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ABSTRACT
In this work, we initiate a detailed study of the parameter-
ized complexity of Minimax Approval Voting. We demon-
strate that the problem is W[2]-hard when parameterized
by the size of the committee to be chosen, but does ad-
mit a FPT algorithm when parameterized by the number of
strings that is more efficient than the previous ILP-based
approaches for the problem. We also consider several com-
binations of parameters and provide a detailed landscape of
the parameterized and kernelization complexity of the prob-
lem. We also study the version of the problem where we
permit outliers, that is, where the chosen committee is re-
quired to satisfy a large number of voters (instead of all
of them). In this context, we strengthen an APX-hardness
result in the literature, and also show a simple but strong
W-hardness result.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity;
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms
Algorithms, Theory

Keywords
Computational Social Choice; Fixed-Parameter Tractabil-
ity; Kernelization; Approximation; Minimax Approval Vot-
ing

1. INTRODUCTION
Aggregating preferences of agents is a fundamental prob-

lem in artificial intelligence and social choice [10]. The
typical setting is the following: agents (or voters) express
their preferences over alternatives (or candidates), and sub-
sequently, a voting rule selects a winner or a set of winners
based on these preferences.
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A substantial fragment of research in computational so-
cial choice has been devoted to single-winner choice prob-
lems (sometimes admitting the possibility of ties, resulting
in a collection of co-winners). However, there has been an
emerging interest in the algorithmic aspects of multi-winner
elections, where the goal is to elect a committee of size k,
where k is fixed in advance. In other words, the goal is
to determine a set of k “winners” based on an appropriate
voting rule. Multi-winner problems have several important
applications, such as the election of legislatures and com-
mittees using proportional representation. They are also
heavily used in resource allocation problems, determining
the top few movies, books, or products to be fed into rec-
ommendation systems, and so on. In a classroom setting
(especially online, such as in a MOOC), using peer reviews
to determine the best possible TA team of size, say, ten for
a future edition of the course is also a scenario for multi-
winner elections.

Approval Voting. This work is set in the framework of
approval voting systems, where each voter may select and
support at most some small number of candidates [6]. In
such a system, each voter determines, for every single candi-
date, if he approves of him or not. A result is then obtained
by applying a predefined election rule to the set of collected
votes. We refer to such a collection of votes as an approval
ballot. In contrast, multi-winner voting rules, also known as
choose-k rules, use the standard election setup where every
vote is a total order (or a full ranking) over the set of can-
didates, and the voting rule returns a collection of possible
committees that are tied-for-winning [13]. Although there
are connections between the two formats, as we will observe
in a moment, our focus will be on the former setup.

Given an approval ballot V = {v1, . . . , vn} that seeks to
form a committee C of size k, there can be several measures
for how well a particular committee performs with respect
to the given ballot. Two such fundamental measures are:

• Approval Voting. Here, we seek to minimize the
sum of the Hamming distances between C and vi.

• Minimax Approval Voting. Here, we seek to mini-
mize the maximum Hamming distance between C and
any vi.

Note that approval voting amounts to choosing the k
“most popular” candidates. If every voter approved a subset
of size k, then this would amount to a multi-winner extension
of the k-approval rule. We note that there have been sev-
eral other measures considered in this setting, for example
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Satisfaction Approval, Proportional Approval, Reweighted
approval, and so on. We refer the reader to [2] for some
very recent work on these aspects of approval voting.

While approval voting has the advantage of being a rule
where the winning committee is easy to compute, it can
suffer from ignoring the preferences of many voters. For
example, consider a ballot where a Y , which is some sub-
set of k candidates, is approved by a subset X of voters.
Note that if |X| is even a little over half the total number of
voters, then the committee Y will be a winning committee
irrespective of the structure of the remaining votes. In such
a situation, the minimax approach to approval voting tries
to account for the opinion of every voter in its definition.
On the other hand, note that the minimax approval voting
rule can sometimes try too hard when satisfying every voter
— it is possible that when, say, a large fraction of the bal-
lot is accounted for, there exists a consensus with a small
maximum distance threshold, while accounting for everyone
pushes up the threshold by orders of magnitude. Therefore,
a natural notion to incorporate into the problem to make it
more robust in practice is that of outliers. We introduce and
study this version of Minimax Approval Voting, which
we believe has not been examined before, where we seek a
committee of size k that has a Hamming distance of at most
d from at least s votes. The original problem is the special
case when s = |V|.

Closest String. The Minimax Approval Voting prob-
lem is quite similar to the Closest String problem, which
is an intensely studied problem in the literature of string al-
gorithms and bioinformatics. Most of our work builds on the
work of [15] and [3] that explore the Closest String prob-
lem from a parameterized perspective. In Closest String,
we are given a set of strings {s1, . . . , sn} and the goal is
to find a string s that has a small Hamming distance from
all the given strings. Note that Minimax Approval Vot-
ing is the Closest String problem restricted to a binary
alphabet, and accompanied with the additional constraint
that the output string have exactly k ones. We note that
our proposal for Minimax Approval Voting with outliers
is inspired from the analogous question in the context of
strings, namely Closest to Most Strings, which is also
a well-studied variant [5].

Our Framework. Our focus in this work is on the com-
putational complexity of Minimax Approval Voting and
several of its variations. We mostly use the paradigm of
parameterized complexity [12, 19] but we also explore the
hardness of approximation in suitable settings.

One of the fundamental types of parameterized algorithms
is kernelization, where the main goal is instance compression
- the objective is to output a smaller instance while main-
taining equivalence. When outlining nine important future
directions of research in computational social choice in a pa-
rameterized setting, one of the questions that emerged was
the following [7]:

What is the kernelization complexity of fixed-parameter
tractable voting problems with respect to the number m of
alternatives, the number n of voters, or some parameter less
than m or n? Can we derive polynomial (or even linear)
problem kernels for some voting problems with the above pa-
rameters?

In this work we address several questions in the context
of kernelization, hoping to demonstrate some progress on

this theme. Another key challenge proposed in [7] is also
regarding the use of ILP-based approaches:

Can the [...] ILP-based fixed-parameter tractability results
be replaced by direct combinatorial (avoiding ILPs) fixed-
parameter algorithms?

While the best known algorithm for Closest String
when parameterized by the number of strings was based on
an ILP formulation, we give an argument here for its MAV
analog that relies on the framework of Color Coding [1],
which provides a completely different perspective, and we
hope that our style of application will be of general interest.

Our Contributions and Related Work. We consider
the Minimax Approval Voting problem and its variation
where we allow for outliers, from a parameterized perspec-
tive. Despite its relationship with Closest String, there
are almost no “automatic” algorithmic or hardness implica-
tions. Minimax Approval Voting is already well-studied
the perspective of approximation [9, 18], and is known to
admit a PTAS [8]. We focus on the parameterized com-
plexity of Minimax Approval Voting. Our results are
summarized in Table 1, and include the following.

• Minimax Approval Voting, when parameterized by
d and m is unlikely to admit a polynomial kernel,
even though it is trivially FPT even when parame-
terized only by m (by trying all candidate committees
in O(2m) time).

• Minimax Approval Voting, when parameterized by
d alone, is FPT and admits an algorithm with O?(dd)
running time. On the other hand, when parameterized
by k alone, the problem is W[2]-hard. 1

• Minimax Approval Voting, when parameterized by
n, is FPT, however, it is unlikely to have a polynomial
kernel even when parameterized by n and k. This is
an adaptation of the proofs in [3]. Also, Minimax Ap-
proval Voting admits a randomized algorithm with
running time O?(2knck).

• Minimax Approval Voting with Outliers is W[1]-
hard even when parameterized by s, d and n.

• Minimax Approval Voting with Outliers, the
version of the problem where we seek to minimize the
number of outliers, is unlikely to admit a PTAS un-
less P = NP. An adaptation of our proof implies that
Closest to Most Strings is also unlikely to have a
PTAS unless P = NP, strengthening a previous hard-
ness result [5].

Summary of Results for Minimax Approval Voting
Parameter Kernel FPT
d No [Theorem 2] Yes [Theorem 4]
d,m No [Theorem 2] Yes [Trivial]
k N/A No [Theorem 3]
n No [Theorem 3] Yes [ILP]
n, k No [Theorem 3] Yes [Theorem 6]

2. PRELIMINARIES
We work in the social choice setting where there are n

voters and m candidates. We let V = {v1, . . . , vn} denote

1We use the O? notation to suppress factors that are poly-
nomial in the size of the instance.
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the set of all voters and C = {c1, . . . , cm} denote the set of
all candidates. We use the notation [n] to refer to the set
{1, 2, . . . , n}. A bit vector is a word over the binary alphabet
{0, 1}. For a bit vector u, the character (or bit) at the ith

position is denoted by u[i]. The weight of a bit vector u is
defined to be the number of ones in the word u.

Let U be a finite set, and {u1, . . . , um} be an arbitrary
but fixed ordering of the elements of U . If S is a subset of
U , we use S to denote the characteristic vector of S, which
is a word of length |U | over the binary alphabet {0, 1}, with
a 1 in the ith position if and only if ui ∈ S. Similarly, if s is
a bit vector, we use J (s) to denote the corresponding set.
We sometimes abuse language and refer interchangeably to
a set and its characteristic vector. For bit vectors u and v
of the same length, we use d(u, v) to denote the Hamming
distance between u and v, which is the number of positions
i where u[i] 6= v[i].

We now define the social choice problem that is central to
this work.

Minimax Approval Voting
Input: A set of alternatives C := {c1, . . . , cm},

a collection of votes {v1, . . . , vn},
where each vote vi is an element of
{0, 1}m (or equivalently a subset of C),
and positive integers d and k.

Question: Is there a subset of X ⊆ C of size exactly
k, such that the Hamming distance
between X and vi is at most d for
all 1 ≤ i ≤ n?

The Minimax Approval Voting problem is closely re-
lated to the very well-studied Closest String problem over
the binary alphabet, which we describe below for complete-
ness.

Closest String
Input: A set of n strings s1, . . . , sn over {0, 1} of

length m, and positive integers d and k.
Question: Is there a string s of length m such that

the Hamming distance between s and si
is at most d for all 1 ≤ i ≤ n?

Note that the Minimax Approval Voting problem is ex-
actly the Closest String problem with the additional re-
straint that the output word has weight k. Note that despite
the similarity, there is no trivial computational reduction be-
tween the two problems. Informally speaking, the additional
constraint can either make the Minimax Approval Vot-
ing problem computationally easier or harder. However, we
note that any algorithm that enumerates all closest strings
to a given collection will also solve the Minimax Approval
Voting problem.

For α ⊆ {m,n, d, k} use the notation [α]−Minimax Ap-
proval Voting to refer to the Minimax Approval Vot-
ing problem when parameterized by the parameters in α.
We also introduce the closely related problem of Mini-
max Approval Voting with Outliers, which is inspired
by the analogous and well-studied variant of the Closest
String problem, namely Closest to Most Strings.

Minimax Approval Voting with Outliers
Input: A set of alternatives C := {c1, . . . , cm},

a collection of votes {v1, . . . , vn},
where each vote vi is an element
of {0, 1}m (or equivalently a subset of C),
and positive integers s, d and k.

Question: Is there a subset of X ⊆ C of size
exactly k, and a subset W ⊆ V of size
at least s, such that the Hamming
distance between X and vi is at most d
for all i ∈ W?

The analogous problem for binary strings is as follows.

Closest to Most Strings
Input: A set of n strings s1, . . . , sn over {0, 1} of

length m, and positive integers s, d and k.
Question: Is there a string w of length m for which

at least s strings among s1, . . . , sn have
Hamming distance at most d from w?

As before, for α ⊆ {m,n, d, k, s} we use the notation
[α]−Minimax Approval Voting with Outliers to refer
to the Minimax Approval Voting with Outliers prob-
lem when parameterized by the parameters in α. For a spe-
cial instance where every voter votes for a committee of a
fixed size, we use t to denote the weight of each vote. Also,
we use s? to denote the dual parameter in the context of
outliers, that is, when we are asking if there is a committee
that is at a Hamming distance of at most d from all but at
most s? voters.

Parameterized Complexity. A parameterized problem Π
is a subset of Γ∗ × N, where Γ is a finite alphabet. An
instance of a parameterized problem is a tuple (x, k), where
k is the parameter. A kernelization algorithm is a set of
preprocessing rules that runs in polynomial time and reduces
the instance size with a guarantee on the output instance
size. This notion is formalized below.

Definition 1. [Kernelization] [19, 14] A kernelization
algorithm for a parameterized problem Π ⊆ Γ∗ × N is an
algorithm that, given (x, k) ∈ Γ∗ ×N, outputs, in time poly-
nomial in |x| + k, a pair (x′, k′) ∈ Γ∗ × N such that (a)
(x, k) ∈ Π if and only if (x′, k′) ∈ Π and (b) |x′|, k′ ≤ g(k),
where g is some computable function. The output instance
x′ is called the kernel, and the function g is referred to as
the size of the kernel. If g(k) = kO(1) then we say that Π
admits a polynomial kernel.

For many parameterized problems, it is well established
that the existence of a polynomial kernel would imply the
collapse of the polynomial hierarchy to the third level (or
more precisely, CoNP ⊆ NP/Poly). Therefore, it is consid-
ered unlikely that these problems would admit polynomial-
sized kernels. For showing kernel lower bounds, we simply
establish reductions from these problems.

Definition 2. [Polynomial Parameter Transforma-
tion] [4] Let Γ1 and Γ2 be parameterized problems. We
say that Γ1 is polynomial time and parameter reducible to
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Γ2, written Γ1 ≤Ptp Γ2, if there exists a polynomial time
computable function f : Σ∗ × N → Σ∗ × N, and a poly-
nomial p : N → N, and for all x ∈ Σ∗ and k ∈ N,
if f ((x, k)) = (x′, k′), then (x, k) ∈ Γ1 if and only if
(x′, k′) ∈ Γ2, and k′ ≤ p (k). We call f a polynomial pa-
rameter transformation (or a PPT) from Γ1 to Γ2.

This notion of a reduction is useful in showing kernel lower
bounds because of the following theorem.

Theorem 1. [4, Theorem 3] Let P and Q be parameter-
ized problems whose derived classical problems are P c, Qc,
respectively. Let P c be NP-Complete, and Qc ∈NP. Sup-
pose there exists a PPT from P to Q. Then, if Q has a
polynomial kernel, then P also has a polynomial kernel.

3. MINIMAX APPROVAL VOTING
In this section, we outline our results for Minimax Ap-

proval Voting. The problem was shown to be NP-hard
in [17] using a reduction from the Vertex Cover problem.
This motivates the search for fixed-parameter tractable al-
gorithms for Minimax Approval Voting.

Observe that Minimax Approval Voting is easily FPT
by exhaustive search when parameterized by m. We now
show that it is unlikely to admit a polynomial kernel even
when parameterized by d and m. This follows from the proof
of the hardness of Closest String in [3], but adapted to
ensure that the number of ones in the output string is fixed.
We describe the details of the construction for complete-
ness, but only sketch the proof of equivalence due to space
constraints.

Theorem 2. Minimax Approval Voting does not ad-
mit a polynomial kernel when parameterized by d and m un-
less CoNP ⊆ NP/Poly.

Proof. We prove the statement through a PPT reduc-
tion from CNF-SAT parameterized by the number of vari-
ables, adapting the ideas used in [3]. Given a CNF-SAT
formula F = C1 ∧C2 ∧ . . .∧Cq with variables x1, x2, . . . , xp,
we obtain an instance of Minimax Approval Voting as
follows. We begin by transforming F to F ′ with 2p vari-
ables, such that each clause has length p or 1, where p is the
number of variables in F . To do this, we add p new variables
y1, y2, . . . , yp. First, we add p new clauses to the formula.
These new clauses have length 1 and are negations of the new
variables. Next, for every clause Ci that has less than p vari-
ables, we replace it with C′i where C′i = Ci∨y1∨y2∨. . .∨yp−k

where |Ci| = k. So the transformed formula is given by:

F ′ = C′1 ∧ C′2 ∧ . . . ∧ C′q ∧ ¬y1 ∧ ¬y2 ∧ . . . ∧ ¬yp

To see that F is satisfiable if and only if F ′ is satisfiable,
note that the satisfying assignment to F can be extended
to a satisfying assignment of F ′ by setting all the yi’s to 0.
Conversely, a satisfying assignment for F ′ must set all the
y’s to 0 to satisfy all the singleton clauses. The remaining
clauses C′i must each be satisfied by one of the original vari-
ables xi, and so this assignment also satisfies the original
clauses Ci. We will refer to each singleton clause ¬yi as
C′q+i.

We will now obtain an instance of Minimax Approval
Voting from F ′. The instance will have a total of q+13p−8
strings, each of length 6p − 4. The string set S consists of
two types of strings. The first set S1 will contain a string

for each of the clauses in F ′, thus consisting of q+p strings.
The second set S2 will contain 4 strings for each i ∈ [3p−2],
thus accounting for 12p− 8 strings. For each variable xj (or
yj) and a clause C′i we define a two bit string as follows.

Xi,j(or Yi,j) =


01 if Cj contains xi

10 if Cj contains x̄i

00 otherwise

• For every clause C′i with 1 ≤ i ≤ q,
we add a string si to S1, where si =
Xi,1Xi,2 . . . Xi,pYi,1Yi,2 . . . Yi,p{10}p−2.

• For every clause C′q+i with 1 ≤ i ≤ p, we add a string

sq+i to S1, where si = {00}p+i−110{00}2p−2−i.

• We add the following four strings to S2 ∀i ∈ [3p− 2].

ai = {00}i−111{00}3p−2−i

bi = {00}i−100{00}3p−2−i

ci = {11}i−111{11}3p−2−i

di = {11}i−100{11}3p−2−i

Thus we get an instance of (C,V, k, d)Minimax Approval
Voting by setting V = S1 ] S2, the number of candidates
(or the length of the strings) is m = 6p − 4, the number of
voters (or strings) is n = q + 13p − 8, and the maximum
Hamming distance is d = 3p − 2, where p and q are the
number of variables and clauses respectively of the original
cnf-sat instance F .

The forward direction of the equivalence is established by
translating an assignment to a string that is consistent with
the construction described above. Towards the reverse di-
rection, we make the following claim about the structure of
a valid string in the reduced instance.

Claim 1. If there exists a string s such that d(s, v) ≤
3p− 2∀v ∈ S2, then s[2i] 6= s[2i− 1]∀i ∈ [3p− 2].

Proof. For any i ∈ [3p−2] we look at the four strings cor-
responding to it in S2. Then we look at two strings of length
6p−6, which are {00}i−1{00}3p−2−i and {11}i−1{11}3p−2−i.
The first is subsequence of ai and bi, and the second is sub-
sequence of ci and di. These subsequences are also com-
plements of each other, hence any string s has to be at a
distance of 3p− 3 from at least one of them. If s has a dis-
tance at least 3p − 3 with the first, then it is at a distance
at least 3n− 3 with ai and bi, else it is at a distance at least
3p−3 with ci and di. Now, (ai, bi) and (ci, di) differ at only
two positions, 2i − 1 and 2i. In these two positions, one of
the two strings has 00 while the other has 11, so if a string
is to be at a distance of 3p − 2 from both of them, it must
have 10 or 01 in these two positions. Otherwise it will differ
at both positions with one of the strings, which in addition
to the existing Hamming distance of 3p − 3 will result in
a total distance of 3p − 1, which is a contradiction. So, if
d(s, v) ≤ 3p − 2∀v ∈ S2, then s[2i] 6= s[2i − 1]∀i ∈ [3p − 2].
Let us call such a string (i.e. a string that belongs to
{01, 10}6p−4) a ‘well-formed’ string.

Thus, if the reduced instance admits a solution, then it
clearly corresponds to a satisfying assignment. For argu-
ing the reverse direction of the equivalence, it remains to
be shown that this assignment is indeed satisfying. This is
easily checked, and the details are deferred to a full version
due to lack of space.
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We note that Minimax Approval Voting is FPT when
parameterized by the number of votes – the ILP approach
used by [15] can be easily extended to accommodate the
committee size constraint. However, we show that the prob-
lem is unlikely to admit a polynomial kernel even when pa-
rameterized by the number of votes and k.

Theorem 3. Minimax Approval Voting, parameter-
ized by the number of votes n and k, does not admit a poly-
nomial kernel unless CoNP ⊆ NP/Poly.

Proof. We show a polynomial parametric transformation
from Hitting Set parameterized by the number of sets to
Minimax Approval Voting. Since [11] shows kerneliza-
tion hardness for Hitting Set, this rules out polynomial
kernels for Minimax Approval Voting as well.

Consider a Hitting Set instance (U,F , k′), where U is
the universe of elements, F a family of subsets of U , n′ = |F|
and m′ = |U |. Without loss of generality, assume that ev-
ery set Si ∈ F is of the same size l′ – we will later show
that this (seemingly) restricted version of the problem is
equivalent to the original Hitting Set problem. We re-
duce this instance to a Minimax Approval Voting in-
stance (C,V, k, d), where the number of candidates m = m′,
the number of voters n = n′, committee size k = k′ and the
maximum permitted Hamming distance d = k′ + l′ − 1

Let U = {1 . . . n} and let F = {S1, . . . Sm} For each set
Si ∈ F , let vi = S̄i, the characteristic vector of Si. Let
V = {v1 . . . vn} be our vote set.

Claim 2. If (U,F , k′) is a Yes-instance for Hitting
Set, then (C,V, k, d) is a Yes-instance for Minimax Ap-
proval Voting.

Proof. Let S ⊆ U be a valid set of size at most k for
F , and let v be the indicator vector of S. Clearly, v has
exactly k 1s. Also, each vote vi has exactly l′ 1s, at least
one out of which overlaps with a 1 in v. Thus, d(s, si) ≤
k′ + l′ − 1 = d for every si. In other words, (C,V, k, d) is a
Yes-instance for Minimax Approval Voting with v being
a valid consensus.

Claim 3. If (C,V, k, d) is a Yes-instance for Minimax
Approval Voting then (U,F , k′) is a Yes-instance for
Hitting Set.

Proof. Let v be a consensus string for the Minimax Ap-
proval Voting instance (C,V, k, d). We show that the cor-
responding set S = J (v), whose indicator vector is v, is a
valid hitting set for the Hitting Set instance (U,F , k′).

First of all, observe that |S| = k = k′, since v has exactly
k 1s. Also, d(v, vi) ≤ d = k′ + l′ − 1 for every vi, which
means that some 1 in v overlaps with at least one 1 in each
vi. Rephrasing in Hitting Set terminology, S hits at least
one element of every Si, i.e. (U,F , k′) is a Yes-instance for
Hitting Set, with S being a valid hitting set.

To complete our proof, we also need to show that the
general Hitting Set problem is equivalent to a restricted
case where each set of F is of size exactly l. We call this
version of the problem l-Regular Hitting Set, and show
the following.

Claim 4. Every instance of Hitting Set can be turned
into an equivalent instance of Regular Hitting Set.

Proof. Let Si be the largest set in F , and let l = |Si|.
for every other set Sj with size l′, add l− l′ dummy elements
to Sj and to U . Let the modified instance be (U ′,F ′).

Clearly, a hitting set of size k for (U,F) will indeed be
a hitting set for (U ′,F ′). Conversely, consider a hitting set
S′ for (U ′,F ′). If S′ does not contain any of the dummy
elements, then S′ is a hitting set for (U,F) as well. On
the other hand, any dummy element in S′ will hit only one
set from F ′, and hence can be replaced by any other ele-
ment from that set. Thus, any solution for (U ′,F ′) can be
transformed into an equivalent solution for (U,F).

We note that the reduction above also establishes the
W [2]-hardness of the problem when parameterized by k
alone.

We finally turn to two FPT algorithms. The first one is
an algorithm when parameterized by d alone (extending the
approach of [15]). The second algorithm considers the com-
bined parameter n and k. The first algorithm uses a depth-
bounded branching strategy, while the second one uses the
method of color coding.

Algorithm 1: Recursive Procedure MAVd(v, δ)

input : Candidate string v and integer δ
Global variables: Set of voters

V = {v1, v2, . . . , vn}, integer d
output: A string v∗ with maxi∈[n] d(v∗, vi) ≤ d and

d(v∗, v) ≤ δ if it exists, and ‘not found’
otherwise.

1 if δ < 0 return not found;
2 if d(v, vi) > d+ δ for some i ∈ [n] return not found;
3 if d(v, vi) ≤ d for all i ∈ [n] return v;
4 for some i ∈ [n] such that d(v, vi) > d: do
5 P1 = {p | v[p] = 1, vi[p] = 0};
6 P2 = {q | v[q] = 0, vi[q] = 1};
7 for all p ∈ P1 do
8 for all q ∈ P2 do
9 v′ = v;

10 v′[p] = 0;
11 v′[q] = 1;
12 vret =MAVd (v′, δ − 2);
13 If vret 6=not found then return vret;

14 return not found;

We first discuss the FPT algorithm for the parameter d.
The algorithm starts with some suitable string v having k
1’s as the ‘candidate string’. If there is some string vi with
i ∈ [n] that differs from v at more than d positions, then we
attempt to bring the candidate string ‘closer’ to vi. We do
this by removing some selected member of the committee
that the voter corresponding to vi did not vote for, and
replacing him with another member that vi did vote for,
thus maintaining the strength of the committee at k. This
means we change one of the k 1’s in v to a zero, at a position
p where vi[p] = 0, and change one of the 0’s in v to a one, at
a position q where vi[q] = 1. As in the approach used in [15],
our algorithm stops either if the candidate string has moved
too ‘far away’ from the initial string, or if it finds a solution.
The size of the search tree for the recursion can be limited
to O(dd), as shown.
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Theorem 4. Given a set of strings V = {v1, v2, . . . , vn}
and an integer d, Algorithm 1 determines in time O?(dd)
whether there is a string v such that maxi∈[n] d(v, vi) ≤ d
and computes such a v if it exists.

Proof. Running time. The parameter δ is initialized
to d and is decremented by 2 in each step of recursion. The
recursion stops when δ < 0. So the depth of the search tree
is at most d/2. In a single step of recursion, the algorithm
selects a string vi such that d(v, vi) > d. It creates a new
subcase for each pair of positions from P1 and P2 where
vi differs from v. As |P1| + |P2| = d + 1, this results in
a branching of at most ((d + 1)/2)2. Thus the tree size is

bounded from above by ((d+1)/2)2×
d
2 or O(dd). Every step

of the recursion requires time that is polynomial in n and d,
so the total running time is O?(dd).

Correctness. We show that Algorithm 1 finds a string
v such that maxi∈[n] d(v, vi) ≤ d if it exists. We explicitly
show the correctness of only the first step of recursion; the
correctness of the algorithm follows by inductive application
of the same argument. For the initial candidate string, con-
sider an arbitrary string from V. Without loss of generality,
we select v1. Note that v1 must contain at least k − d 1’s,
otherwise it cannot be at a distance of less than d+ 1 from
any string that contains k 1’s. If v1 contains more than k
1’s, we use the first k of these to create a candidate string
v that adopts the first k 1’s of v1 and places 0 at all other
positions. If v1 contains less than k 1’s, then we adopt the
first k − d 1’s into v and add d more 1’s to v at arbitrary
locations. This gives us our initial candidate string.

In the situation that v satisfies maxi∈[n] d(v, vi) ≤ d for
all i ∈ [n], we immediately find the solution, i.e. v. If not,
then there must exist some vi such that d(v, vi) > d. For the
branching, we consider the positions where v and vi differ,
i.e. P1 = {p | v[p] = 1, vi[p] = 0} and P2 = {q | v[q] =
0, vi[q] = 1}. The algorithm successively creates subcases
for every pair of positions p ∈ P1 and q ∈ P2, and creates
a new candidate by altering v to v′ so that v′[p] = 0 and
v′[q] = 1. Such a move is correct if the size of the committee,
i.e. the number of 1’s in v′ remains k and the move brings
the candidate string ‘closer’ to v∗, the solution string. It
is clear that the number of 1’s in the candidate string is
always constant at k. We must show that at least one of the
subcases is a correct move. We know that v∗ differs from
vi in at most d locations. So, for all pairs p and q where
p+ q = d+ 1, at least one pair must try a pair of positions
that bring the candidate string closer to v∗.

Lemma 5 shows that it is correct to omit those branches
where the candidate string v satisfies d(v, vi) > d + δ for
some i ∈ [n].

Claim 5. If there are two strings vi, vj ∈ V such
that d(vi, vj) > 2d, then there is no string v such that
maxi∈[n] d(v, vi) ≤ d.

Proof. Hamming distance follows triangle inequality. So
if given that d(vi, vj) > 2d, then d(vi, v) + d(v, vj) > 2d
for every v. Thus either d(vi, v) > d or d(v, vj) > d (or
both).

This completes the proof for Theorem 4. We now turn
to a randomized algorithm parameterized by n and k. This
based on the classic Color Coding approach introduced in [1].

Theorem 5. Minimax Approval Voting admits a ran-
domized FPT algorithm, parameterized by the number of vot-
ers n and the committee size k.

Proof. Let (C,V := {v1, . . . , vn}, k, d) be an instance of
Minimax Approval Voting. We call a subset X ⊆ C a
consensus committee if X is a valid Minimax Approval
Voting solution; in other words, the weight of X is k and
further,d(X , v) ≤ d for all v ∈ V.

We call a mapping φ : C → [k] a k-coloring of the can-
didate set C. Note that a coloring partitions C into k color
classes, C1 . . . Ck. A coloring φ is a good coloring if there ex-
ists a consensus committee X which picks exactly one can-
didate of each color. Further, we call a consensus committee
X to be nice to a vote vi with respect to a color j if X con-
tains some element of J (vi) ∩ Cj . We define ω(X , vi) to be
the following k-length characteristic vector:

ω(X , vi)[j] =

{
1 if X is nice to vi on color j,
0 otherwise,

and we refer to this as the niceness vector of vi with re-
spect to X .

The algorithm. Assume that we have a good coloring φ.
For every vote vi, we guess a niceness vector ωi. Given such a
guess, our task now is to determine if there exists a consensus
committee Y that respects all of these vectors, that is, if
ωi[j] = 1, then Y picks some candidate in J (vi)∩Cj . This,
however, is easily checked as follows. For every color j, let
Vj be the set of votes vi for which ωi[j] = 1. Note that
Y must pick one candidate from Cj that intersects the sets
J (vi) ∩ Cj for every i ∈ Vj . If the family:

{J (vi) ∩ Cj | i ∈ Vj}

is an intersecting family, then we pick any element in the
common intersection; otherwise it is clear that we must re-
ject this guess as there is no Y that can intersect all sets
while only picking one element from Cj .

By repeating this procedure for all possible guesses for
collections of nice vectors, we ensure that we will find a
valid consensus committee whenever there exists one.

Correctness of the algorithm. Assume that there ex-
ists a consensus committee X of size k. We try sufficiently
many different random colorings to ensure that we find a
coloring that assigns each member of X a unique color.

Now, consider a good coloring φ and a consensus set X .
For a vote vi, let Ni = {φ(ci) | ci ∈ X ∩ J (vi)}, i.e. Ni is
the set of all colors that X is nice on for the vote vi. Our
algorithm explores all possible choices of Ni – in particular,
the algorithm cannot miss Ci induced by a valid consensus
committee. Given the right collection of niceness vectors,
our algorithm finds a consensus committee that respects all
of them if one exists, so while the output of the algorithm
may differ from X , it is an equally valid choice of a consensus
committee.

Running time. We start by guessing a random coloring
φ for C. By standard arguments, we will find a good coloring
with high probability if we try O(ek) different colorings.

Further, we need to guess what colors are nice for each
votes. To get the nice colors right for one vote, this may
take up to 2k guesses in the worst case. Over all the votes,
this adds an (2k)n = 2kn factor to the running time.
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Determining whether a valid consensus exists for a given
guess can be done in O(mnk) time. Thus, the overall run-

ning time of the algorithm is O(ek · 2kn ·mnk) = ckn ·mO(1)

for a suitable choice of c.

Theorem 6. Minimax Approval Voting is in FPT,
parameterized by the number of voters n and the commit-
tee size k.

4. MAV WITH OUTLIERS
In this section, we show the hardness of approximation of

the Minimax Approval Voting with Outliers problem,
and also establish that it is W[2]-hard when parameterized
by s, d and k. In [5], the authors show a randomized reduc-
tion from max-2-sat to Closest to Most Strings, and
used the result in [16] to show that for some ε > 0 there
is no polynomial time (1 + ε)-approximation algorithm for
Closest to Most Strings unless P=NP. In this section,
we adapt their reduction, using a tweak to fix the number
of ones in the output, and a slightly different set of “fixing
strings”, replacing the randomized engine with a determin-
istic one. We now describe the details of our approach.

Theorem 7. For some ε > 0, if there is a polynomial
time (1 + ε)-approximation algorithm for Minimax Ap-
proval Voting with Outliers, then P=NP.

Proof. We give a deterministic reduction from max-2-
sat to Minimax Approval Voting with Outliers with a
fixed k number of 1’s in the output. As input, we take an in-
stance of max-2-sat comprised of q clauses C1, C2, . . . , Cq

and p variables x1, x2, . . . , xp, where each clause is a dis-
junction of two literals appearing as either xi or x̄i for some
i ∈ [p], and r which is the number of clauses to be satisfied.
The output of the reduction will be an instance of Mini-
max Approval Voting with Outliers with a string set
S consisting of q + 2p(q − r + 1) strings of length 2p. Let
l = q − r + 1. Here the 2pl strings are ‘fixing’ strings in-
tended to force a structure in the solutions, while the first q
strings represent an encoding of each clause as follows. For
every clause Cj containing the variables from x1, x2, . . . , xp,
the corresponding string sj = sj(1)sj(2). . .sj(2p), where:

sj(2i− 1)sj(2i) =


01 if Cj contains xi

10 if Cj contains x̄i

00 otherwise

The fixing strings shall be of the form {00, 11}p, or ‘double
strings’. There are l identical copies of a single ‘block’ of
fixing strings. A block Bt is defined as follows. For every
i ∈ [p], we add two strings to the block.

ati = {00}i−111{00}p−i

bti = {11}i−100{11}p−i

Bt =
⋃

i∈[p] {a
t
i, b

t
i}

Thus every block Bt consists of 2p strings of length 2p. All
l = q − r + 1 copies of the block together with the string
encoding of each clause comprise the strings for our instance
of Minimax Approval Voting with Outliers, i.e. S =
B1 ∪B2 ∪ . . . Bl ∪ {s1, s2, . . . , sq}. So | S |= n = q + 2p(q −
r+ 1) and the length of each string is m = 2p. The distance
parameter is set d = p and the number of strings that need
to satify the constraint is s = r + 2pl (i.e. the maximum

number of outliers is q−r). The number of 1’s in the output
string is k = p.

For the forward direction, assume there exists an assign-
ment φ to the variables x1, x2, . . . , xp that satisfies r clauses.
We encode this assignment in a string φ̄ of length 2p as fol-
lows. φ̄ = φ̄(1)φ̄(2) . . . φ̄(2p), where:

φ̄(2i− 1)φ̄(2i) =

{
01 if xi is set to True

10 if xi is set to False

Thus the assignment string φ̄ belongs to {01, 10}p, i.e. it is
‘well-formed’ and has p 1’s. The Hamming distance d(φ̄, w)
for any string w where w is a double string is exactly p, so
d(φ̄, w) ≤ p for every w ∈ B1∪ . . .∪Bl. So the fixing strings
are not outliers. Now, for every clause Cj where j ∈ [q], the
string sj contains exactly 2p−4 0’s for the p−2 variables that
do not appear in Cj . This produces a Hamming distance of
p − 2 from the well-formed φ̄. Of the two variables that do
appear in Cj , at least one must be set to true (or false if
it appears negatively) in the assignment φ if Cj is satisfied
by φ. The string locations for this variable must match
exactly with its encoding in φ̄. So the Hamming distance
caused by the variable that do appear in Cj cannot exceed
2. So for a clause Cj that is satisfied by φ, the distance
d(φ̄, sj) ≤ (p− 2) + 2 = p. Thus the satisfied clauses do not
produce outliers. Since φ satisfies at least r clauses, there
can be at most q − r outliers, which satisfies the conditions
of Minimax Approval Voting with Outliers.

For the backward direction, let ψ be a string that satisfies
d(ψ,w) ≤ n for w ∈ S with a maximum of q−r outliers and
has exactly p 1’s. We first show that ψ must necessarily be
a well-formed string.

Claim 6. ψ belongs to {01, 10}p.

Proof. Assume to the contrary that ∃i such that ψ(2i−
1)ψ(2i) = 00 or 11.

• If ψ(2i − 1)ψ(2i) = 00, consider the string ati =
{00}i−111{00}p−i. At the locations 2i − 1 and 2i,
the Hamming distance is exactly 2. In the remain-
ing locations of ψ there are exactly p 1’s, which cause
a further Hamming distance of p. The total distance
d(ψ, ati) = p + 2. Thus ati is an outlier. However,
S contains l = q − r + 1 copies of ati in the blocks
B1, B2, . . . , Bl. This is a contradiction, as there can
be at most q − r outliers.

• If ψ(2i − 1)ψ(2i) = 11, consider the string bti =
{11}i−100{11}p−i. Again, there is a Hamming dis-
tance of 2 at the locations 2i − 1 and 2i. The re-
maining length of ψ contains exactly p − 2 1’s and
2p − 2 − (p − 2) = p 0’s, which cause a further Ham-
ming distance of p. Thus the total distance is p + 2
and bti is an outlier. However, there are l = q − r + 1
copies of bti in S. This is a contradiction.

So ψ must be a well-formed string, and none of the fixing
strings are the outliers.

There can be a maximum of q − r outliers in the q re-
maining strings, so there must be at least r strings satisfying
d(ψ, p) ≤ p. For these r clause-encoding strings, a Hamming
distance of exactly p−2 is caused by the 2p−4 locations cor-
responding to variables not appearing in the clause. In the
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locations corresponding to the variables that do appear, the
string contains 01 or 10. Note that ψ is well-formed, so the
Hamming distance caused by these locations can be either 2
or 0 for each variable. If both variables cause a distance of 2,
then total distance will be p+ 2 and the string will not sat-
isfy d(ψ, p) ≤ p. So at least one variable location produces
a distance of 0, i.e. it matches with ψ. So if ψ is used as an
assignment vector, setting xi =True if ψ(2i − 1)ψ(2i) = 01
and xi =False if ψ(2i − 1)ψ(2i) = 10, then as such clauses
will be satisfied. As there are at least r such clauses, the
assignment corresponding to ψ satisfies the conditions for
max-2-sat.

This completes the polynomial time reduction from max-
2-sat to Minimax Approval Voting with Outliers. If
there exists an ε > 0 such that there is a polynomial time
(1 + ε)-approximation algorithm for Minimax Approval
Voting with Outliers, then this would also give an ap-
proximation for max-2-sat. However, it has been shown in
[16] that it is NP-hard to compute a a 22/21-approximately
optimal solution for max-2-sat. So for some suitable ε > 0,
Minimax Approval Voting with Outliers cannot have
a (1 + ε)-approximation algorithm unless P=NP.

Theorem 8. For some ε > 0, if there is a polynomial
time (1+ε)-approximation algorithm for Closest to Most
Strings, then P=NP.

Proof. In this reduction from max-2-sat to Closest to
Most Strings we use a similar construct as in Theorem 7,
but must ensure that the reasoning is valid even for the case
where the output string of the reduced instance does not
have exactly k = p 1’s. To accommodate this possibility, we
include two new fixing strings in every block Bt of double
strings. These new strings are simply:

ct = {00}p dt = {11}p

Thus every block Bt now contains 2p + 2 strings of length
2p and the total number of strings in S is q + (2p + 2)l.
The remaining parameters retain their values, so maximum
outliers is q − r and the required Hamming distance from
each string is d = p.

For the forward direction of the reduction, note that both
ct and dt for each value of t ∈ [l] are double strings. So the
encoded assignment string φ̄, which is a well-formed string,
will have a Hamming distance of exactly p from all copies
of the new fixing strings. The remainder of the argument is
identical to that of the forward direction for Theorem 7.

For the backward direction, let ψ be the output string
of the Closest to Most Strings instance. Note that we
cannot yet use Claim 6 to show that ψ is well-formed as that
proof used that fact that the string contained exactly p 1’s.

Claim 7. ψ contains exactly p 1’s.

Proof. Assume to the contrary that ψ contains either
> p or < p 1’s. Then:

• If ψ contains > p 1’s, then ct is an outlier. However,
in this case, every one of the l = q − r + 1 copies of
ct in S is an outlier. Because ψ cannot produce more
than q − r outliers, this is a contradiction.

• If ψ contain < p 1’s, then dt is an outlier. in this case,
every one of the l = q − r + 1 copies of dt in S is an
outlier. But the maximum number of outliers is q− r,
so this is a contradiction.

Thus, ψ must contain exactly p 1’s.

The rest of the argument follows identically from that of
Theorem 7. Thus there exists some ε > 0 such that Closest
to Most Strings does not have a (1 + ε)-approximation
algorithm, unless P=NP.

Note that both of the previous reductions have involved
using string duplicates in the string set S. It is also pos-
sible to reduce an instance of max-2-sat to an equivalent
instance of Closest to Most Strings which does not use
duplicates, thus proving a stronger result. Due to space
constraints, we state the following theorem without proof.

Theorem 9. For some ε > 0, if there is a polynomial
time (1+ε)-approximation algorithm for Closest to Most
Strings (without Duplicates), then P=NP.

Theorem 10. Minimax Approval Voting with Out-
liers is W[1]-hard, even when parameterized by s, d and
k.

Proof. We show a reduction from the k-Clique prob-
lem, parameterized by k.

Starting from a graph G = (V,E). We construct an
election instance E = (C,V, s, k, d), such that E has a k-
consensus if and only if G has a clique of size k. We set s,
the number of voters to satisfy, as s =

(
k
2

)
and d = k − 2.

• For each vertex v in the graph, add a candidate cv.

• Each vote is a bit string of length |V |, where each bit
corresponds to a vertex. For each edge (u1, u2) in the
graph, add a vote ve which sets v[u1] = v[u2] = 1 and
s[i] = 0 everywhere else.

Suppose that G has a clique C of size k, and let x be
the characteristic vector of the vertices in C. Note that
the weight of x is k. A clique of size k contains

(
k
2

)
edges.

Further, for every edge e contained in C, both endpoints of
e are contained in C – thus, d(x, ve) = k − 2. Therefore, x
is a valid consensus vote for E and E is a Yes-instance.

Conversely, assume that E is a Yes-instance and let x be
a valid consensus committee for E . We show that C = J (x)
will induce a clique on the graph G.

Indeed, V contains
(
k
2

)
votes, with Hamming distance d

to x. These votes correspond to edges in G – there are
(
k
2

)
edges within C, hence C forms a clique of size k.

Clique parameterized by the clique size k is a well-known
W[1]-hard problem [12]. The above reduction bounds all the
three parameters, s, d, k in terms of the clique size k in the
original instance – it follows that Minimax Approval Vot-
ing with Outliers is W[1]-hard even when parameterized
by s, d and k together.
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