same way as in the first case, and then com-
pute the payment as below.

pti = bti(i) ·Ni −
∑K̃

l=i+1
(bti(l − 1)− bti(l)) ·Nl.

Since at most M bidders can win effective impressions
and the complexity of payment computation for each bidder
is O(M2), the complexity of M2 is O(M3), independent
of the number of user impressions . In this regard, M2

is much more computationally efficient than M1, because
the number of merchant (e.g., a typical daily deal website
usually have hundreds of candidate deals at the same time.)
is much smaller than that of the user impressions.

4.2.2 Theoretical Analysis
It is not difficult to verify that the allocation rule of M2

is monotone and the payment rule satisfies the condition in
Lemma 1. As a consequence,M2 is Bayesian incentive com-
patible. Here we mainly investigate the competitive ratio of
M2. We first prove two lemmas and then give the main
theorem regarding the competitive ratio.

Lemma 4. Denote OPT (N, b) as the optimal virtual sur-
plus for a bid profile b under the supply vector N. For M2

we have∑K̃

k=1
[
∑tk−1

j=tk−1+1
φj(bj) ·uj +φtk (btk ) ·Nk] ≥ OPT (N, b).

Proof. Recall that the bidders are numbered according
to the non-increasing order of their virtual values.

Let x̂ be an allocation vector defined as below,

x̂ =(u1, u2, ..., ut1−1, N1, ut1+1, ..., ut2−1,

N2, ut2+1, ..., ut
K̃
−1, NK̃ , 0, 0, ..., 0).

Note that x̂ over allocates the effective impressions and there-
fore is not feasible. It will be used to upper bound the virtual
surplus of the optimal allocation vector.

We use x̂i to denote the i-th dimension of x̂, i.e., the num-
ber of effective impressions allocated to bidder i in allocation
vector x̂.

Let x∗ be the allocation profile given by the Bayesian
optimal auction (i.e., mechanismM1). Let φ be the virtual
value vector: φ = (φ1(b1), ..., φt(bt)). The left side of the
inequality in the lemma therefore can be written as 〈φ, x̂〉,
and the right side can be written as 〈φ, x∗〉.2 In addition,

we use ~1 to denote the t-dimensional identity vector.
First, we prove 〈~1, x̂〉 ≥ 〈~1, x∗〉 by considering two possible

cases with respect to K̃.
Case 1: K̃ < K. In this case, we have tK̃ = t and x̂ =

(u1, u2, ..., ut1−1, N1, ut1+1, ..., ut2−1, N2, ut2+1, ..., ut
K̃
−1, NK̃).

It is clear ∀i, ui ≥ x∗i . According to the majorization con-
straints, we have∑K̃

j=1
x∗tj ≤

∑K̃

j=1
x∗[j] ≤

∑K̃

j=1
Nj .

Therefore we obtain 〈~1, x̂〉 ≥ 〈~1, x∗〉.
Case 2: K̃ = K. In this case, we have 〈~1, x̂〉 ≥

∑K
j=1NK ≥

〈~1, x∗〉.
2Here we use 〈, 〉 to denote the inner product of two vectors.
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Second, we prove 〈φ, x̂〉 ≥ 〈φ, x∗〉. For ease of reference,
we define r0 = 〈φ, x̂〉. The basic idea of the proof is to con-
struct another allocation vector x, which leads to a virtual
surplus smaller than r0 but larger than 〈φ, x∗〉. We initial-
ize x = x̂, and then modify its elements one by one in the
following steps.

(1) Considering min(N1, u1) ≥ x∗1, in the first step, we
decrease x1 from x̂1 to x∗1 and increase x2 from x̂2 to x̂2 +
x̂1 − x∗1. Define r1 = φ · x. Then we have r1 ≤ r0 because
φ1(b1) ≥ φ2(b2). Now we show that after the update, x2 ≥
x∗2:

• If x̂2 = u2, we have x2 ≥ x̂2 ≥ x∗2.

• Otherwise, x̂2 = Np. Considering the majorization
constraints and ui ≥ x∗i , we get

x2 = Np + x̂1 − x∗1 =
∑p

j=1
Nj + [x̂1 6= N1]u1 − x∗1

≥ x∗1 + x∗2 − x∗1 = x∗2.

(2) In the i-th step (i < tK̃), we have xi ≥ x∗i . We increase
xi+1 to x̂i+1 + xi − x∗i and decrease xi to x∗i . We define
ri = 〈φ, x〉 and have ri ≤ ri−1. Note that the allocation
vector x has been updated and therefore ri’ s are different
from each other. Similarly, we can verify that xi+1 ≥ x∗i+1.

By going through the above steps, we modify all the ele-
ments in x and obtain a sequence of ri. Finally, we have the
lemma proved as follows.

〈φ, x̂〉 = r0 ≥ rt
K̃
−1

=
∑t

K̃
−1

j=1
φj(bj) · x∗j + φt

K̃
(bt

K̃
) · (〈~1, x̂〉 − 〈~1, x∗〉+

∑t

j=t
K̃

x∗j )

≥
∑t

K̃
−1

j=1
φj(bj) · x∗j + φt

K̃
(bt

K̃
) · (

∑t

j=t
K̃

x∗j )

≥
∑t

j=1
φj(bj) · x∗j = 〈φ, x∗〉

Note that the second inequality holds because 〈~1, x̂〉 ≥
〈~1, x∗〉, and the third inequality holds because bidders are
numbered in the descending order of their virtual values.

Lemma 5. For M2, we have∑K̃

k=1
[
∑tk−1

j=tk−1+1
φj(bj) · uj + φtk (btk ) ·min(utk , Nk)]

≥ 1

2
{
∑K̃

k=1
[
∑tk−1

j=tk−1+1
φj(bj) · uj + φtk (btk ) ·Nk]}.

Proof. For ease of references, we define the following
notations for each k ≤ K̃,

αk = φtk (btk ) ·min(utk , Nk)

βk =
∑tk−1

j=tk−1+1
φj(bj) · uj

ηk = φtk (btk ) ·Nk

Since
∑tk−1
j=tk−1+1 uj + min(utk , Nk) ≥ Nk and for all j ∈

{tk−1 + 1, ..., tk}, φj(bj) ≥ φtk (btk ), we have αk + βk ≥ ηk.
It is clear αk + βk ≥ αk due to the non-negativity of βk.

Thus we have (αk + βk) ≥ 1
2
(αk + ηk). By summing over

k, we have the lemma proved.

Theorem 6. When the value of bidder i follows a known
regular distribution Fi, and ∀i, li ≤ NK ,M2 achieves a com-
petitive ration of at least 1

4
.

Proof. The expected allocation profile of M2 is

x̂′ = (
u1

2
, ...,

min(ut1 , N1)

2
, ...,

min(ut
K̃
, NK̃)

2
, 0, ..., 0).

According to Lemma 4 and 5, we have that the virtual
surplus 〈φ, x̂′〉 ≥ 1

4
OPT (N, b). Then the theorem is proven

by taking expectation over the valuation/bid profile.

Remark 7. The assumption, li ≤ NK , ∀i, means that the
minimum demand of a merchant can be satisfied by display-
ing her deal to all the web users at the K-th slot. This
assumption is reasonable since common merchants will not
set the minimum demands too high so as not be rejected by
the publisher.

5. PRIOR-INDEPENDENT SETTING
In this section, we focus on the prior-independent setting,

in which the valuations of all the bidders are i.i.d. drawn
from an unknown distribution F . We assume that the num-
ber of bidders is sufficiently large so that the empirical distri-
bution F ′ estimated from their bids (given that they make
truthful bidding) can approximate the real distribution F
very well.

5.1 Two Mechanisms
Based onM1, we can easily obtain a new mechanismM3

with a competitive ratio of β−1
β

(here β > 1 is an input

parameter) for the prior-independent setting.
The new mechanism M3 consists of three steps. (1) Par-

tition bids b at random into two sets: for each bid, with
probability 1

β
put it in set b′ and otherwise b′′. (2) Calcu-

late the empirical distribution F ′ using the bid set b′. (3)
Run M1 with all the effective impressions, distribution F ′

and bid set b′′.
The estimation of the empirical distribution F ′ in M3 is

independent of b′′, the bids of the bidders included in the
auction. Therefore, givenM1 is Bayesian incentive compati-
ble,M3 is also Bayesian incentive compatible. Furthermore,
it is not difficult to prove Theorem 8 about the competitive
ratio of the mechanism. We omit the proof here because of
space limitations.

Theorem 8. If the valuations of the bidders are indepen-
dently drawn from a regular distribution F and M

β
is statis-

tically large enough, M3 achieves the competitive ratio of
β−1
β

.

Similar to the case in the Bayesian setting, although M3

has a good competitive ratio, it suffers from the compu-
tational inefficiency in practice. Here we design a simple
greedy mechanismM4 which can achieve a much lower com-
putational complexity, by leveragingM2 as a building block.
M4 is very similar to M3. It also consists of three steps.

The only difference betweenM3 andM4 is that we runM2

instead of M1 in the third step of M4.
It is easy to verify that M4 is also Bayesian incentive

compatible, and to obtain the following theorem about the
competitive ratio of M4. The detailed proof is omitted due
to its simplicity.

Theorem 9. If the valuations of the bidders are indepen-
dently drawn from a regular distribution F , M

β
is statistically

large enough, and ∀i, li ≤ NK , M4 achieves a competitive
ratio β−1

4β
.

332



5.2 Robust Approximation Mechanisms
In this subsection, we discuss a seemingly unobvious but

practically important issue regarding mechanisms M3 and
M4. That is, both mechanisms rely on random partition of
the bidders, and thus might not be very robust in the follow-
ing sense: although their competitive ratios are guaranteed
in expectation, the revenue of the worst-case instantiation
of the mechanism can be arbitrarily low as compared with
the optimal revenue. For example, suppose β = 2, K = 1,
N1 = 1000000, M = 200, and every bidder’s value is 1 with
probability 1. Let us consider a specific partition b′ and
b′′: li = 10000, ui = 20000 for the 100 bidders in b′ and
li = ui = 1 for the 100 bidders in b′′. For such a partition,
the revenue achieved by M3 is 100 while the Bayesian op-
timal revenue is 1000000, which corresponds to a very low
competitive ratio.

To be formal, we introduce a concept called robust ratio
to evaluate the worst-case performance of a mechanism, as
defined below.

Definition 10. Let OPT (F ) denotes the optimal expected
revenue of an incentive compatible mechanism under distri-
bution F . Let σ be a random instance of the mechanism A,
and Revσ(M, F ) be the expected revenue3 of the random in-
stance σ of M under distribution F . Then the robust ratio

of a mechanism M is defined as infσ,F
Revσ(M,F )
OPT (F )

.

Note that the robust ratio ranges in [0, 1], and the robust
ratio of a mechanism is no larger than its competitive ratio.

To make mechanisms M3 and M4 robust (i.e., with a
bounded robust ratio), we propose a technique called supply
partition, i.e., partitioning the impressions. Due to space
restrictions, we just take the modification to M3 as an ex-
ample and present a new mechanism M5 as below.

Algorithm 3 A Robust Approximation Mechanism (M5)

1: Partition bids b at random into two sub sets: for each
bid, with probability 1

2
put it in b′ and otherwise b′′.

2: Calculate an empirical distribution F ′ using the bid set
b′ and an empirical distribution F ′′ using the bid set b′′.

3: for each slot i do
4: If i is odd, offering the first N/2 impressions to set b′

and the second N/2 impressions to set b′′.
5: If i is even, offering the first N/2 impressions to set

b′′ and the second N/2 impressions to set b′.
6: end for
7: Construct a new supply vector N′ =

(N1+N2
2

, N3+N4
2

, ...,
NdK/2e∗2−1+NdK/2e∗2

2
, 0, ..., 0).

8: Run M1 with the new supply vector N′, distribution
F ′′ and bid set b′. Run M1 with the new supply vector
N′, distribution F ′ and bid set b′′.

Note in M5, though the number of impressions allocated
to bidders in slot i is N/2, the actual effective impressions
is Ni/2 because of different conversion rate for each slot.
It is easy to see that M5 is Bayesian incentive compatible.
The following theorem shows that it has guarantee on both
competitive ratio and robust ratio.

3Note that for “expected revenue”, the expectation is taken
over the randomness of bidders’ valuations but not over the
random instances of the mechanism.

Theorem 11. If bidders’ valuations are independently drawn
from a regular distribution F , the number of bidders is sta-
tistically large enough, and li ≤ N1+N2

2
, ∀i, M5 achieves a

competitive ratio of 3
7

and a robust ratio of 1
4

.

Proof. To ease the proof, we give some notations first.
Given the value profile v and the majorization constraint
vector N = (N1, N2, ..., NK), we denote (x∗1, ..., x

∗
M ) as the

optimal allocation vector and OPT (N, b) =
∑
i∈[M ] φi · x

∗
i

as the optimal virtual surplus4 generated from the bidder
set b when the constraint vector N is imposed and when F
is known.

First, we prove the robust ratio of the mechanism.
For any partition (A,B) of the M bidders, we denote

OPTA(N, b) =
∑
i∈A φi ·x

∗
i and OPTB(N, b) =

∑
i∈B φi ·x

∗
i .

Let OPT (N′, C) be the optimal virtual surplus generated
from the bidder set C and the majorization constraint vec-
tor N ′, where C can be either A or B. As long as we can
construct a feasible allocation under N ′ and C , whose vir-
tual surplus is a constant approximation to OPTC(N, b), we
can say that OPT (N′, C) is also a constant approximation
to OPTC(N, b).

We re-number the bidders in C according to the descend-
ing order of their allocated numbers of impressions: x∗1 ≥
x∗2 ≥ ... ≥ x∗|C|, where |C| is the number of bidders in C.
We focus on bidder 1 and consider the following two cases.

Case 1: If φ1x
∗
1 ≥ N1

2·N1+N2
· OPTC(N, b), we allocate

min(x∗1,
N1+N2

2
) effective impressions to bidder 1 under the

constraint N′, and the virtual surplus of this allocation is:

φ1 ·min(x∗1,
N1 +N2

2
) =

min(x∗1,
N1+N2

2
)

x∗1
· φ1 · x∗1

≥ N1 +N2

2N1
· N1

2 ·N1 +N2
·OPTC(N, b)

=
1

2
· N1 +N2

2 ·N1 +N2
·OPTC(N, b)

Case 2: If φ1x
∗
1 < N1

2·N1+N2
· OPTC(N, b), under N′,

for each pair of bidders (2i, 2i + 1), i ∈ {1, ..., b|C|/2c}, if
φ2i ·x∗2i ≥ φ2i+1 ·x∗2i+1, we allocate x∗2i effective impressions
to bidder 2i; otherwise, we allocate x∗2i+1 effective impres-
sions to bidder 2i+ 1. Since {x∗i } are sorted and satisfy the
majorization constraint vector N, it is easy to see that for
all i ∈ {1, ..., bK/2c},

i∑
j=1

max(x∗2j , x
∗
2j+1) =

i∑
j=1

x∗2j ≤
i∑

j=1

N2j−1 +N2j

2
,

b|C|/2c∑
j=1

max(x∗2j , x
∗
2j+1) ≤

b|C|/2c∑
j=1

x∗2j ≤
dK/2e∑
j=1

N2j−1 +N2j

2
.

Therefore the allocation is feasible under N′. Furthermore,
we can lower bound the virtual surplus V S of this allocation:

V S ≥ 1

2

|C|∑
j=2

φjx
∗
j ≥

1

2
· N1 +N2

2 ·N1 +N2
·OPTC(N, b).

By jointly considering the two cases, for any partition
(A,B) of the bidders, we can bound the total virtual surplus

4We can run the Bayesian optimal auction (i.e. M1) to
get the optimal allocation vector and the optimal virtual
surplus.
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of M5 as follows,

Rev(A,B)(M5) ≥ OPT (N′, A) +OPT (N′, B)

≥ 1

2
· N1 +N2

2 ·N1 +N2
· (OPTA(N, b) +OPTB(N, b))

=
1

2
· N1 +N2

2 ·N1 +N2
·OPT (N, b) ≥ 1

4
·OPT (N, b).

By taking expectation of the leftmost side and the right-
most side of the above inequality over the distribution of
bidders’ valuations, we complete the proof of the robust ra-
tio.

Second, we prove the competitive ratio of the mechanism.
For this purpose, we re-number the bidders as x∗1 ≥ x∗2 ≥

... ≥ x∗M . Denote α =
φ1x
∗
1

OPT (N,b)
. Recall that OPT (N′, A) +

OPT (N′, B), the virtual surplus generated by the mecha-
nism, is the optimal virtual surplus under partition (A,B)
and the majorization constraint N′. Given N′ and (A,B),
the virtual surplus of any feasible allocation lower bounds
the virtual surplus of the mechanism. The basic idea of our
proof is that we construct two feasible allocations, both of
which can lower bound the virtual surplus of the mechanism,
and show that the maximum of the two lower bounds is a
constant approximation of OPT (N, b).

Allocation 1: No matter bidder 1 is partitioned to set
A or B, we allocate min(x∗1,

N1+N2
2

) effective impressions
to him/her. We then pair every adjacent two remaining
bidders: (2i, 2i+ 1), i ∈ {1, ..., bM/2c} and make allocation
for each pair depending on which set the two bidders are
partitioned into:

(1) With probability 1/4, bidder 1 and 2i are partitioned
in the same set and bidder 2i + 1 is in the other set.
For this case, we allocate x∗2i+1 effective impressions to
bidder 2i+ 1.

(2) With probability 1/4, bidder 1 and 2i+1 are in the same
set and bidder 2i is in the other set. For this case, we
allocate x∗2i effective impressions to bidder 2i.

(3) With probability 1/4, bidder 2i and 2i + 1 are in the
same set and bidder 1 is in the other set. For this case,
if φ2i ·x∗2i > φ2i+1 ·x∗2i+1, we allocate x∗2i effective impres-
sions to bidder 2i; otherwise, we allocate x∗2i+1 effective
impressions to bidder 2i+ 1.

(4) With probability 1/4, bidder 1, 2i and 2i + 1 are par-
titioned into the same set. For this case, we do not
allocate any impression to bidders 2i and 2i+ 1.

In expectation, the virtual surplus (denoted as V S(2i, 2i +
1)) generated from the pair (2i, 2i+1) can be lower bounded
as below.

V S(2i, 2i+ 1) ≥ 1

4
· {φ2i · x∗2i + φ2i+1 · x∗2i+1

+
1

2
(φ2i · x∗2i + φ2i+1 · x∗2i+1)} =

3

8
· (φ2i · x∗2i + φ2i+1 · x∗2i+1)

For the set in which bidder 1 is partitioned to, since we
only allocate impressions to bidder 1 and l1 ≤ N1+N2

2
, the

allocation is definitely feasible. In the other set, since for all
i: ∑i

j=1
x∗2j ≤

1

2

∑2i

j=1
x∗j ≤

1

2

∑2i

j=1
Nj ,∑bM/2c

j=1
x∗2j ≤

1

2

∑M

j=1
x∗j ≤

1

2

∑K

j=1
Nj ,

the allocation is also feasible with respect to N ′. The virtual
surplus V S1 of this allocation can be lower bounded as:

V S1 = [min(x∗1,
N1 +N2

2
)φ1 +

bM/2c∑
i=1

V S(2i, 2i+ 1)

≥ [
min(x∗1,

N1+N2
2

)

x∗1
α+

3

8
(1− α)] · Φ∗

≥ [
N1 +N2

2N1
α+

3

8
(1− α)] ·OPT (N, b).

Allocation 2: We ignore bidder 1 and consider each pair
of bidders (2i, 2i+ 1), i ∈ {1, ..., bM/2c}.

(1) With probability 1/2, two bidders in the same pair are
located in the same set. If φ2i · x∗2i ≥ φ2i+1 · x∗2i+1, we
allocate x∗2i effective impressions to bidder 2i; otherwise,
we allocate x∗2i+1 effective impressions to bidder 2i+ 1.

(2) With probability 1/2, two bidders in the same pair are
in different sets. We allocate x∗2i effective impressions
to bidder 2i and x∗2i+1 effective impressions to bidder
2i+ 1.

The above allocation still satisfies the majorization con-
straint N′. The virtual surplus V S2 of this allocation can
be lower bounded as below.

V S2 ≥
1

2
· (1− α) ·OPT (N, b) +

1

2
· 1

2
· (1− α) ·OPT (N, b)

=
3

4
· (1− α) ·OPT (N, b)

Denote h(α) = max{N1+N2
2N1

α+ 3
8
(1−α), 3

4
· (1−α)}. It is

easy to see that 3
4
·(1−α) is a decreasing function of α. Since

N1+N2
2N1

> 3
8
, N1+N2

2N1
α+ 3

8
(1−α) is an increasing function of

α. Therefore h(α) achieves its minimal value when the two
terms are equal, i.e., N1+N2

2N1
α+ 3

8
(1−α) = 3

4
· (1−α). Thus,

we get

h(α) ≥ 3(N1 +N2)

4(N1 +N2) + 3N1
=

3

7
.

That is, for any given bid/valuation profile b, the revenue
of the mechanism averaged over the random partitions is
lower bounded by 3

7
OPT (N, b). By further taking expec-

tation over the value profile, we complete the proof of the
competitive ratio.

6. FUTURE WORK
As for future work, we plan to investigate the following as-

pects. First, we may prove the upper bound of competitive
ratio for any polynomial mechanism in our model, thus to
show our mechanisms are nearly the best that can do, or we
may build other elegant mechanisms with better competitive
ratio. Second, our approach for approximation mechanism
may have significance on its own, we may find other inter-
esting applications for our general analysis scheme. Third,
we have assumed that the number of bidders is statistically
large enough to get an accurate estimation of the distribu-
tion of bidders’ valuations for the prior-independent setting.
We will quantify how the number of bidders affect the rev-
enue of the designed mechanisms. Finally, we have only
considered offline auctions in this work, where the effective
impressions in a future time period is known when the auc-
tion is executed. A more practical setting is online auctions.
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[5] A. Archer and É. Tardos. Truthful mechanisms for
one-parameter agents. In Foundations of Computer
Science, 2001. Proceedings. 42nd IEEE Symposium
on, pages 482–491. IEEE, 2001.

[6] J. Byers, M. Mitzenmacher, and G. Zervas. Daily
deals: Prediction, social diffusion, and reputational
ramifications. In Proceedings of the fifth ACM
international conference on Web search and data
mining, pages 543–552. ACM, 2012.

[7] J. Byers, M. Mitzenmacher, and G. Zervas. The
groupon effect on yelp ratings: a root cause analysis.
In Proceedings of the 13th ACM Conference on
Electronic Commerce, pages 248–265. ACM, 2012.

[8] Y. Cai, M. Mahdian, A. Mehta, and B. Waggoner.
Designing markets for daily deals. In Web and
Internet Economics, pages 82–95. Springer, 2013.

[9] G. B. Dantzig. Discrete-variable extremum problems.
Operations Research, 5(2):266–288, 1957.

[10] B. C. Dean, M. X. Goemans, and J. Vondrdk.
Approximating the stochastic knapsack problem: The
benefit of adaptivity. In Foundations of Computer
Science, 2004. Proceedings. 45th Annual IEEE
Symposium on, pages 208–217. IEEE, 2004.

[11] U. Dholakia. What makes groupon promotions
profitable for businesses? Available at SSRN 1790414,
2011.

[12] B. Edelman, S. Jaffe, and S. Kominers. To groupon or
not to groupon: The profitability of deep discounts.
Harvard Business School NOM Unit Working Paper,
(11-063), 2011.

[13] B. Edelman, M. Ostrovsky, and M. Schwarz. Internet
advertising and the generalized second price auction:
Selling billions of dollars worth of keywords. Technical
report, National Bureau of Economic Research, 2005.

[14] A. V. Goldberg, J. D. Hartline, A. R. Karlin, M. Saks,
and A. Wright. Competitive auctions. Games and
Economic Behavior, 55(2):242–269, 2006.

[15] A. V. Goldberg, J. D. Hartline, and A. Wright.
Competitive auctions and digital goods. In Proceedings
of the twelfth annual ACM-SIAM symposium on
Discrete algorithms, pages 735–744. Society for
Industrial and Applied Mathematics, 2001.

[16] R. Gonen and D. Lehmann. Optimal solutions for
multi-unit combinatorial auctions: Branch and bound
heuristics. In Proceedings of the 2nd ACM conference
on Electronic commerce, pages 13–20. ACM, 2000.

[17] T. Groves. Incentives in teams. Econometrica: Journal
of the Econometric Society, pages 617–631, 1973.

[18] J. D. Hartline. Approximation in economic design.
Lecture Notes, 2012.

[19] W. Kong, J. Li, T.-Y. Liu, and T. Qin. Optimal
allocation for chunked-reward advertising. In Web and
Internet Economics, pages 291–304. Springer, 2013.

[20] W. Kong, J. Li, T. Qin, and T.-Y. Liu. Revenue
optimization for group-buying websites. arXiv preprint
arXiv:1305.5946, 2013.

[21] Y. Lvovskaya, S. Tan, and C. Zhong. Online Discount
Coupon Promotions & Repurchasing Behaviors: The
Groupon Case. PhD thesis, Mälardalen University,
2012.

[22] E. Maskin, J. Riley, and F. Hahn. Optimal multi-unit
auctions. The economics of missing markets,
information, and games, 1989.

[23] P. R. Milgrom and R. J. Weber. A theory of auctions
and competitive bidding. Econometrica: Journal of
the Econometric Society, pages 1089–1122, 1982.

[24] R. B. Myerson. Optimal auction design. Mathematics
of operations research, 6(1):58–73, 1981.

[25] T. Roughgarden. Cs364a: Algorithmic game theory
lecture# 4: Algorithmic mechanism design. 2013.

[26] M. Song, E. Park, B. Yoo, and S. Jeon. Is the daily
deal social shopping?: An empirical analysis of
purchase and redemption time of daily-deal coupons.
Working paper, 2012.

[27] D. Zhao, W. Chen, and Q. Ye. Consumer purchase
behavior under price promotion: Evidence from
groupon daily deals. In SIGBPS Workshop on
Business Processes and Services (BPS’12), page 141,
2012.

335




