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ABSTRACT

Agents operating in complex (e.g., dynamic, uncertain, par-
tially observable) environments must gather information from
various sources to inform their incomplete knowledge. Two
popular types of sources include: (1) directly sensing the
environment using the agent’s sensors, and (2) sharing in-
formation between networked agents occupying the same en-
vironment. In this paper, we address agent reasoning for ap-
propriately selecting between such types of sources to update
agent knowledge over time. In particular, we consider ad hoc
environments where agents cannot collaborate in advance to
predetermine joint solutions for when to share vs. when to
sense. Instead, we propose a solution where agents individ-
ually learn the benefits of relying on each type of source to
maximize knowledge improvement. We empirically evaluate
our learning-based solution in different environment configu-
rations to demonstrate its advantages over other strategies.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence — intelligent agents, multiagent systems

General Terms

Performance, Design, Experimentation

Keywords

Information Gathering; Information Sharing; Ad Hoc

1. INTRODUCTION

One of the most fundamental responsibilities of intelli-
gent agents is understanding their complex (e.g., dynamic,
uncertain, partially observable) environments, which guides
agent reasoning, actuation, and goal accomplishment. Of-
ten, agents lack complete knowledge of their environment
a priori and must update their understanding over time.
These updates are informed by incorporating information
gathered whilst operating in the environment. Two popular
types of sources of information include (1) an agent inde-
pendently sensing its environment, gathering direct obser-
vations as a result of the agent’s actions and sensors, and (2)
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receiving shared information from other agents operating in
the same environment (either cooperatively for the sake of
the system or for individual profit by self-interested agents).

Depending on the application, these two types of sources
might have different benefits (e.g., types of information pro-
vided, information quantity and quality) and costs (e.g., re-
source and time expenses). Sensing can be performed on
demand, gathering information as soon as the agent needs,
and the agent can do so in a timely fashion without taking
away from other agents’ activities. Information sharing, on
the other hand, can propagate information through the en-
tire system potentially faster and with less cost (not waiting
for each agent to individually sense the same information).
However, relying on sharing also means waiting for another
agent to possess the desired information, and sharing takes
time and resources away from other agent activities that
could instead further the sharing agent’s individual goals.

Because of these differences, agents in applications where
both sources coexist face an interesting question: when should
I use sensing to update my understanding vs. when should
I request information from other agents and rely on shared
information? Answering this question leads to a challenging
tradeoff between using the two types of information sources
that when properly balanced could lead to improved agent
behavior and goal accomplishment (e.g., through lower cu-
mulative cost and higher quality knowledge).

Traditionally, agents in a shared environment would pre-
coordinate when they might be willing and able to share
information so that each agent could plan appropriately to
know when to sense vs. when to rely on shared information.
However, in many applications, this pre-coordination might
not be possible. Specifically, in ad hoc environments
where pre-coordination is impossible and agents might not
know the behaviors or capabilities of their peers in advance
[24], agents cannot determine a priori the value of relying
on shared information against the value of sensing alone.
This is especially true in many types of ad hoc environ-
ments that are also open environments, where agents can
join and leave the environment over time. Agent open-
ness is especially problematic to information sharing because
the availability of shared information changes over time and
knowledge about the environment disappears with departing
agents (who knew more than newly joining agents). Thus,
determining when to sense vs. when to rely on shared infor-
mation is especially difficult in ad hoc environments. In this
paper, we study how agents should balance the sensing vs.
sharing tradeoff in ad hoc environments, henceforth referred
to as the ad hoc information gathering (AHIG) problem.



In order to solve the AHIG, we propose a learning-based
solution where agents individually learn over time how dif-
ferent types of information gathering actions (independently
sensing vs. requesting shared information) improve their
knowledge about the environment. Through learning, agents
can find good information gathering strategies without re-
lying on pre-coordination in ad hoc environments, instead
treating other agents as part of the environment affecting
the quality of their information gathering. Moreover, learn-
ing enables each agent to adapt its behavior as it interacts
with different agents, which is valuable in open environments
where agents join and leave over time. Thus, through learn-
ing, agents can individually adapt their behavior to maxi-
mize their own knowledge improvement by learning the ben-
efits of using different types of information sources without
requiring coordination between agents.

However, because agents are operating in complex envi-
ronments with incomplete information, learning is gener-
ally a computationally complex problem: learning in par-
tially observable environments is much harder than learning
in fully observable environments. To simplify the agents’
learning process, we show how the agents’ general problem
of understanding the current state of the complex environ-
ment can be transformed to a simpler problem of improving
agent knowledge over time, in a transformation we term the
Knowledge State MDP exploiting full observability of
current measures of agent knowledge as intermediate states
for guiding agent decision making. As a result, an agent can
learn faster how to gather information in the environment to
best refine knowledge. Moreover, this transformation is po-
tentially useful in more general information gathering prob-
lems (beyond the AHIG).

To demonstrate the effectiveness of our transformation
and learning-based solution, we empirically evaluate using
different experimental environment configurations how well
agents learn to select between different information sources
over time to improve their knowledge. We discover that our
solution outperforms baseline approaches maximizing either
sensed or shared information, and does so by appropriately
selecting between different information sources at different
times to best refine agent knowledge. Furthermore, our re-
sults indicate that learning about how to gather information
is most beneficial when information is most scarce (and care-
ful information gathering is most necessary).

2. PROBLEM

The AHIG problem occurs whenever a set of agents ob-
serve the same environment and can share information but
cannot coordinate in advance to determine when agents might
share or what quality of information they might provide.
This includes real world examples such as (1) intelligent ad
hoc sensor networks, where agents are deployed on wire-
less sensors that are randomly dropped to monitor an open
space, (2) robotic search and rescue operations, where differ-
ent organizations might bring their own robots to explore the
same disaster area, and (3) ad hoc traffic information net-
works, where intelligent agents on cars communicate with a
road infrastructure system as they navigate through town
to report and understand traffic conditions.

2.1 AHIG Formulation

We formalize the AHIG problem as follows. A set of
agents Ag = {i} exist in a shared environment and are con-
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nected by a bidirectional communication network. Because
communication costs grow as the network becomes larger,
each agent’s local neighborhood N (7) is relatively small com-
pared to the size of the entire network. Occasionally, due to
openness, some agents will leave the network and others will
join. Thus, we represent the current set of agents at time ¢
with Agq, and likewise for an agent i’s neighborhood Ny (i).

Also in the shared environment are a finite set of phenom-
ena P = {j} that represent objects, entities, or properties of
the environment that the agents need to understand. Each
phenomenon j can take states from a finite set PS; = {ps},
and the current state of each phenomenon in the dynamic
environment changes with probability c¢p each time step. In
AHIG, the agents are tasked with always understanding the
current state of each phenomenon, which requires forming
correct knowledge about each phenomenon over time that is
refined through gathering information.

To gather information about a particular phenomenon,
agents can perform different actions that use different types
of sources for information. In particular, each agent can
(1) sense each phenomenon directly using its sensors, or the
agent can (2) request that its neighbors N¢(i) share their
beliefs about a phenomenon. We assume that the agent’s
sensors are noisy and imperfect, returning correct observa-
tions about the sensed phenomenon’s current state with ac-
curacy acc (and an incorrect observation with probability
1 — acc). Agents can also perform a third type of action:
(3) agents can respond to requests from neighbors with a
share action communicating the agent’s uncertain current
knowledge about the state of the phenomenon in question.

The goal of each agent is to form accurate knowledge
about each phenomenon, representing good knowledge about
the current state of the environment, while minimizing costs
incurred in sensing. Agents are awarded a reward for each
time point during which they have relatively certain knowl-
edge about a phenomenon, whereas sensing actions and re-
quests for information incur costs to the agent. To encour-
age self-interested agents to collaborate, the agents are also
awarded a small reward for sharing information with their
neighbors, but only when requested (to avoid unnecessar-
ily consuming the communication resources) and when they
are confident about the current state of the requested phe-
nomenon (to avoid sharing unfruitful information). Other-
wise, agents receive a penalty for sharing information.

To illustrate, consider a search and rescue (S&R) robotics
example, where robot agents Ag: explore a damaged build-
ing after a natural disaster. Here, the phenomena P repre-
sent different locations where victims might be trapped, and
the phenomenon states P.S; indicate whether victims exist
at location j. A robot ¢ can either directly observe the envi-
ronment with a noisy camera sensor (that consumes limited
energy), or the agent can communicate with nearby robots
N¢(7) using line-of-sight communications. The goal of each
robot is to determine with certainty whether victims exist
in each location so that they can be rescued by human first
responders, all-the-while minimizing energy and time costs.

Of final note: how agents represent their knowledge about
the phenomena in the environment, as well as how they
choose actions to refine their knowledge are not specified
in the general AHIG formalization. Different domains, ap-
plications, and solutions might require different approaches
to these features (knowledge and decision making) that are
internal to the agent. Indeed, in real-world ad hoc envi-



ronments, different agents produced by different developers
might even use different approaches to these features in the
same environment. However, agents must have some shared
language that is consistent between agents for communicat-
ing shared information. In this paper, we choose the knowl-
edge representation and decision making process as part of
our solution, described in Section 4.

2.2 Related Work

The AHIG problem is closely related to several other prob-
lems in the multiagent systems literature. First, the Large
Team Information Sharing (LTIS) problem (e.g., [11, 12, 19])
also considers a team of agents working together to observe
at least one phenomenon in the environment, where agents
both sense the current state of the phenomenon individually,
as well as share information through the team’s network.
Prior research on LTIS has focused primarily on producing
analytic models for the flow of information through the team
of agents [11, 12], as well as developing distributed solutions
for adapting information flow to achieve accurate, consis-
tent, shared beliefs [11, 19]. However, LTIS differs from the
AHIG in several key ways. First, in LTIS, the team of agents
is constant over time (i.e., there is no agent openness), and
agents follow a pre-coordinated strategy of when to share
information. Second and most importantly, in LTIS agents
do not choose between sensing, requesting, or sharing in-
formation. Instead, agents with sensors (which might not
be all agents in the team) always receive observations from
their sensors at every time point. Additionally, agents never
request information; instead, they automatically share infor-
mation with their neighbors whenever (and only when) they
reach new highly certain knowledge about a phenomenon.
Thus, LTIS does not consider the tradeoff between relying
on different types of information as in the AHIG.

Another closely related problem studied in the multiagent
systems literature is trust and reputation systems (e.g., [21,
22, 26]). In such systems, agents can also request and share
information with one another to provide additional infor-
mation to refine agent knowledge over time. The primary
focus in trust and reputation systems is to determine how
to incorporate such shared information: should the sharing
agent be highly trusted and should their information heav-
ily influence the receiving agent’s knowledge, or should an
agent be cautious when receiving information from another
agent with which it has limited experience interacting? Like
LTIS, this research does not focus on balancing information
from other agents with the agent’s own sensing, and thus
does not solve the AHIG problem, but it is complementary
in that reasoning about the trustworthiness and reputation
of neighboring agents as information sources could be used
to improve an AHIG agent’s decision making process (which
we intend to pursue as future work).

Finally, previous research in ad hoc environments has fo-
cused on problems such as how to lead teams of agents with-
out communication [1, 10], as well as how to learn to interact
with a single Markovian agent [6]. Since information shar-
ing inherently requires communication, our research differs
from the former (although in our work, agents still cannot
pre-coordinate how they will interact, under the broad defi-
nition of ad hoc environments [24]). Similar to the latter, we
also use reinforcement learning to determine how to interact
with other agents, although our approach considers an agent
working with multiple other agents in the environment.
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3. POMDP FORMULATION

In order to solve the AHIG and gather the necessary in-
formation to understand the environment, each agent faces
a sequential decision making problem of planning a sequence
of actions to perform that refine its incomplete knowledge
while minimizing costs incurred for gathering such informa-
tion. In most partially observable environments (which in-
cludes AHIG since sensing phenomena returns noisy, im-
perfect observations), sequential decision making problems
are generally solved by some variant of partially observable
Markov decision processes (POMDPs) [15]. This is espe-
cially true of applications of single agent control of environ-
ment monitoring (e.g., [2, 4, 7, 8, 23], similar to our S&R
robot example), which we extend in this paper to multiagent
information gathering in ad hoc environments.

To setup our solution, in the following we first introduce
background on the MDP and POMDP frameworks, then we
provide a description of both how the AHIG problem could
be cast as a POMDP and the problems with this formula-
tion. Then, in Section 4, we will introduce our Knowledge
State MDP transformation of the POMDP for sequential
decision making for information gathering problems.

3.1 Background

Markov decision processes (both fully and partially ob-
servable) are mathematical descriptions of complex envi-
ronment properties (e.g., dynamics, incomplete information,
and uncertainty) that enable an agent to plan action se-
quences that maximize rewards (and/or minimize costs) in
order to accomplish its goals [15].

Formally, a (discounted, finite state) MDP is represented
by a tuple (S, A, T, R,v) where S = {s} is a set of states
in which the agent needs to choose actions from the set
A = {a}. Because the environment is dynamic, actions can
change the current state according to a stochastic transition
function T : S x A x S — [0,1] modeling the probability
T(st,a,8t4+1) = P(s¢4+1]8¢,a) that the state changes from s,
to s¢+1 after action a. To guide agent decision making, the
agent receives rewards (or costs) according to a reward func-
tion R: S x A — R dependent on the current state and the
action chosen. The agent’s goal is to determine a plan of
actions called a policy 7 : S — A that tells the agent what
actions to perform (dependent on state) to maximize cumu-
lative, discounted rewards, with v € (0,1) a discount factor
weighting uncertain future rewards:

o0
2.7 Rlse,m(se)) 1)
t=0

Because the current state is hidden in partially observ-
able environments, a POMDP model is often used instead.
Formally, a (discounted, finite state) POMDP is a tuple
(8,A,Z,T,0,R,~,boy with S, A, T, R,~ as in a MDP. Z =
{z} represents a set of observations the agent receives (in-
stead of perfect information about s), which are generated
according to a stochastic observation function O : S x A x

Z — [0, 1] modeling the probability O(s¢+1, a, z) = P(z|si+1,a)

that the environment produces observation z after action a
transitions the state to s;+1. To handle uncertainty in the
current state s¢, the agent maintains a belief state b : § —
[0, 1] representing its probabilistic knowledge in the current
state. Using observations gathered from the environment,
the agent updates its knowledge through belief updates:



1
bevi(ser) = EO(StJrl’az 2) Y T(se,a,8001)be(se)  (2)
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where 7 normalizes b;11. bo is the agent’s initial belief state.
Note, R can be chosen to provide rewards based on proper-
ties of the belief state b, instead of just individual environ-
ment states [2]. Likewise, policy m maps beliefs to actions.

3.2 AHIG as a POMDP

Since the AHIG is a sequential decision making problem in
a partially observable environment (i.e., phenomenon states
are partially observable), casting the AHIG as a POMDP
is a natural starting point for a potential solution. In par-
ticular, we consider the POMDP formulation for the AHIG
(S,A,T,0,R,~,boy summarized in Table 1.

In this POMDP, the state space S contains variables rep-
resenting different information about situations faced by the
agent: partially observable PS; represent the different states
each phenomenon can take (e.g., the presence of victims in
different locations in our S&R example), and fully observ-
able Sgreq and Sgec represent counts per phenomenon of how
long it has been since the agent last requested that its neigh-
bors share information or received a neighbor’s request, re-
spectively. These count variables are useful for tracking (1)
whether the agent recently requested information, so that
it doesn’t request too frequently and disrupt other agents,
and (2) whether a neighbor requested information so that
the agent knows if it is appropriate to share its own knowl-
edge. Given this S, the belief state b represents the agent’s
uncertain knowledge about each phenomenon’s hidden state.
This knowledge is refined using information Z collected from
actions A using Eq. 2. Beliefs start with pure uncertainty
(a uniform distribution over phenomenon states, e.g., a lo-
cation is equally likely to contain a victim or not).

Since the environment is dynamic, the transition function
T encodes the probability that phenomena change states at
each time point (to a new state with probability cp, else
phenomenon states stay the same with probability 1 — cp,
c.f., Section 2.1) (e.g., whether a previously safe location
collapses and traps new victims, or trapped victims are res-
cued). The fully observable states transition deterministi-
cally each time step: the count for each phenomenon j in
SReq is incremented by one (up to k) unless the agent re-
quests new information about j, and the count for each phe-
nomenon j in Sgec is incremented by one (up to k) unless
the agent shares information (in which case it reverts to k
to indicate no request from a neighbor is pending).

The observation function O, on the other hand, encodes
the probability that the agent receives information about a
particular phenomenon depending on the action taken. For
Sense; actions, O encodes that the agent observes the cor-
rect state with probability acc (the agents’ sensor’s accuracy,
c.f., Section 2.1) and a wrong state with probability 1 — acc
(e.g., whether or not the robot’s camera correctly identifies
a victim in a room). Other actions return a null observation
since they do not directly gather information about the state
of any phenomenon in the environment.

The reward function R encodes (1) the rewards for having
high certainty beliefs or sharing information when requested,
and (2) the costs for information gathering actions or penal-
ties for sharing unrequested or uncertain information as de-
scribed in Section 2.1. Maximizing cumulative rewards leads
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the agent to highly certain knowledge (for which it receives a
reward) while minimizing costs used to refine its knowledge.

However, a few problems exist in this solution formulation.
First, the observation set Z only considers observations from
the Sense; actions and does not handle shared information
from neighbors, which would occur some delayed amount of
time after a Request; action. Although Z could be modi-
fied to include additional variables for received information,
this limits the types of shared information neighbors can
provide to discrete quantifications of the neighbor’s beliefs
(e.g., the locations most likely to contain victims), which
loses information about the neighbor’s uncertainty (e.g., the
probabilities of victims in each location). Otherwise, the ob-
servation space would be continuous (and thus very difficult
to work with) if neighbors shared their full belief states.

Second, even if Z were extended to include shared infor-
mation, there is no way for the observation function in a sin-
gle agent POMDP to encode a probability that a neighbor
shares a phenomenon state from its own beliefs (in response
to a request) without some pre-coordination and agreement
between agents. That is, agents must understand the likeli-
hoods that a neighbor both (1) shares a particular piece of
information (dependent on the neighbor’s beliefs that change
over time) and (2) any information at all (e.g., a robot might
be busy and unwilling to share information at the current
time). Without this information, an agent cannot calculate
the overall probability that it receives any particular infor-
mation from a neighbor at any point in time, necessary for
updating its beliefs with Eq. 2 with shared information, nor
plan what information it might receive over time. There-
fore, a single agent POMDP formulation of the AHIG will
not directly work in ad hoc environments.

Of note, traditional multiagent variants of POMDPs (e.g.,
DEC-POMDPs, Distributed POMDPs, and I-.POMDPs |[3,
13, 18]) provide some methods for handling both of the afore-
mentioned problems; however, these types of POMDPs re-
quire pre-coordination so are inappropriate for ad hoc envi-
ronments and do not scale well with the number of agents.

To resolve these problems inherent in a POMDP-based
AHIG model, we need to add some method to incorporate
shared information (which is inherently multiagent in na-
ture) outside of the (single agent) POMDP framework’s be-
lief updates. Then, the agent should still make decisions
based on its current knowledge, but it also needs a way to
plan how its beliefs will change to form an action policy.

4. KNOWLEDGE STATE MDP

In this section, we first describe how we propose to in-
corporate shared information from other agents, building
on the aforementioned POMDP formulation. Then, we de-
scribe a transformation of the POMDP into a MDP that
looks at solving the AHIG from a metareasoning perspec-
tive, decoupled from how the agent refines its knowledge
when it receives new information. Finally, we introduce a
learning process for the MDP that enables an agent to learn
how to choose actions to take to refine its knowledge in ad
hoc environments without requiring pre-coordination about
how and when other agents will share information.

4.1 Incorporating Shared Information

For agent knowledge about phenomenon states, we con-
sider probability distributions over all possible phenomenon
states very similar to belief states described in Section 3.2.



Table 1: POMDP Formulation of the AHIG Problem

POMDP Values AHIG Description
SReq X SRec X jep PS; Counts of the number of time steps since the agent last requested
State Variables S Skeq = {0,..., k}IT! (SReq) or received a request for information (Sgec), up to a
Skee = {0,...,k}T! maximum count k, and the phenomenon states (PS;)
Actions (1) sensing a particular phenomenon j, (2) requesting
Actions A U,cp {Sense;, Request;, Share;} | information from neighbors about phenomenon j, and (3) sharing
information to neighbors about phenomenon j (for each j € P)
Observations {null} U PS; Observations about the phenomenon state of a particular
Z phenomenon, or receiving no observation at all
Transition [0, 1] Probability that request counts change (deterministically) and
Function T’ phenomenon states change (stochastically) after each action
Observation [0,1] Probability that the agent receives observations about partially
Function O observable phenomenon states from its actions
Reward R Rewards received for taking different actions based on the
Function R current state of the environment and the agent’s knowledge.
Discount Factor (0,1) A discount factor to use for weighting future, uncertain rewards
Initial Belief [0,1] The probability ascribed to each phenomenon state being the
State bo correct initial state of each phenomenon (a uniform distribution)

We reuse notation with b:(j,ps) the probability that the
agent believes phenomenon j € P is currently ps € PS;. For
Sense; actions, beliefs update from b to b’ after receiving
observation z about phenomenon j using Bayes’ rule:

1. _p . . cp . ’
b(J,pS)—n[(l p)be(G,ps)+ Y, (7|st|_1)b(mps )}
ps'€PS;/ps
®3)
where p = acc when z = ps, else p = 1 — acc. This is

equivalent to the belief updates performed with Eq. 2 using
the POMDP formulation described in Section 3.2.

With respect to shared information, we assume’ that agents
share the full information about their beliefs: the probabil-
ities ascribed to each phenomenon state for the particular
phenomenon for which a neighbor sent a request. Then, the
corresponding belief update for shared information bgy, is:

V' (5, ps)

b(j, ps)[w - bsn (4, ps) + (1 — w)(1 — bsn (5, ps))]
S wers, b0 p)[w - bsn(Gops') + (L — w)(1 — bsn (. ps))]
(4)
where constant weight? w dampens shared information so
that uncertain shared beliefs do not cause agents to become
certain too quickly from little gathered information.
Using these two rules, agents can incorporate information
from both from (1) directly observing a phenomenon with
its sensors, and (2) its neighbors sharing their knowledge.

4.2 Knowledge State MDP Transformation

At the core of AHIG, the agent’s behavior does not neces-
sarily depend on which particular phenomenon state is cur-
rently correct for each phenomenon, but instead the problem
is really about how the agent should choose actions to im-
prove its knowledge (noting that actions to improve knowl-

!Other types of information might instead be shared, based
on the domain, which we leave to consider as future work.
2Such weights are common in the information sharing liter-
ature (e.g., [11, 19]) and could be learned as in trust and
reputation systems to further refine our solution, which we
intend to explore in the future. Please see [11] for a more
elaborate discussion of the impact of weight w.
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edge could be equivalent for each actual phenomenon state).
After all, the agents’ goal is to form highly certain knowledge
about each phenomenon using the information available in
the environment. For instance, in our S&R example, a robot
will base its information gathering on how certain its knowl-
edge is about a location (looking to resolve its uncertainty
so that it knows where all victims are as quickly as possible),
which is internal to the agent and independent of whether or
not an external unknown location actually contains victims.
The robot isn’t necessarily responsible for using the refined
knowledge for a separate task (that is done by human first
responders), but the goal of the agent in the AHIG is to
develop high quality knowledge that could subsequently be
used for other purposes, depending on the application.

Given this insight, we transform the above POMDP into
what we call the Knowledge State MDP-an alternative
formulation of the problem directly enabling an agent to
make decisions of how to gather information based on con-
sidering the current state of its knowledge, as opposed to the
state of the environment (including the states of phenom-
ena under observation). This provides a metareasoning
solution enabling the agent to choose how to gather infor-
mation based on reflecting about the quality of its knowl-
edge without worrying about the domain-specific contents
of that knowledge. As a result, the agent’s decision making
(at a metareasoning level) is decoupled from its knowledge
refinement (at a standard reasoning level), as desired.

The Knowledge State MDP can be mathematically de-
scribed as a MDP (Sgeq X Sgec x K, A, T, R), summarized
in Table 2. Here, the partially observable part of the state
space is replaced with the different knowledge states K of the
agent’s knowledge (which are fully observable when reflect-
ing on the agent’s knowledge) as it gathers information to
understand its environment. K is combined with the Sgreq
and Sgec state variables representing counts of time since
requests were sent or received, described in Section 3.2.

Recall that in the AHIG, the primary concern of the agent
is to form highly certain beliefs, so the state of agent knowl-
edge should reflect how much certainty exists in the agent’s
knowledge. Then, the agent can take actions that improve
its certainty and result in better knowledge states (closer




Table 2: Knowledge State MDP Formulation

MDP Values

AHIG Description

SReq X SRec x K
Sgeq = {0,..., k}!T!
SRec = {O,...,k}lpl
K : H(b,7) in k bins

State Variables S

Counts of the number of time steps since the agent last requested
information (Sgeq) or received a request for information (Sgec),
up to a maximum count k, and the agents current certainty (K)
in the current state of each phenomenon j

Actions (1) sensing a particular phenomenon j, (2) requesting

Actions A UjEP {Sense;, Request;, Share;} | information from neighbors about phenomenon j, and (3) sharing
information to neighbors about phenomenon j (for each j € P)
Transition TSpee,Speq " I € [0,1] Probability of state changes, as the product of request
Function T' state variable transitions and knowledge state transitions Tk
Reward R Rewards received for taking different actions based on the
Function R agent’s knowledge.
Discount Factor v (0,1) A discount factor to use for weighting future, uncertain rewards

to full certainty). Given that the knowledge representation
b described in Section 4.1 is a probability distribution over
possible phenomenon states for each phenomenon, an ap-
propriate measure of certainty in each phenomenon j’s state
(independent of application) is the entropy H (b, j) € [0, 1] of
the probability distribution representing its knowledge [2]:

1
+— 5 b(j, ps) log b(J, ps 5
1°g|PSf‘ps;sj (4, ps) (J,ps)  (5)

H(bh?) =1

To create a set of finite knowledge states K using H (b, j)
so that the MDP is a discrete state MDP, and thus is much
more tractable, we suggest discretizing the certainty values
into equal sized bins so that there exist a desired number
of states |K|. Note that a larger | K| creates a finer grained
separation between different knowledge states, potentially
enabling better planning, whereas a smaller |K| make the
MDP faster to solve (and has implications on the learning
process described in Section 4.3).

Given the rewards in the AHIG described in Section 2.1, it
is important to note that the same reward encoding works
for the Knowledge State MDP as well: knowledge states
identifying high certainty earn a reward, and action-based
costs, rewards, and penalties stay the same.

4.3 Learning Knowledge State Dynamics

Now, within the Knowledge State MDP, the key to guiding
appropriate action selection is the dynamics of how knowl-
edge states change based on each action a € A. That is,
how actions lead the agent to improve its certainty over
time. This information is encoded in the knowledge state
transition function Tx. Unfortunately, due to a lack of pre-
coordination to determine how and when agents will share
information, this function is undetermined initially. How-
ever, whereas this was a problem in our suggested POMDP-
based solution in Section 3.2, the transformation into an
MDP makes it feasible to perform model-based reinforce-
ment learning® (MB-RL) [16] to learn this transition func-
tion through interactions with the environment and other
agents (and adjust it over time as agent openness causes
the environment to change), instead of having to rely on
pre-coordination.

3 Although MB-RL algorithms also exist for POMDPs (e.g.,
[20]), such algorithms have high complexity and are not gen-
erally applicable in practice for POMDPs of moderate to
large state spaces (which grows quickly with phenomena P
and their states PS; for Section 3.2’s POMDP).
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In general, any MB-RL algorithm should be sufficient to
learn the knowledge state transition function Tx. For our
experimental setup in this paper, we use a learning approach
for the transition function similar to recent variants [14, 25]
of one of the most popular MB-RL algorithms: R-max [5]. In
particular, this algorithm uses frequentist counting by main-
taining a table counting the number of times n(s:,a, s¢+1)
that the agent observes a transition from state s; to s¢+1
after taking action a, then the algorithm updates the tran-
sition table to

n(st, a, St+1)
T(st,a,s = ——" 6

( t 2erl) n(st,a) ( )
whenever the total count of observed transitions for a state-
action pair n(st, a) = Zstﬂes n(st,a, St+1) equals a param-
eter m, after which the learning counts for the state-action
pair are reset to 0. A smaller m enables faster updates to
the transition table, whereas a larger m ensures more pre-
cise updates (by relying on more observed transitions before
updating). Of note, smaller |K| are also beneficial here,
causing the same knowledge state to be encountered more

frequently, and thus more frequent learning updates.

Considering the Knowledge State MDP, learning Tk amounts

to learning exactly how the certainty in the agent’s knowl-
edge changes based on (1) each information gathering action,
and (2) how long it has been since the agent requested infor-
mation (since this alerts the agent both how timely neigh-
bors respond, as well as whether or not they respond at all).
Understanding such changes to agent knowledge is exactly
the information the agent needs to determine which infor-
mation gathering actions to perform in order to reach highly
certain knowledge and achieve its primary goal—actions that
are more likely to lead to high certainty knowledge states
from the current knowledge state are actions that most im-
prove the agent’s knowledge, as desired.

This learning process only requires feedback from the agent’s
knowledge updates (using sensed or shared information) to
observe exactly which knowledge state (i.e., certainty) tran-
sitions occur after taking each action. Thus, the agent can
learn over time how its knowledge changes when it senses,
as well as when it requests shared information (including
how long such information takes to arrive), without having
to know in advance when or how other agents will choose to
share information. Therefore, this learning process bypasses
the problems of other solutions in ad hoc environments with-
out requiring pre-coordination to understand the behaviors




of neighboring agents and their impact on knowledge refine-
ment. Moreover, the agent also adapts its understanding
of knowledge state transition changes over time, which is
important for open environments where information sharing
can become more or less prevalent over time, in which case
a smaller m might be useful for more frequent learning and
faster adaptation to the changing environment.

By planning with the reward function R, the agent plans
to reach certainty as fast as possible (by maximizing re-
wards for certain knowledge) while also minimizing costs
required for gathering information, making the agent both
effective and efficient at its task. Thus, our Knowledge State
MDP coupled with MB-RL is an appropriate solution for the
AHIG.

It is important to note that this Knowledge State MDP
transformation is closely related to a similar metareasoning
framework in the literature: the Observer Effect POMDP
[8], which combines fully observable knowledge states with
partially observable environment states to guide agents to
perform actions that refine knowledge over time. Our solu-
tion differs in that (1) it learns the transitions in knowledge
over time, as opposed to the domain-specific value of infor-
mation, and (2) extends this type of approach to a mul-
tiagent setting where learning enables the agent to reason
about the affects of other agents on its own knowledge.

S. EXPERIMENTAL SETUP

To better understand our approach and investigate its per-
formance in different AHIG settings, we conducted experi-
ments empirically evaluating how well our Knowledge State
MDP and MB-RL process guide agent information gathering
using different information sources, including information
sharing, without requiring pre-coordination. In particular,
we considered a range of network configurations that might
reflect different types of environments and applications.

That is, we varied the average neighborhood size N:(i),
where larger neighborhoods made shared information more
prevalent, whereas smaller neighborhoods represent more

communication-constrained environments (e.g., our S&R robot

example where only a few robots might be within line-of-
sight of one another). The networks were randomly gener-
ated using an Erdos-Renyi model [9]. Since the environment
was ad hoc, agents knew nothing about their neighbors in
advance. Moreover, we made the environment open, where
a predetermined percentage (10%) of the agents left period-
ically (every 100 time steps) and new agents joined. This
agent openness also reduced the availability of information
over time, making information sharing more or less valuable
at different points in time. Within a neighborhood (and
throughout the set of agents), agents differed in their ca-
pabilities: different agents had different sensing accuracies,
making them better or worse at quickly gathering good infor-
mation from the environment to share with their neighbors
upon request. This follows in the tradition of other ad hoc
environments (e.g., [6, 24]), where agents must work with
agents with different capabilities than themselves.

The different opponents in our experiments included: (1)
KSMDP-+MB-RL: our Knowledge State MDP solution
with MB-RL, using the UCT algorithm [17] to plan each
time step using the learned MDP, (2) KSMDP: our Knowl-
edge State MDP solution without MB-RL (also using UCT
for planning, but only using the initial, uninformed K7 func-
tion where knowledge states only transition to the closest
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states), and two baselines: (3) AlwaysSense: where agents
maximized sensing for information gathering and did not
plan for information sharing since pre-coordination was not
possible (which serves as a lower bound on acceptable agent
performance), and (4) RequestThenSense: where agents
requested information about each phenomenon every k steps
to maximize information sharing, then either sensing the
rest of the time to further inform agent knowledge or shar-
ing if the agent had certain knowledge to help its neighbors.

We evaluated agent performance using three measures av-
eraged per time step: (1) average belief certainty across all
agents, (2) average proportion of agents with correct, highly
certain knowledge, and (3) average total rewards earned by
all agents. Each agent earned rewards: +10 whenever its b
was sufficiently certain (i.e., H(b) > 0.8), -1 for every Sense;
action, -1 for each Request; action (or -5 if S3,., < k), and

+1 for each Share; action (whenever S%,. < k, else -5).
The other parameters were set: |Ag| = 100 (which is too
large for multiagent POMDP solutions as a baseline), aver-
age Nt(l) € {27476587 10}7 |P| =1, ‘PS]| =3, cp = 1%,
acc ~ (0.5,0.8), v = 0.99, k = 6, |K| = 100. Each configu-
ration repeated 50 times for 1000 time steps.

6. RESULTS

We begin our results analysis by considering the agent’s
average belief certainty, presented in Fig. 1. From these re-
sults, we first observe that our Knowledge State MDP solu-
tion with and without MB-RL (respectively KSMDP+MB-
RL, KSMDP) achieved higher amounts of belief certainty
than either of the baselines. This implies that, instead of
trying to maximize either type of information gathering,
our KSMDP formulation enabled agents to appropriately
select between information gathering actions using differ-
ent sources to best refine their knowledge, as opposed to ei-
ther (1) requesting shared information as often as possible
(RequestThenSense), or (2) independently relying only on
sensed information (AlwaysSense).

Comparing across average neighborhood sizes, we observe
that as neighborhood size increased and information became
more available through sharing (due to each agent being con-
nected to more potential information sources), the average
certainty of the agents increased. Most notably, certainty
increased fastest for our KSMDP solutions, implying that
they became better at controlling information gathering as
information became more readily available (although they
also achieved the best performances when the neighborhoods
were smallest and information was most limited).

Further comparing between the two variants of our so-
lutions, we note that although adding MB-RL did not im-
prove belief certainty very much, it did so at a 0.05 statisti-
cally significant level for the smaller average neighborhood
sizes (2-6). This was when information was least available
(due to fewer neighbors as sources) and thus more care was
necessary for controlling information gathering. Therefore,
adding MB-RL to our Knowledge State MDP was most ben-
eficial when information gathering most needed help.

Next, we consider the average proportion of agents hold-
ing correct and highly certain beliefs, presented in Fig. 2.
Maximizing this performance measure was the desired emer-
gent behavior of solving the AHIG. From these results, we
additionally observe that not only did our Knowledge State
MDP-based solutions (KSMDP+MB-RL and KSMDP) lead
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to more certainty in the agents’ beliefs, but those beliefs
were also correct. Thus, agents were gathering the right
information to understand their environments over time.
Additionally, we again find evidence of the benefits of us-
ing MB-RL to learn how agent knowledge changes based
on different information gathering actions using different
sources: the improvement over KSMDP (without MB-RL)
for KSMDP+MB-RL was more pronounced when informa-

tion was most constrained (i.e., at lowest neighborhood sizes).

Interestingly, we also observe that for the largest neighbor-
hood size (10) considered in our experiments, our KSMDP
solutions actually achieved very few correct agents compared
to the baselines, which is in sharp contrast to the other
neighborhood sizes. Upon further inspection, what hap-
pened is the agents fell victim to institutional memory:
they converged to highly certain beliefs (as indicated in Fig.
1) because of the prevalence of shared information (favoring
requesting information over continually sensing the environ-
ment). This caused the agents to become stuck with out-
dated beliefs that didn’t adapt as the phenomenon changed
over time since very few agents continued sensing the phe-
nomenon directly. In the future, we intend to explore how
we can adapt our solution to learn to avoid this problem.

Finally, we consider the average total rewards earned by
all agents per time step, presented in Fig. 3. We observe
that for all but the lowest neighborhood sizes, our KSMDP
approaches—that directly maximized rewards to plan infor-
mation gathering actions—earned the highest cumulative re-
wards due to achieving high certainty while trying to mini-
mize costs. Of note, for the lowest neighborhood sizes (2-4)
when information was most scarce, the KSMDP approaches
were willing to accept more information gathering cost in or-
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der to achieve higher certainty and correctness, as displayed
in Figs. 1-2, ultimately attaining the agents’ primary goal.

7. CONCLUSIONS

In summary, we introduced the ad hoc information gath-
ering (AHIG) problem occurring when agents must balance
relying on different types of information sources (knowing
when to sense vs. when to rely on shared information from
other agents) in order to understand their complex environ-
ment without pre-coordinating with one another. From the
tradition of using POMDPs to guide agent decision making,
we proposed a transformation called the Knowledge State
MDP that enables agents to control information gathering
by reflecting on (fully observable) changes to their knowl-
edge. To address the inability of agents to pre-coordinate in
ad hoc environments, we added a MB-RL process to the
Knowledge State MDP that enables agents to learn how
their knowledge changes when relying on different informa-
tion sources. This includes learning how and when neigh-
bors might be willing to share information to supplement
an agent’s own sensing of the environment. Using an experi-
mental study, we investigated the performance of our Knowl-
edge State MDP (with and without MB-RL) in a range of
environment configurations (with varying number of infor-
mation sources), and discovered: (1) our solution gathered
better information and earned greater rewards than baseline
strategies of trying to maximize the usefulness of either type
of information source (sensing vs. shared information), and
(2) adding MB-RL enabled agents to best guided their be-
havior when information availability was most limited (and
high quality information gathering was most necessary).

In the future, we intend to: (1) combine our solution
with trust and reputation systems to further learn not only
when to rely on different information sources, but how much
weight to place in received information, which could help
overcome the institutional memory problem (where weight
w could be adapted to avoid agents rapidly converging to
certain beliefs when shared information is prevalent), and
(2) study how to use the Knowledge State MDP to balance
information gathering about different phenomena in the en-
vironment to avoid imbalanced knowledge potentially caused
by favoring sources for one phenomenon over the others.
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