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ABSTRACT
Multiagent systems are being increasingly used in environ-
mental modeling applications to characterize human behav-
ior and interactions with natural processes. A model based
on Distributed Constraint Optimization Problems (DCOPs)
has been recently proposed for studying the management of
water resources systems from the point of view of a regulat-
ing institution in charge of coordinating multiple distributed
decision-makers (agents). However, this DCOP-based model
does not explicitly account for the variety of stakeholders’
and regulators’ interests that are generally involved, repre-
senting incommensurable and often competing objectives.
In this paper, we provide a Multi-Objective DCOP (MO-
DCOP) model that supports distributed water resources
management through the exploration of tradeo↵s across dif-
ferent agents’ objectives. Among the available algorithms
for solving the resulting MO-DCOP, we choose a variant of
the B-MOMS algorithm because it allows identifying (an ap-
proximation of) the whole Pareto frontier for the problem.
Experimental results conducted on a number of randomly
generated water systems show that the approximation in-
troduced by the solving algorithm is limited for most of the
systems.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Distributed Artificial Intelli-
gence—multiagent systems

General Terms
Algorithms, Experimentation, Management

Keywords
Water resources systems; Multi-objective DCOPs; Pareto
frontier

1. INTRODUCTION
Approaches based on multiagent systems (MASs) are in-

creasingly used in modeling environmental systems because
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of their advantages over traditional centralized strategies,
particularly in evaluating macro-level properties emerging
from lower-level interactions among the agents [3]. In ad-
dition, agent-based models provide a more natural descrip-
tion of some distinguishing features of environmental sys-
tems: MASs can (i) deal with spatial variability, (ii) repre-
sent a population of heterogeneous individuals, (iii) explic-
itly model multiple, distributed, and autonomous decision-
makers. Focusing on the management of water resources
systems, an agent approach has been recently proposed for
studying the design of coordination mechanisms among mul-
tiple distributed decision-makers (agents) [10]. Specifically,
the work provides two formulations of the problem from the
standpoint of the water authority in charge of regulating the
system. In the first one, formalized as a Distributed Con-
straint Satisfaction Problem (DCSP) [23, Chapter 1], the
relevant stakeholders are considered making decisions about
the amount of water they withdraw or release in the sys-
tem only subject to physical constraints that cannot be vi-
olated. However, their individualistic decisions can produce
negative externalities that strongly impact on the system-
wide benefit. In the second one, formulated as a Distributed
Constraint Optimization Problem (DCOP) [24, Chapter 12],
the regulating institution introduces normative constraints,
whose violation has a cost, in order to increase the global
benefit. Both formulations of [10] do not explicitly account
for the incommensurable, and often competing, objectives
of the di↵erent stakeholders.

In this paper, we propose a Multi-Objective DCOP (MO-
DCOP) formulation which extends the work of [10] by allow-
ing the exploration of the tradeo↵s among the agents’ objec-
tives. This multi-objective point of view helps the regulat-
ing authority in performing scenario analysis to reduce the
negative decision biases from both cognitive myopia, where
narrow or restrictive definitions of optimality strongly limit
the discovery of relevant decision alternatives, and cognitive
hysteresis, where traditional strategies for addressing a prob-
lem restrict the generation of new hypotheses for innovative
decisions or additional objectives [5].

With our model, we make a step in this direction by pro-
viding a way to calculate the Pareto frontier of an MO-
DCOP, where objectives and constraints are represented as
vectors of functions independently optimized and no strate-
gic behavior of the agents is considered. Among the available
algorithms for solving MO-DCOPs, we selected B-MOMS [6]
because it easily allows to calculate the set of solutions that
are on the Pareto frontier, starting from an acyclic factor
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graph, which represents the structure of the underlying MO-
DCOP problem. In this work, we introduce a variant in the
original B-MOMS algorithm and a number of techniques to
handle cyclic factor graphs, as many water resources sys-
tems’ representations are actually cyclic.

In summary, the main contributions of this paper are the
following. (i) An MO-DCOP representation for the man-
agement of water resources systems. This specific class of
MO-DCOPs is characterized by having all constraints (ex-
cept one) containing a single objective function. (ii) The
proposal and experimental evaluation, in the context of our
application, of a number of methods for making the fac-
tor graph representations of MO-DCOPs acyclic. (iii) The
MO-Max-Sum method for finding the Pareto frontier of the
acyclic version of the problem that operates as a variant of
B-MOMS and that is experimentally compared against the
Pareto frontier for the original problem found by a brute-
force algorithm.

2. RELATED WORK
MAS approaches have become widely used in several envi-

ronmental modeling contexts [2]. The primary goal of most
of these studies, also referred to as multiagent simulations
(for a review, see [1,4] and references therein), is to simulate
complex systems in order to evaluate macro-level properties
emerging from lower-level interactions among the agents.
Purely reactive agents are largely adopted as a modeling ap-
proach to define behavioral rules which react to environmen-
tal changes (e.g., [12,14,22]). However, the prescriptive use
of MAS models in decision support systems remains a chal-
lenge due to their mathematical complexity, which requires
to shift toward a descriptive standpoint [7], developing what-
if analyses with respect to a limited number of management
alternatives and modeling simple decision mechanisms based
on linear programming [21]. In the water resources litera-
ture, the first contribution adopting proactive MAS for a
non-dynamic optimization problem was presented in [26]
and further developed by [10]. A similar approach was then
adopted to optimize pre-season farmers decisions [18] and to
simulate optimization-driven water markets [11] and emis-
sion trading [19]. [9] proposed an agent-based optimization
framework to assess the value of cooperation in large-scale
transboundary water resources systems.

The most significant previous work for this paper is that
of [10], whose goal is the design of a coordination strategy
for multiple distributed decision-makers acting in the same
water system. Three solutions are comparatively analyzed:
an uncoordinated solution in which all the agents act inde-
pendently, a coordinated solution in which the decisions of
the agents are only physically constrained (e.g., water avail-
ability, canals capacity), and a coordinated solution in which
also normative constraints are taken into account. The last
two solutions are modeled as DCSP and DCOP, respectively.
The results of numerical simulations show that the DCSP
and DCOP formulations can better approximate the ideally-
optimal solution calculated in a centralized fashion, which
represents the solution that guarantees the maximum of the
system-wide benefit. An important issue missing from the
above study is the fact that the multi-objective aspects of the
problem have not been considered. In the DCOP formula-
tion, the agents’ objective functions are aggregated (summed
up) together with constraints, preventing the regulator from
knowing the Pareto frontier of the problem.

In this paper, we provide an MO-DCOP formulation of
the case study of [10], which can be easily applied to other
water systems, as we show in our experiments. In order to
solve the MO-DCOP, we used the Bounded Multi-Objective
Max-Sum (B-MOMS) algorithm [6], which is structured in
three phases:

• Bounding, which obtains an acyclic factor graph repre-
sentation of the problem. The idea is that of building
a maximal spanning tree by weighting the edges of the
original factor graph.

• Max-Sum, during which the Pareto-optimal solutions
of the acyclic problem obtained in the previous phase
are calculated by a generalization to the multi-objective
case of the Bounded Max-Sum algorithm [20].

• Value-propagation, in which the agents select a Pareto
optimal assignment for their variables.

Theorem 1 of [6] proves that the set of solutions obtained
after the Max-Sum phase are Pareto optimal for acyclic fac-
tor graphs. Moreover, the authors provide a bound over the
approximation of the solutions returned by the B-MOMS
algorithm with respect to the original (cyclic) problem. We
exploit the first result to calculate the set of non-dominated
solutions for the acyclic version of our problem and we ex-
perimentally evaluate the di↵erence with the Pareto frontier
of the original problem.

An alternative approach for solving MO-DCOPs is MO-
Adopt [16], which generalizes to the multi-objective case the
Adopt algorithm [17] used for solving DCOPs. It is based on
a search strategy that exploits pseudo-trees and techniques
for pruning branches. The search process is based on two
messages: context, which informs children of a variable
in the tree about the parent’s and ancestors’ assignments,
and cost, which informs the parent variable about the cost
relative to the current context. Di↵erently from B-MOMS,
MO-Adopt can deal with problems with cyclic factor graph
representations. Yet, since it builds a solution incrementally,
it can find only a single solution on the Pareto frontier. A
naive approach for finding the whole Pareto frontier using
MO-Adopt is to iteratively generate solutions by considering
the solutions already found as constraints, but the compu-
tation cost can become prohibitively expensive.

3. WATER RESOURCES SYSTEMS AS
MULTI-OBJECTIVE DCOPS

In this section, we first survey MO-DCOPs and, then, we
introduce an example of a water resources system along with
its representation as MO-DCOP.

3.1 MO-DCOPs
A Multi-Objective DCOP (MO-DCOP) is defined as a

problem in which n agents control n variables {x1, x2, . . . , xn}
(usually, one variable per agent). Call x the vector of the
n variables. Variables can take values from finite domains
D1, D2, . . . , Dn, respectively. Assignments of values to vari-
ables should maximize a set of k objective functions:

F(x) =
h
F

1(x), F 2(x), . . . , F k(x)
iT

Vector F(x) is decomposed in a number m of constraints:
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Agent Objective function and constraints Notation

City

max
x1

f1(x1) = a1x
2
1 + b1x1 + c1

subject to

(
↵1 � x1  0

↵2 �Q1 + x1  0

x1: water withdraw for municipal use
Q1: mainstream inflow
↵1: minimum water demand for the city
↵2: minimum water requirement for the dam

Farm1

max
x4

f4(x4) = a4x
2
4 + b4x4 + c4

subject to

(
↵3 � x4  0

↵4 �Q2 + x4  0

x4: water withdraw for irrigation
Q2: tributary inflow
↵3: minimum water demand for the farm
↵4: minimum water requirement for the tributary

Farm2

max
x6

f6(x6) = a6x
2
6 + b6x6 + c6

subject to

(
↵5 � x6  0

↵6 � x2 � x3 + x6  0

x6: water withdraw for irrigation
↵5: minimum water demand for the farm
↵6: minimum water requirement for the mainstream

Dam
max
x2

f2(x2) = a2x
2
2 + b2x2 + c2

subject to x2 � S �Q1 + x1  0

x2: water release
S: reservoir storage

Eco1

max
x3

f3(x3) = a3x
2
3 + b3x3 + c3

subject to

(
x3 = Q2 � x4

↵4 � x3  0

x3: water flow through the tributary

Eco2

max
x5

f5(x5) = a5x
2
5 + b5x5 + c5

subject to

(
x5 = x2 + x3 � x6

↵6 � x5  0

x5: water flow through the lower mainstream

Table 1: The agents of the example water resources system

F(x) =
mX

i=1

Fi(xi)

where each constraint i is a vector of k objective functions:

Fi(xi) =
h
F

1
i (xi), F

2
i (xi), . . . , F

k
i (xi)

iT

and xi ✓ x is the set of variables (agents) involved in the
constraint i.

A MO-DCOP can be represented by a factor graph, like
the one shown in Figure 1, where nodes represent variables
and constraints (variable nodes and function nodes, respec-
tively) and edges represent involvement of variables in con-
straints.

Figure 1: An example of a multi-objective factor
graph with 3 variable nodes x1, x2, x3 and 3 function
nodes F1, F2, F3 (the two objective functions are
F

1 = F

1
1 + F

1
2 + F

1
3 and F

2 = F

2
1 + F

2
2 + F

2
3 )

The solution of a MO-DCOP is the set of Pareto optimal
alternatives, namely the assignments x that are not domi-
nated. An assignment x is dominated when there is another
assignment x0 such that F

j(x0) � F

j(x) for all j 2 [1, k]

and F

j0(x0) > F

j(x) for at least a j

0 2 [1, k]. A trivial
upper bound on the number of Pareto optimal solutions isQn

i=1 |Di|.

3.2 An example of a water resources system
We now illustrate a simple synthetic case study, firstly

introduced by [26], to describe how to model water resources
systems as MO-DCOPs and to test the algorithm we propose
for calculating the Pareto frontier of the problem.

The system, see Figure 2, is composed of an hypotheti-
cal Y-shaped river, with a city and a water reservoir, oper-
ated for hydropower generation, located on the mainstream
branch, a farm on the bottom tributary, and another farm
downstream of the rivers junction. Two ecological points
of interest, primarily for the protection of fish habitats, are
also present. We consider the perspective of the regulating
institution in charge of managing the water system and bal-
ancing all the di↵erent objectives associated to the relevant
stakeholders.

This non-dynamic problem, although its apparent simplic-
ity, caters for multiple sources of complexity characterizing
many real world applications: upstream-downstream power
asymmetry, as in the Nile River Basin [25]; the presence
of agents making decisions in parallel and in series, as in
the Yellow River Basin [27]; the di↵erence between primary
objectives associated to real decisions (e.g., water supply de-
mands driving the amount of water to divert from the river
or hydropower production determining the releases from the
dam) and secondary environmental concerns, as in the Zam-
bezi River Basin [9].

Each stakeholder (cities, dams, farms, ecological protec-
tion) can be represented by an agent i, that controls its
variable xi, which is the amount of water withdrawn from
the river or released from the reservoir, according to an ob-
jective function fi and to some constraints, see Tables 1
and 2. City, Farm1, and Farm2 agents decide the amount of
water they withdraw to satisfy domestic or irrigation water
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demand (x1, x4, and x6, respectively), Dam agent decides
on the amount of water to release for hydropower genera-
tion (x2), while Eco1 and Eco2 agents are passive and can
deal only with decisions made by other agents. Agents make
decisions for maximizing their objectives. A quadratic con-
cave objective function is assigned to each agent to preserve
the nonlinear complexity of real objective functions. Con-
straints are either hard or soft. Hard constraints refer to
physical constraints that are enforced by nature; for exam-
ple, a hard constraint can state that the amount of water
withdrawn from a river cannot be larger than the amount
of water present in that river. Hard constraints cannot be
violated by any solution. Soft constraints are normative
constraints that can be enforced by the managing institu-
tion; for example, a soft constraint can state the minimum
amount of water that should be left in a river after with-
drawn for municipal use. Soft constraints can be violated
by a solution incurring in a cost.

Figure 2: A synthetic water resources system

i ai bi ci ↵i

1 �0.2 6 �5 12
2 �0.06 2.52 0 10
3 �0.29 6.38 �3 8
4 �0.13 5.98 �6 6
5 �0.055 3.63 �23 15
6 �0.15 7.5 �15 10

Flow scenario Q1 Q2 S

High flow 80 35 10
Medium flow 40 20 8
Low flow 15 8 3

Table 2: Values for parameters (left) and flow sce-
narios (right) of Table 1

3.3 Modeling the water resources system as
MO-DCOP

The above example water resources system can be mod-
eled as a MO-DCOP as follows.

• n agents {1, 2, . . . , n}, corresponding to the active agents
(hence, excluding Eco1 and Eco2 in our example), con-
trolling n variables {x1, x2, . . . , xn}, where agent i con-
trols variable xi.

• n domains D1, D2, . . . , Dn, which are finite and con-
tain positive values. In particular, each Di contains
values around x̂i, which yields the maximum of fi.

• n (local) objective functions FOi(xi) = fi(xi), one for
each agent i.

• A single (global) objective function F

G =
P

Fj , which
aggregates all the constraints, hard and soft.

A water resources system composed of n active agents is then
modeled as an MO-DCOP that involves n+ 1 objectives:

F(x) =
h
F

O1(x), FO2(x), . . . , FOn(x), FG(x)
iT

where x = [x1, x2, . . . , xn] is the vector of the variables.
Since in an MO-DCOP all utility functions are referred to

constraints, the local objective functions F

Oi(xi) are mod-
eled as unary constraints involving only the variable xi. The
hard and soft constraints of the water system problem are
all aggregated in F

G. As consequence, we are facing a very
particular version of MO-DCOP in which each constraint
involves exactly a single objective function:

Fi(xi) = [0, . . . , fi(xi), . . . , 0]
T 8i 2 [1, n]

Fn+1(x) =
h
0, . . . , 0, FG(x)

iT

Our test case is formulated with fi(xi)s reported in Ta-
ble 1 and the constraints Fj in Table 3 aggregated in F

G.
The hard (physical) constraints are represented as constraints
whose violation has utility �1. For example, the fact that
an agent cannot withdraw more water than that in the river
can be modeled as in the constraint F2 in Table 3. The soft
(normative) constraints of the water system are represented
as constraints whose violation decreases their utility. For ex-
ample, the minimum amount of water that an agent should
leave in a river can be expressed as constraint F1 of Table 3.

In order to allow the institution managing the water re-
sources system to identify appropriate coordination strate-
gies, all the non-dominated solutions, namely the Pareto
frontier, of the above MO-DCOP should be derived. In the
next section, we propose a decentralized approach for ad-
dressing this issue.

4. THE PROPOSED ALGORITHM

x2

FO2

x4

FO4

x5

FO5

x6

FO6

x1

FO1

x3

FO3

F1

F2

F7

F10

F5

F11F8F3

F9

Figure 3: Factor graph for the example water re-
sources system

Given the test case formulated as above, the correspond-
ing factor graph is shown in Figure 3. To run the proposed
MO-Max-Sum algorithm, a variant of the B-MOMS one [6],
we need an acyclic constraint graph. Since, in general, fac-
tor graphs may contain cycles, we make the factor graph
acyclic by cutting edges. For example, cutting the edge be-
tween xj and Fi(xi) means considering the new function
F

0
i (xi\xj) (where xi\xj is the vector xi without xj). This

introduces an approximation and, specifically, the solutions
found by the algorithms are not always guaranteed to be
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Constraint Objective function

↵1 � x1  0
F1(x1) =

(
0 ↵1 � x1  0

x1 � ↵1 otherwise

↵2 �Q1 � x1  0
F2(x1) =

8
><

>:

0 ↵2 �Q1 � x1  0

Q1 � x1 � ↵2 0  Q1 � x1  ↵2

�1 otherwise

↵3 � x4  0
F3(x4) =

(
0 ↵3 � x4  0

x4 � ↵3 otherwise

↵4 �Q2 + x4  0
F4(x4) =

8
><

>:

0 ↵4 �Q2 + x4  0

Q2 � x4 � ↵4 0  Q2 � x4  ↵4

�1 otherwise

↵5 � x6  0
F5(x6) =

(
0 ↵5 � x6  0

x6 � ↵5 otherwise

↵6 � x2 � x3 + x6  0
F6(x2, x3, x6) =

(
0 ↵6 � x2 � x3 + x6  0

x2 + x3 � x6 � ↵6 otherwise

x2 � S �Q1 + x1  0
F7(x1, x2) =

(
0 x2 � S �Q1 + x1  0

�1 otherwise

x3 = Q2 � x4 F8(x3, x4) =

(
0 x3 = Q2 � x4

�1 otherwise

↵4 � x3  0
F9(x3) =

(
↵4 � x3  0

x3 � ↵4 otherwise

x5 = x2 + x3 � x6 F10(x2, x3, x5, x6) =

(
0 x5 = x2 + x3 � x6

�1 otherwise

↵6 � x5  0
F11(x5) =

(
0 ↵6 � x5  0

x5 � ↵6 otherwise

Table 3: Constraint functions aggregated in F

G

on the Pareto frontier. Authors in [6] present a bound over
the amount of this approximation based on the cuts oper-
ated to obtain an acyclic graph. Unfortunately, this bound
cannot be significantly applied to our problem because the
constraints that introduce cycles in our factor graph are hard
constraints and their worst value is �1. We hence resort
to the experimental evaluation to assess the e↵ects of this
approximation.

4.1 Building acyclic factor graphs
To make the factor graph acyclic we can use a maximum

spanning tree algorithm (as in [6]) that builds a tree by cut-
ting edges in the original factor graph in order to maximize
the weights of the edges in the tree. The problem is reduced
to the Minimum Spanning Tree (MST) problem by negating
the weights and can be solved by distributed algorithms, like
GHS [8], but, for the sake of simplicity, we use Kruskal’s cen-
tralized algorithm [13]. For MST algorithms, weights should
be associated to edges: those with larger weights are less
likely to be cut. Given the importance of this operation, we
propose and experimentally evaluate (in the next section)
di↵erent techniques to obtain acyclic factors.

Uniform (U) This is the technique used in [6], when we
consider that all our hard constraints have value �1. In
our case, the hard constraints are equally important and are
associated the same weight (e.g., 1), while soft constraints
have weights 0.

Ranking Nodes (RN) With this technique we set the
weight of an edge between xj and Fi equal to the sum of
the degrees (number of incident edges) of xj and Fi. The
rationale is to cut edges less critical.

Ranking Upstream (RU) The idea of this technique
is exploit the knowledge about the water system domain
and to assign larger weights to the edges connected to up-
stream variables and smaller weights to the edges connected
to downstream variables. The rationale is to preserve up-

stream edges from which downstream edges and variables
depend. The weights starts from 1 for the last variable node
and increase by 1 for other variable nodes going upstream.
The weight of an edge is equal to the weight of the variable
node it connects.

Constraint More (CM) This technique produces a fac-
tor graph that is overconstrained with respect to the original
factor graph. Considering for example the constraint F6 of
Table 3, cutting the edge between x6 and F6 constraints
more the values that other variables can assume. CM will
prefer to cut these edges by weighting less edges connecting
variables like x6 (more generally, variables with positive sign
in constraints of Table 3).

Constraint Less (CL) This techniques is the dual of CM
and assigns smaller weights to edges connecting variables
with negative sign in the constraints of Table 3 (e.g., the
edge between x2 and F6).

4.2 MO-Max-Sum algorithm
Once the acyclic factor graph has been obtained, the pro-

posed MO-Max-Sum algorithm operates like B-MOMS but
make a slightly di↵erent use of the marginal functions of vari-
ables in the factor graph. Specifically, in the B-MOMS algo-
rithm the marginal functions are used in the value-propagation
phase to select a Pareto-optimal solution. In the proposed
MO-Max-Sum algorithm, instead, the value-propagation phase
is substituted by a phase that assembles the solutions on the
Pareto frontier. The marginal function of a variable node xj ,
zj(xj), is calculated as a sum of r messages received from
the neighboring function nodes M(j):

zj(xj) =
X

i2M(j)

ri!j(xj) = argmax
x\xj

m(=n+1)X

i=1

Ui(xi) (1)

The information stored in the marginal function is, for each
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value of xj , the best solutions, in terms of utility, that can be
currently obtained. In other words, zj(xj) can be thought
as a vector that, in correspondence of a value for xj , stores
the best solutions obtainable with that value.

The MO-Max-Sum algorithm is shown in Algorithm 4.1.
Variable nodes calculate and send q messages, while function
nodes calculate and send r messages. At the beginning of
the algorithm, all q messages are initialized to 0, hence the
r message sent by a function node Fi to a variable node xj

is a maximization of Fi with respect to all the variables of
the scope of Fi except xj . After this initialization, at each
iteration t, each message q is calculated as:

q

t
j!i(xj) =

X

k2M(j)\i

r

t�1
k!j(xj) (2)

using the r messages received by the variable node xj in the
previous iteration t� 1 from its neighboring function nodes
M(j). Similarly, at each iteration t, a function node Fi waits
for q messages from its neighboring variable nodes N(i) and
calculates its r message as:

r

t
i!j(xj) = max

xi\ xj

0

@
Fi(xi) +

X

k2N(i)\j

q

t
k!i(xk)

1

A (3)

Note that r messages at t are calculated using the N(i)� 1
(all the neighboring variable nodes except the one to which
the r messages is sent) q messages at t; while q messages
at t are calculated using the M(j) � 1 (all the neighboring
function nodes except the one to which the q message is
sent) r messages at t� 1. As far as the above dependencies
are satisfied, the order in which the r and q messages are
actually sent and received is not important.

Note also that unary function nodes (corresponding to lo-
cal objective functions) send r messages whose content is the
maximization of the corresponding function with respect to
its single argument. This message is fixed over iterations and
can be calculated only once, slightly limiting the computa-
tional e↵ort. It is possible to consider the hard constraints
when a function node Fi computes the r message for a vari-
able node xj . If, for a value of xj , the corresponding vector
violates a hard constraint (i.e., the associated utility is �1),
then the vector is discarded.

If the marginal function calculated by a variable node xj

at iteration t is equal to that calculated by the same vari-
able node at the previous � iterations, then the marginal
function has converged and the variable node is “disabled”.
When disabled, a variable node xj will not send messages
any longer and the neighboring function nodes will use the
last received message from xj for further calculations. The
MO-Max-Sum algorithm terminates when all variable nodes
are disabled, namely when all the marginal functions are in-
variant. In order to assure that all the marginal functions
have converged, the value of � should be set in order to al-
low the propagation of messages over the factor graph, a safe
value being to the maximum distance between two nodes in
the factor graph (being it a tree, this distance is twice the
depth of the tree).

Algorithm 4.1: MO-Max-Sum(variables, functions)

procedure Variable-Node(M(j))
for each i 2M(j)
do send q

1
j!i message initialized to 0

for t 2 to termination

do

8
>>>>>>>><

>>>>>>>>:

for each i 2M(j)

do

8
<

:

while there are r

t�1
i!j messages unreceived

do wait for rt�1
i!j messages

calculate (2) and send q

t
j!i message

zj(xj) calculate marginal function (1)
if marginal function is invariant for � steps
then stop

disable xj

return (zj(xj))

procedure Function-Node(N(i))
for t 1 to termination

do

8
>>>>>>>>>>><

>>>>>>>>>>>:

for each xj 2 N(i)

do

⇢
if xj disabled
then q

t
j!i  q

t�1
j!i

for each j 2 N(i)

do

8
<

:

while there are q

t
j!i messages unreceived

do wait for qtj!i messages
calculate (3) and send r

t
Fi!xj

message
if all neighboring nodes N(i) are disabled
then stop

procedure CalculateFrontier(marginalfunctions)
frontier z1(x1) with z1(x1) 2 marginalfunctions
marginalfunctions marginalfunctions\z1(x1)
for each zj(xj) 2 marginalfunctions
do frontier frontier \ zj(xj)

return (frontier)

main
marginalfunctions ;
for each xj 2 variables
do marginalfunctions marginalfunctions [
[ Variable-Node(M(j))
for each Fi 2 functions
do Function-Node(N(i))

while there are variable nodes not disabled
do wait

Paretofrontier CalculateFrontier(marginalfunctions)

After all the variable nodes have been disabled, the marginal
functions calculated in the last iteration are intersected to
obtain the Pareto frontier. This last step is based on the
following proposition.

Proposition 1. Given a factor graph, a solution x is
Pareto optimal if and only if x is present in the marginal
functions zj(xj) of all variables xj of the factor graph, once
they have converged.

Proof. (Sketch) Only if part. A Pareto optimal solu-
tion is associated to a non-dominated vector x. The vectors
contained in r messages are calculated by the function nodes
using a maximization and so they are not dominated. These
vectors are propagated in the factor graph in a finite number
of steps using q messages. Hence, the sum of non-dominated
vectors, contained in r messages, is received by all variable
nodes of the factor graph, which add it to their marginal
functions. If part. If a vector x is present in all the marginal
functions, then there is an assignment in which a value is as-
signed to each variable such that x is non-dominated and so
it is Pareto optimal.

Note that it can happen that a marginal function zj(xj)
contains, in correspondence to a value xj , some dominated
vectors (meaning that with xj = xj solutions are obtained
that are dominated by those obtained with di↵erent values
for xj). However, the MO-Max-Sum algorithm guarantees
(through the maximization while calculating the r messages)
that these dominated vectors are not propagated and so they
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cannot belong to the intersection of all marginal functions
and, as a consequence, to the Pareto frontier, accordingly to
what one might expect.

The worst-case time complexity of the MO-Max-Sum al-
gorithm is dominated by the computation of the r messages
as in (3). When all domains have d values, the complexity is
O(da+2), where a is the largest arity (number of arguments)
of the Fis. Computing q messages and marginal functions
zj(xj) has complexity O(d).

5. EXPERIMENTAL ANALYSIS
5.1 Experiment setting

We developed a generator of realistic water systems in
order to heavily test the MO-Max-Sum algorithm. It ran-
domly creates water systems by composing several instances
of agents City, Dam, and Farm (Table 1) along a mainstream
and some tributaries. Parameters and flow scenarios are also
randomly generated to obtain plausible values like those of
Table 2.

Given the cuts operated to the factor graph to make it
acyclic, some solutions found by MO-Max-Sum could be un-
feasible for the original problem. Call SF the set of feasible
solutions and SU the set of unfeasible solutions, the set of all
solutions found by MO-Max-Sum is S = SF [ SU . We call
S⇤ the reference Pareto frontier of the original problem built
by a brute-force algorithm that, in our case of n agents with
d values in each of their domains and of n + 1 constraints,
has worst-case time complexity O((n + 1) · dn). Note that
some solutions in S can dominate some solutions in S⇤ due
to the cut of some physical (hard) constraint in making the
factor graph acyclic. To assess the quality of the solutions
provided by our approach, we use three di↵erent metrics,
namely generational distance, hypervolume indicator, and
violation degree.

Generational distance. This metric can be applied only
when |SF | > 2. For each point of SF , the distance to the
closest point of S⇤ is calculated. The generational distance
is the mean of these distances. The main weakness of this
metric is that it does not capture the amount of covering of
S⇤ provided by S.

Hypervolume indicator. This metric tries to overcome
the previous drawback by measuring the (normalized) in-
verse di↵erence between the volume enclosed by S⇤ and that
enclosed by SF in the (hyper)space of objective functions.
It is a value in [0, 1], and the closest to 1 the better the ap-
proximation of S⇤ provided by SF . Also hypervolume can
be calculated only when |SF | > 2.
Violation degree. This metric is calculated on S with-

out referring to S⇤. It measures the relative amount of vio-
lation for a constraint Fi(xi) that has been a↵ected by a cut
in the original cyclic factor graph. The maximum violation
for Fi is c

⇤
i = max

xi Fi(xi), while the actual violation of Fi

caused by (the assignments in) a solution S is ci. The vio-
lation degree for Fi is then vi =

ci
c⇤i
. If multiple constraints

are cut, we calculate the average of their vi.
The first two metrics evaluate the convergence and diver-

sity of the solutions with respect to the Pareto frontier [15],
while the third one accounts for the feasibility of the solu-
tions.

The MO-Max-Sum algorithm has been implemented in
Java with the initial problems provided as a XML file. For
experiments reported here, we use a computer equipped with

Average computation time [s]
# agents |Di| MO-Max-Sum Brute-force

5 5 0.19 0.58
6 6 0.25 5.87
6 8 0.35 33.64
6 10 0.45 136.80
7 6 0.45 294.69

Table 4: Computation times for acyclic graphs

an Intel Core i5-2410M 2.30 GHz CPU, 6 GB RAM, and
Windows 7 64 bit as operating system.

5.2 Results
We first discuss some results obtained with acyclic factor

graphs for which MO-Max-Sum finds the optimal solution
(all the points on the Pareto frontier). For each combination
of number of agent (5, 6, or 7) and of number of elements in
their domains (from 5 to 10), we generate 7 random water
resources systems with associated acyclic factor graphs and
tested them in 3 flow scenarios (i.e., high, medium, and low
flow conditions). In all the cases, we verify that S = S⇤,
as expected. In this case, generational distance is 0, hyper-
volume is 1, and violation degree is meaningless. The com-
putation times for some of the combinations are reported in
Table 4, which shows that, for acyclic graphs, MO-Max-Sum
scales much better than the brute-force algorithm, according
to the worst-case theoretical analysis of their computational
complexity.

We now consider more interesting problems with associ-
ated cyclic factor graphs. In these cases, the proposed MO-
Max-Sum algorithm is not guaranteed to find all the points
on the Pareto frontier S⇤. For example, Figure 4 (top) shows
the inverse of the generational distance metric averaged over
7 randomly generated water systems and 3 flow scenarios
(total 21 scenarios) for the case of 8 agents, all with do-
mains of 7 elements. High values mean good solutions. The
hypervolume metric for the same setting is reported in Fig-
ure 4 (middle). Both figures show the e↵ects of the weight-
ing techniques: RU seems to perform better, very close to
U and CL, in producing good solutions, namely in cutting
edges of the original factor graph that have little influence
on the quality of the obtained Pareto frontier S. Note that
sometimes the hypervolume metric is null. This is because
some solutions in S are degenerate, namely they are located
on the axes of the hyperspace of objective functions. When
|SF |  2, the two above metrics cannot be calculated, so
in these cases the violation degree can provide some infor-
mation (Figure 4 (bottom) shows results for 16 out of 21
scenarios in the same setting previously considered). The
average violation is always smaller than 15%. The variabil-
ity of the violation degree for di↵erent weighting techniques
depends on the edges they cut. For example, for scenario
8 of Figure 4 (bottom), solutions on S do not violate any
constraint corresponding to edges cut in making the factor
graph of the scenario acyclic. From this perspective, the
best weighting technique appears to be RN. These results
are confirmed also by the values of the maximum violation
degree (not shown here).

We now analyze in more detail when S does not contain
any solution that dominates a solution in S⇤. This case intu-
itively corresponds to a well-behaved cut of edges during the
construction of the MST. In the case of 8 agents with 7 val-
ues in each of their domains, we generate 40 random water
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Figure 4: Average inverse generational distance
(top), average hypervolume (middle), and average
violation degree (bottom)

resources systems. For 12 of them, there is at least a weight-
ing technique for which MO-Max-Sum produces solutions S
completely dominated by S⇤. Globally, this happens in 26
cases out of 200 = 40⇥5, where 5 is the number of weighting
techniques we consider. In all these cases, S = SF , namely
all the solutions are feasible.

Finally, we evaluate the computation e↵ort of the MO-
Max-Sum algorithm in the case of cyclic factor graphs. We
note that the time required by MST algorithm is negligible
with respect to the time required by the rest of the MO-
Max-Sum algorithm. In a distributed algorithm like MO-
Max-Sum, the number of messages that agents exchange is
critical. We first consider domains with 8 values and, for a
given number of agents, we generate 9 water systems that
are tested in the 3 flow scenarios. Table 5 (top) reports the
average results that show how the weighting techniques RN
and CM can better limit the amount of messages when the
number of agents increases. When considering 5 agents and
varying the size of their domains, we obtain the results of
Table 5 (bottom) from which no clearly dominating weight
technique can be identified.

Using the same settings as before, we also evaluate the
computation times when varying the number of agents (Ta-

Average number of messages
# agents U RU RN CL CM

5 192 188 189 187 182
6 273 253 194 252 191
7 343 333 292 326 280
8 393 394 402 394 403
9 509 542 408 474 397
10 639 725 335 749 326

Average number of messages
|Di| U RU RN CL CM
5 182 181 173 186 175
10 198 198 187 200 185
15 199 195 183 195 183
20 199 199 191 196 185
25 199 188 181 191 183
30 194 196 191 195 193

Table 5: Average number of messages vs. number of
agents (top) and size of domains (bottom)

Average computation time [s]
# agents U RU RN CL CM

5 0.33 0.51 0.93 1.09 1.20
6 0.42 1.73 1.84 2.42 3.14
7 1.20 1.68 1.98 0.37 1.70
8 0.88 4.96 6.77 6.57 7.09
9 2.14 8.83 6.69 7.67 7.40
10 21.46 27.79 14.21 31.26 26.36

Average computation time [s]
|Di| U RU RN CL CM
5 0.13 1.30 2.99 0.16 0.54
10 0.36 1.21 1.07 0.32 0.77
15 0.68 1.48 2.02 0.53 0.97
20 2.57 5.77 7.61 9.27 11.13
25 5.51 9.38 12.29 15.92 16.95
30 14.57 28.27 31.71 45.47 41.46

Table 6: Average computation time vs. number of
agents (top) and size of domains (bottom)

ble 6 (top)) and the sizes of their domains (Table 6 (bot-
tom)). The first table suggests that U and RN weighting
techniques can provide some advantages when the number
of agents grows and the second table supports these findings
with respect to the domains’ size of the agents’ variables.

6. CONCLUSIONS
In this paper we presented an approach to model water

resources management problems as Multi-Objective DCOPs
and to identify the whole Pareto frontier using the MO-Max-
Sum algorithm, which is a variant of the B-MOMS algorithm
proposed in literature. An acyclic factor graph that repre-
sents the structure of the problem is required by MO-Max-
Sum and this graph is calculated by a minimum spanning
tree algorithm using di↵erent definitions of weights. We
experimentally found that, in the field of water resources
systems, RN weighting techniques seems to attain a good
trade-o↵ between solution quality and computation e↵ort.

Future work will address the further development of the
proposed model, mainly in the direction of including strate-
gic behavior of agents, moving toward a game-theoretical
model. The application to a real-world case study will fi-
nally allow the validation of the method through the inter-
action with the real stakeholders and decision-makers and
the extension to dynamic problems.
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