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ABSTRACT
Universal robotic agents are envisaged to perform a wide
range of manipulation tasks in everyday environments. A
common action observed in many household chores is wip-
ing, such as the absorption of spilled water with a sponge,
skimming breadcrumbs off the dining table, or collecting
shards of a broken mug using a broom. To cope with this
versatility, the agents have to represent the tasks on a high
level of abstraction. In this work, we propose to represent
the medium in wiping tasks (e. g. water, breadcrumbs, or
shards) as generic particle distribution. This representation
enables us to represent wiping tasks as the desired state
change of the particles, which allows the agent to reason
about the effects of wiping motions in a qualitative manner.
Based on this, we develop three prototypical wiping actions
for the generic tasks of absorbing, collecting and skimming.
The Cartesian wiping motions are resolved to joint motions
exploiting the free degree of freedom of the involved tool.
Furthermore, the workspace of the robotic manipulators is
used to reason about the reachability of wiping motions. We
evaluate our methods in simulated scenarios, as well as in a
real experiment with the robotic agent Rollin’ Justin.
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1. INTRODUCTION
Research in controlling robotic agents has for a long time

been dominated by the study of robot actions that are in-
spired by the seminal blocks world problem that was intro-
duced with the Shakey system [24]. Even today most re-
search efforts that realize activity on autonomous robots do
so in demonstrating scenarios that mostly include only very
simple fetch-and-place tasks. The fetch-and-place actions
considered in those research efforts so far are very simple
in nature. They can be considered as actions that have dis-
crete instantaneous effects. For the execution of the task the
only constraint to be satisfied is to find collision free paths
to reach, pick up, and transfer the object to the destination.
Consequently, robotic agents that reason about these ac-
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Figure 1: Illustration of the robotic agent Rollin’
Justin skimming the windshield of a car and scrub-
bing the hood with a sponge.

tions can abstract away from how actions are executed and
model them using relatively simple action models consisting
of preconditions and effects [10].

In contrast, the research roadmaps for autonomous robotic
agents [4, 23] envisage robotic agents manufacture products
in close physical cooperation with their human co-workers or
in the more distant future as helpers that enable old and dis-
abled citizens to live their lives more independently. Such
robotic agents would have to be capable of taking over a
substantial part of the human daily household chores.

Cakmak et al. [3] collected and classified the manipulation
actions that characterize the human household chores based
on their semantic similarity and identified that almost half
of them are based on wiping of surfaces located in rooms,
on furniture, or other objects. Most of these tasks are re-
lated to cleaning, such as dusting furniture with a feather
duster, sweeping breadcrumbs from the kitchen countertop,
or collecting shards of a broken mug with a broom.

Compared to fetch-and-place tasks, wiping tasks demand
enormously rich and complex actions. Depending on how
the wiping is done in terms of force applications and motions
the wiping can remove sticky dirt, dry a wet surface, or
paint an area. This means that the same action can produce
very different effects depending on how it is executed. In
order to perform the respective tasks successfully the robotic
agent must carefully select the motion and force parameters
in a continuous parameter space. Moreover, the successful
execution of wiping tasks requires a substantial amount of
geometric reasoning as the purpose of wiping might be the
collection, the spreading, or the elimination of particles.
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Figure 2: Overview of the proposed framework.

In our earlier work, [20] we proposed to classify wiping
tasks based on the set of parameters describing the semantic
relation between tools and the environment. In particular,
we classify wiping tasks based on the relation between the
tool, the surface, and the medium to be manipulated. The
tool orientation, and the direction of motion are thereby cru-
cial aspects for the task performance. For example, cleaning
the body of a car can be solved by repeatedly moving a
sponge in random orientations and directions along the car
surface, while skimming snow from a windshield is only suc-
cessfully if each wiping motion is directed towards the edge
of the window, having the tool properly aligned as it is il-
lustrated inf Fig. 1.

In this paper, we investigate the reasoning and action ex-
ecution problems that enable robotic agents to successfully
carry out abstractly specified wiping tasks. We propose to
represent wiping tasks on a high level of abstraction and
develop generalized action execution mechanisms that are
able to ground these high-level task descriptions to low-level
robotic control programs. Our method constitutes an effect-
oriented reasoning approach to manipulate the medium in
wiping tasks, i. e. liquids or particles, in a generalized man-
ner. Our contribution include (i) a qualitative representa-
tion of the medium in wiping tasks based on a particle dis-
tribution; (ii) an effect-oriented approach to reason about
the desired effects of wiping tasks, i. e. the state change of
the medium, by means of Semantic Directed Graphs (SDG);
(iii) a knowledge-enabled path following approach to resolve
Cartesian tool motions into joint motions of the agent; and
(iv) an extended approach that integrates reasoning about
the reachability of the agent to solve wiping tasks in wider
areas by utilizing capability maps. In conclusion, we enable
robotic agents to reason about the effect of wiping tasks on
a high level of abstraction and enable the agents to execute
the matching goal oriented joint motions for the tasks of
absorbing, collecting and skimming. The methods are eval-
uated in three simulated scenarios, where the target surface
is defined by (a) a chopping board, (b) the surface of a ta-
ble, and (c) the windshield of a car. Additionally, we show
experiment (a) in a real world setting with the humanoid
robot Rollin’ Justin successfully collecting breadcrumbs on
a chopping board with a sponge.

An overview of the proposed framework is provided in
Fig. 2. A particle based medium representation serves as
the basis of our reasoning methods (Sec. 3). It is used to de-
scribe the desired state change, i. e. the semantic goal states
and derive Cartesian tool motions for the prototypical wip-
ing tasks investigated (Sec. 4). This Cartesian motions are
resolved to whole-body joint motions (including the mobile
base of the agent) by exploiting the free Degrees of Freedom
(DOF) of the involved tool (Sec. 5).

2. RELATED WORK
Automated manipulation planning with a universal robotic

agent in domestic environments has ever since been a ma-
jor goal in robotics research, as well as in research on au-
tonomous agents. Recently, this field has regained momen-
tum thanks to affordable and safe light weight robots such
as the LBR III [14]. These compliant manipulators enable
a robotic agent to get in deliberate soft contact with their
environment, which is a key element for many manipulation
tasks, including wiping of surfaces.

Especially cleaning related wiping tasks have been inves-
tigated in detail lately. Urbanek et al. [30] demonstrated
how machine learning can be used to teach a robot differ-
ent movement primitives by demonstration in the context
of wiping a table. Do et al. [7] solve the inverse problem of
predicting appropriate action parameters by learning from
experience during wiping tasks. Vanthienen et al. [31] de-
scribe table wiping tasks as a set of constraints with the
iTaSC framework. Okada et al. [26, 25] apply an inverse-
kinematics-based programming approach to compute whole-
body motions for the tasks of sweeping the floor, vacuuming
the floor, and washing the dishes with a humanoid robot.
Lana et al. [28] represent robotic manipulation tasks in an al-
gebraic form, which incorporates poses, velocities and forces
in a simulated window cleaning task. In robotics, wiping
tasks are often investigated from a control theoretic point
of view. Ortenzi et al. [27] propose to exploit the environ-
ment contact constraints of wiping tasks in the operational
space, to decouple the motion of the robotic agent from the
applied force. Schindlbeck and Haddadin [29] utilize task-
energy tanks to react safely upon contact loss.

The task of wiping a surface is often considered as a cov-
erage path planning problem [18], where an agent has to find
a path (i. e. for a cleaning device) connecting all nodes of a
graph in a time- or effort-optimal way. Gabriely and Rimon
[9] consider the coverage problem arising for a mobile robot
such as a autonomous lawn mower. They propose to sub-
divide the search space into a grid and apply variations of
the Spanning Tree Covering (STC) algorithm to cover the
area. Hess et al. [13] describe an approach to autonomously
compute cleaning trajectories for redundant robotic manip-
ulators guiding a sponge on 3d surfaces. They utilize a vari-
ation of the Traveling Salesman Problem (TSP) and resolve
the joint motions of the robotic manipulator by nulls-space
optimization in a discretized Jacobian null-space along the
Cartesian path (see [15]). While the work of Hess et al. [13]
is most related to our work, it does not integrate different
semantic goals and is therefore only applicable to undirected
tasks, such as vacuuming or dusting.

The approaches listed so far mainly focus on the physi-
cal part of the problem, while mainly ignoring the semantic
meaning of the motion. In contrast, Kunze et al. [17] reason
about the semantic effect of the tool interacting with the
medium based on a simplified process model. The authors
simulate the effect of a sponge contacting liquids, namely the
absorption of the liquid. In our earlier work [22], we utilized
a knowledge-based approach to formulate a window cleaning
task on a high level of abstraction. The approach combines
the desired semantic effect of the task with a concrete geo-
metric process model, which integrates the parameterization
of the low-level control program of the agent. However, the
Cartesian tool motions are pre-defined properties of the ma-
nipulated objects (e. g. the window pane). Consequently, the

1007



agent cannot adapt to new situations in case of unforeseen
obstacles. In this work we extend this approach by reason-
ing autonomously about the appropriate tool motions w. r. t.
the desired semantic effect and the environmental state.

3. WIPING EFFECT REPRESENTATION
This work is based on our classification of compliant ma-

nipulation tasks [20]. The classification is based on the se-
mantic contact situation between manipulated objects and
the environment. Wiping tasks are thereby represented based
on the geometric relation of the tool, the surface and the
medium to be manipulated. This taxonomy will be used in
this work to develop an abstract representation of wiping
motions to be executed by a robotic agent. In particular,
we will investigate the removal actions absorbing, collecting,
and skimming the medium as illustrated in Fig. 3.

The medium in wiping tasks, as defined in [20], is rep-
resentative for arbitrary liquids or particles with different
properties. To reason about wiping motions in a general-
ized form, a medium representation has to incorporate the
properties of arbitrary media. For example, the medium in
absorption tasks may be a variation of dust or dirt or a liq-
uid. An example for the medium in skimming tasks is water
or detergent on a window, or snow on a windshield. Shards
of a broken mug, leaves, or rubble are exemplary for collect-
ing tasks. To incorporate these different types of media, we
propose a qualitative model based on a particle distribution
estimation on a planar target surface

P =
{

(x1, y1), (x2, y2), . . . , (xn, yn) |xi, yi ∈ R∧
xmin ≤ xi ≤ xmax ∧ ymin ≤ yi ≤ ymax

}
,

(1)

where N particles (xi, yi) are estimated within the bound-
aries of the target surface (xmin, xmax, ymin, ymax). An
example for such a distribution is provided in Fig. 4 which
resembles a kitchen scenario with bread crumbs on a chop-
ping board. In most real world scenario, the dirt distribution
can be provided by a visual perception system if the parti-
cles are big enough to be perceived. However, especially dust
and dirt is very hard to perceive and the real distribution
on the surface can hardly be modeled. Instead, we assume
a unified distribution in this case.

The particle distribution is utilized to simulate the desired
semantic state change St0 → Sg provided as desired effect
in PDDL syntax [10], e. g. (collected breadcrumbs chop-
ping board). The respective estimated change of the particle
distribution P t0 → P g is visualized in Fig. 4. The contact
model considers the exact CAD data of the tool and the po-

absorbing collecting skiming

Figure 3: The three prototypical removal actions
identified in the classification of wiping tasks. The
initial state of the medium is pictured as solid cir-
cles, the desired state as dashed circles.

Figure 4: Change estimation of the particle distri-
bution in contact with the sponge during wiping.

sition of each particle. Depending on the tool type and the
properties of the medium (i. e. liquid or solid particles), the
particles react with different effects upon contact. For ex-
ample, if a sponge is simulated to wipe a liquid, the resulting
effect is the absorption of the liquid, which is implemented
as a delete operation. In case of solid particles, the contact
with the sponge moves the particles in parallel to the direc-
tion of motion. We use this behavior for the collect and the
skim action. The state change of the particle distribution
enable the agent to qualitatively reason about the effect of
its motions [8], and subsequently the task performance used
to evaluate our methods in Sec. 6.

4. REASONING WIPING MOTIONS WITH
SEMANTIC DIRECTED GRAPHS

Wiping tasks can be considered as a coverage path plan-
ning problem. The removal actions to be investigated in
this paper have to cover the entire particle distribution and
simultaneously satisfy the semantic goal state. To achieve
this, we utilize Semantic Directed Graphs (SDGs)

SDG = f(P , Sg, Gs), (2)

which incorporate the coverage problem for the particle dis-
tribution P , the semantic goal state Sg of the respective ac-
tion, and the geometric state Gs of the environment. SDGs
define a graph structure projected on the planar target sur-
face to be wiped, where

• each node ni represents a waypoint of the Cartesian
tool motion w. r. t. the Tool Center Point (TCP),

• the edge (ni, ni+1) in between two nodes represents the
interpolated tool motion in contact with the surface.

The surface coverage, i. e. the node distribution, is thereby
dependent on the current state of the geometric environment
Gs, which assembles the volumetric model for geometric
planning of wiping motions. Accordingly, a collision avoid-
ance strategy based on a collision sphere model is utilized
to explore the target surface as visualized in Fig. 5. This
sphere is of variable diameter ds = ||Daoe||, where Daoe is
the dimension of the area of effect of the tool. We do not
consider the full extend of the tool, since this might be much
bigger than the actual required space. For example. vacu-
uming under a bed requires to move the nozzle of the tool to
the desired goal region. Although the vacuum cleaner does
not fit under the bed, the nozzle is clear to reach the dust.
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Figure 6: The coverage strategies utilized to explore the target surface.

We have investigated three different coverage strategies to
distribute the initial set of graph nodes, namely a discretized
grid (GRID), Rapidly Exploring Random Trees (RRT) [19],
and a Kernel Density Estimation (KDE), as illustrated in
Fig. 6, where red dots mark the nodes of the graph. The
coverage strategies are compared below.

Discretized Grid: The first coverage strategy consti-
tutes a simple grid heuristic within the bounds of the target
area. The radius, rs = ds/2, of the collision sphere is used
to calculate the grid resolution, given the dimension of the
target surface. This coverage strategy is uninformed and
can also be applied if no prior knowledge on the particle
distribution is available.

Rapidly Exploring Random Trees: RRTs [19] are a
well established generic method in research on path plan-
ning and exploration. In a nutshell, the algorithm samples
a random configuration qrand in the free space C, calculates
the nearest neighbor qnear, and extends the tree starting
from this configuration towards qnew, which incorporates
the maximal expansion length qdelta. For our approach
q ∈ R2 and qdelta is defined by the radius rs. As the al-
gorithm is biased to explore uncovered regions, it is predes-
tined to generate the initial nodes for wiping tasks. However,
RRTs do not necessarily yield goal oriented paths w. r. t. the
desired semantic goal, especially considering the skim action.
Therefore, we do not use the tree developed structure to de-
rive wiping motions, but only the nodes that were created
during the expansion.

Figure 5: An exemplary geometric state Gs. The
collision sphere is utilized to verify the SDG nodes
in a grid distribution, where green is valid and red
in collision.

Kernel Density Estimation: As a third strategy, we
apply a Gaussian KDE to estimate the regions with high
particle probability within the particle distribution P :

K(x) =
1

N

N∑
i=1

e−||P i−x||2/h2

(3)

where h is the bandwidth of the kernels. The multivariate
KDE is visualized as a contour plot on the left in Fig. 6.
The resulting continuous representation is used to select the
M most significant peaks. This approach is most valuable
if prior knowledge about the distribution is available, e. g.
perceived by a vision system. The nodes are naturally placed
at the position with the highest effect.

The calculated nodes ni serve as the starting point to
grow SDGs with different semantic goals Sg. As the cov-
erage strategy may influence the task performance, we will
evaluate the execution time and task performance of the re-
sulting wiping motions in Sec. 6. In the following we will
use the distribution generated by the KDE to outline the
graph generation for the three removal actions.

Every wiping action can be described as the desired state
change of the medium in an abstract form. We represent
these state changes as constraints for the set describing the
goal particle distribution P g, as listed in (4), (5), and (6).
For example, the goal state of absorbing is to remove all
particles from the surface, by simply getting in contact with
each particle to trigger a delete operation. Collecting and
skimming, however, require directed tool motions to have
the medium moved towards a certain goal area (collect),
or moved from the edge of the surface (skim), respectively.
The geometric process models of these actions have to cor-
respond to this state change, respectively the desired effect
to the particle distribution P as illustrated in Fig. 7. Based
on our previous investigations [20], these process models are
designed in accordance with the tool, the surface, and the
medium to be manipulated as hand crafted Cartesian task
motions are hardly applicable in most of the cases. For
example, absorbing dust from a sideboard using a feather
duster may be represented as a set of Cartesian straight line
motions along the sideboard surface, however, if it is ob-
structed with obstacles, e. g. a television, flowers, and books,
these simple representation is not anymore applicable. Hav-
ing generated, instead of a hand crafted task space paths one
can overcome this issue. To this end, we implement three
prototypical strategies to ground the semantic actions corre-
sponding to the three investigated semantic goal states Sg,
i. e. (absorbed ?m - medium ?s - surface), (collected ?m -
medium ?s - surface), (skimmed ?m - medium ?s - surface).
Accordingly, SDGs embody one of the following actions.
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Figure 7: SDGs for the three prototypical removal actions absorb, collect, and skim.

Absorb: The first action to be investigated is the absorb
action, as it occurs e. g. in vacuuming, dusting, or soaking
up water with a sponge. The effect to the particles (i. e.
the absorption) is independent of the direction of motion, as
long as the entire region is covered by the tool at least once
to remove all particles, such that

P g = ∅. (4)

A possible solution to this issue is the Traveling Sales Per-
son (TSP) algorithm. Hess et al. [13] showed that this is a
performant approach to solve unconstrained wiping tasks in
a generalized way. We apply a variation of the TSP to ab-
sorbing, as seen in Fig. 7. The outcome is a natural curved
motion covering all nodes of the graph.

Collect: Collecting the medium constitutes the second
removal action. The particles are modeled to be pushed
upon contact. The desired goal state Sg can be geometrically
represented as a single goal region on the target surface.
This region is defined by an additional node ng added to
the SDG (yellow dot). The goal is currently given to the
robotic agent by the operator but may be inferred from the
current world state in future. All branches of the graph have
to be directed towards this single goal node, such that

P g =
{

(x1, y1), (x2, y2), . . . , (xn, yn) |xi, yi ∈ R∧
||(ng,x, ng,y)− (xi, yi)|| ≤ rs

}
.

(5)

To do so, we implement a Minimum Spanning Tree (MST)
[11] for a single root node. The distance between nodes
serves as cost function with a maximum connection length
lmax = ds.

Skim: The third SDG strategy is designed to solve arbi-
trary skimming tasks. In principle, skimming can be related
to collecting. The particles are pushed away upon contact
with the tool. The semantic goal Sg of the action corre-
sponds to a geometric state where all particles are pushed
off the target surface, such that

P g =
{

(x1, y1), (x2, y2), . . . , (xn, yn) |xi, yi ∈ R∧
(xmin > xi ∨ xi > xmax ∨ ymin > yi ∨ yi > ymax)

}
.

(6)

We implement this action as a collecting action with multi-
ple goals, i. e. multiple MSTs. These goals are represented
by multiple virtual goal nodes equally distributed along the
edges of the target surface. Depending on the target object,
only a subset of the available edges may be used. In the
scenario at hand, only the edge parallel to the table edge is
a valid goal region (right in Fig. 7). As a result, multiple
trees expand towards the upper edge of the surface. Each
tree forms thereby a MST w. r. t. the closest goal node.

5. RESOLVING WHOLE-BODY WIPING
MOTIONS FOR A ROBOTIC AGENT

So far, we have discussed the problem of wiping only from
a Cartesian point of view. In particular, SDGs only con-
sider translational paths of a spherical body along the target
surface w. r. t. a desired semantic goal. This is only a first
estimate for the feasibility of the action. The joint state of
the robotic agent, as well as the orientation of the tool are
yet to be integrated into the reasoning process. The highly
redundant robotic agent is able to resolve the Cartesian tool
motions in manifold ways, where some configurations result
in local minima, while others allow to follow the desired
path. A similar problem is observed for the tool orientation.
In some cases it is better to rotate the tool to obtain a better
reachability in favor of a decreasing task performance, i. e. a
poorer cleaning result. These issues are discussed in details
in the following sub-sections.

5.1 Generate Joint Motions
The branches of the SDG represent Cartesian tool motions

that serve as the basis for the joint motions of the agent.
The underlying problem to resolve a Cartesian path into
joint motions is formulated as path following problem. For
each Cartesian pose x on a Cartesian path X, the agent has
to find a joint configuration q, respectively q̇

q̇ = J†ẋ + (I − J†J)q̇0 (7)

where J† is the generalized inverse of the Jacobian matrix
(e. g. the Moore-Penrose pseudoinverse [2]). The first term
on the right minimizes the norm of the joint distance and
the second term exploits the redundancy of the robotic agent
to satisfy secondary criteria, such as collision and singular-
ity avoidance. For instance, the joint velocity q̇ and the
joint acceleration q̈ must not exceed the limits of the robotic
manipulators and the resulting joint path Q must not col-
lide with obstacles in the environment nor the agent itself.
This problem is especially challenging for highly redundant
robotic manipulators with a high number of DOF, such as
the robotic agent Rollin’ Justin [1].

A possible solution to this problem has been proposed
by Konietschke and Hirzinger [16]. They utilize an inverse
kinematics solver based on non-linear optimization. The
algorithm enables Rollin’ Justin to track arbitrary Carte-
sian trajectories on-line. The algorithm does not consider
collisions with the environment, nor with the agent itself.
Moreover, since it is based on local optimization techniques,
it might diverge towards local minima, i. e. singularities in
the joint space. A deterministic path following approach
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Figure 8: Initially, each node is directed towards the
next node in the graph. If this pose is in collision
(left), or unreachable, e. g. due to joint limitations
(right), the free DOF of the tool are exploited.

was proposed by Huaman and Stilman [15]. They propose a
resolution complete solution that exploits the redundancy in
discretized Jacobian null-space of robotic manipulators. The
algorithm implements a breadth-first backwards search pro-
cedure when encountering local minimas or obstacles in the
environment. Compared to the former method, the draw-
back of this solution is the high computation time. Both
methods try to exactly follow the Cartesian path, where all
six dimension (i. e. three translational dimension and three
rotational dimension) of the task are considered. This is
not necessarily mandatory for wiping tasks. For example, a
sponge can be rotated w. r. t. the normal of the target sur-
face, without decreasing the area of effect. On the other
hand, a window wiper has to be moved orthogonal to the
wiper blade in order to achieve the desired effect, but it is
allowed be rotated along the main axis of the blade, up to
a certain degree. To this end, we propose a path following
method that is aware of the free tool DOF available in the
Cartesian space. Furthermore, we propose to exploit local
path following methods whenever possible, and utilize global
search-based methods only if no other alternative is feasible
to decrease the overall planning time.

The sequence in which the SDG branches are processed
depends on the wiping action. The absorb motion is unam-
biguous since it has only one branch to follow from start to
end. For each branch, in the collect and skim actions, the
Cartesian space is resolved iteratively starting from a leaf
node and expanding backward to the branch’s root node.
Initially, the orientation of the nodes ni is directed towards
the next node ni+1 in the branch. The resulting pose, i. e.
the translation and rotation of the node, is used as initial hy-
pothesis for the goal pose of the tool (see Fig. 8). The edge in
between the nodes is interpolated to resolve the path follow-
ing task outlined in (7). We apply the local path following
method described in [16], with additional checks for collision
between the agent and the environment. Ideally, all poses
are reachable and collision free so that the agent can manip-
ulate the tool accordingly. The default orientation xgoal,0 is
most effective w. r. t. the manipulation of the medium, i. e.
the particle distribution. However, in a cluttered environ-
ment it is likely that the edge between two nodes cannot be
tracked without collision, or the robotic agent falling into a
local minima. In this case we backtrack to the initial pose
xstart, select an alternative goal pose xgoal w. r. t. the free
DOF of the tool, and repeat the path following task. The
procedure is outlined in Algorithm 1.

The procedure is repeated until all alternative combina-
tions in the discretized search space of the free DOF are eval-

Algorithm 1: PathFollowing(qni
, ni+1, δ)

Input: The initial joint configuration qni
, the goal

node ni+1, and the step-size δ
Output: A continous joint path Q

xstart ← CalculateToolPose(qni
, x−1

grasp)

foreach xgoal in IterateFreeDOF(ni+1) do
Q← List()
X ← Interpolate(xstart, xgoal, δ)
foreach xi in X do

xeef,i ← xi · xgrasp

qi ← FindIK(xeef,i)
if IsValid(qi) then

Q[i]← qi

else
break

if Length(Q) = Length(X) then
return Q

uated. If none is successful, the path that had the largest
part of it solved by the local method is selected to be solved
using the global method described in [15], which is guaran-
teed to find a path if one exists (given enough time). If no
feasible inverse kinematics solution is found at all, the agent
abandons the node and moves on to the remaining nodes of
the branch. Another solution to this issue would be to alter
the Cartesian graph at this point until it can be resolved by
the agent, e. g. by displacing the goal node or changing the
curvature of the graph edge.

5.2 Extended Semantic Directed Graphs
Up to this point, we have considered wiping tasks as glob-

ally realizable in terms of reachability, albeit it is quite com-
mon for wiping tasks to cover larger regions, which may
be unreachable for a static manipulator. For example, if
the agent is commanded to clean a whole table surface, the
larger task space requires to move the mobile base. A mo-
bile robotic agent is able to reposition itself to overcome this
issue and execute tasks in extended areas. We incorporate
this by utilizing extended Semantic Directed Graphs (eSDG),
which augment the graph nodes ni with reachability infor-
mation to reposition the base of the robotic agent.

One approach to position a robotic manipulator optimally
w. r. t. the reachability of a certain task is the use of capa-
bility maps [32]. We have already utilized capability maps
to initially optimize the base position of a robotic agent
in front of a windowpane, in order to clean it [22]. While
this provides a solution for the initial positioning problem,
the base motions during the task execution are handcrafted.
We incorporate the reachability information for single graph
nodes in eSDGs by utilizing capability maps. This way, we
enable the agent to optimize its base positions for sub-graphs
of eSDGs, respectively the underlying particle distribution.
Capability maps represent the workspace of robotic manip-
ulators in a discretized grid. For each voxel in the grid, the
reachability index r = R

N
is computed, where N is the max-

imum number of hypothetically reachable positions, and R
the actual reachable positions [32].

The sub-graphs of eSDGs, here called cluster, are com-
puted according to Algorithm 2. Initially, all nodes are as-
sociated to one cluster C. The agent computes the base
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Figure 9: The eSDG collect graph consists of three
clusters. As the goal is located on the right (yellow
node), the clusters on the left are resolved first.

position by means of the capability maps in order to reach
all nodes in the cluster. For every node ni, the reachability
index is obtained for all the available alternative poses of the
end-effector xeef,i = xni ·xgrasp. If the mean reachability for
these poses is higher than 0.5 rmax, the node is considered as
reachable [22]. If all nodes are reachable, the cluster and the
corresponding base position is stored. If a sub-set of nodes
is unreachable the cluster is split into two new clusters. This
is done using the K-Means algorithm with K = 2 and the
two centers initialized as the centers of the reachable, and
unreachable nodes, respectively. This approach yields large
connected areas instead of smaller scattered regions. The
algorithm is recursively executed.

The clusters are considered during the reasoning process
of the wiping action. Each cluster, resembles the strategy
of the main graph, i. e. absorbing, collecting and skimming.
The clusters for the absorb action can be executed indepen-
dently. Collecting requires to align the clusters towards the
goal node of the eSDG. Each sub-graph implements the col-
lect strategy with an intermediate goal. For skimming, the
cluster on the edge of the target surface may also be con-
sidered independently. If the cluster is not connected to the
edge of the target surface, the skimming paths are directed
to the closest cluster with a connection to the surface edge.
We utilize an A* algorithm [12] to navigate between the base
positions of the clusters. As an example, the eSDG collect
strategy is visualized in Fig. 9.

6. EVALUATION AND CONCLUSION
We evaluate the proposed methods in three different sce-

narios. Scenario I constitutes the chopping board scenario
illustrated in Fig. 4. This scenario is executed by the hu-
manoid robotic agent Rollin’ Justin as illustrated in Fig. 10.
The proposed reasoning methods command a whole-body
impedance control framework [6] which enables the agent to
compliantly interact with the environment. Besides the pure
motion aspect discussed in this work, we have conducted de-
tailed research efforts on the knowledge-based parameteriza-
tion of compliant contact behavior [22], [21]. Among others,
the desired Cartesian force, the Cartesian stiffness and the
damping are parameterized according to the requirements
of the tool, the surface and the manipulated medium.

For scenario II, we assume the same environment without
the chopping board, where the particles are distributed on
the entire table surface as shown in Fig. 9. Scenario III is
a variation of the car cleaning example visualized in Fig. 1,

Algorithm 2: ExtendSDG(C, eSDG)

Input: The initial cluster C, and the eSDG structure
Output: The eSDG structure, including a list of

clusters C, and their base positions xbase

xbase ← OptimizeBasePose(C)
R,U ← List()
foreach ni in C do

ri ← CalculateReachability(ni, xgrasp)
if ri >= 0.5 rmax

1 then
R[i]← ni

else
U [i]← ni

if U = ∅ then
eSDG.append([C, xbase])

else
foreach Ci in KMeans(C, Centers(R, U)) do

eSDG← ExtendSDG(Ci, eSDG)

return eSDG

where we approximate a planar target surface aligned with
the windshield. In all scenarios the agent manipulates the
sponge illustrated in Fig. 4 to obtain comparable results. We
utilize the eSDG approach to incorporate the optimization
of the base position for all scenarios. We evaluate the three
coverage strategies (i. e. GRID, RRT, KDE), paired with the
three removal actions (i. e. absorb, collect, skim), w. r. t. the
traveled Cartesian distance during contact, the computation
time, the execution time, and the task performance. The
calculation time includes the node distribution, the cluster
computation, and the path following. For all steps the colli-
sion check time using OpenRAVE [5] is included. The execu-
tion time is based on the assumption of a maximum velocity
of 1 rad/s joint speed, and a maximum joint acceleration of
2 rad/s2. The performance measurement is conducted ac-
cording to the constraint definitions (4), (5), and (6). The
metric for the absorb action is the number of deleted parti-
cles, the collect action is evaluated based on the number of
particles within the radius rs around the goal node, and the
metric for the skim action is the number of particles pushed
outside the boundaries of the surface area. All numbers are
averaged over five trials with different particle distributions.
The results are listed in Table 1. A video of the task execu-
tions is available at https://youtu.be/ZA2U9upkrjo.

In the lesser obstructed chopping board scenario, as well
as in the windshield scenario, the KDE coverage strategy
mainly outperforms the other two methods w. r. t. the task
performance. In general, this indicates that the KDE ap-
proach is favorable for tasks with a detailed model of the
medium. However, the KDE strategy is noticeably biased
by the obstacles in the table scenario, which results in many
collisions and unreachable, i. e. unconnectable nodes, which
is also reflected by the poorly developed path lengths. The
GRID heuristic and the RRT coverage strategy perform sim-
ilarly good for most of the cases, where the GRID strategy
generates reproducible motions independent of the particle
estimation or probabilistic effects.

In general, the proposed particle distribution is a suitable
representation to estimate the outcome of wiping motions in
compliant contact. The task execution illustrated in Fig. 10
shows that the outcome in a real environment matches the
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Table 1: Results for the three scenarios Chopping Board, Table, and Windshield

Chopping Board Table Windshield

GRID RRT KDE GRID RRT KDE GRID RRT KDE

Absorb

Cart. dist. [m] 1.52 1.41 1.90 4.34 4.10 3.24 4.44 4.84 4.69
comp. time [s] 45.96 57.12 62.00 144.47 312.45 169.92 314.04 423.21 417.66
exec. time [s] 18.01 25.92 27.71 41.30 66.96 52.485 77.59 111.90 66.11
performance [%] 84.25 85.00 95.75 77.00 79.50 70.50 90.13 90.50 91.00

Collect

Cart. dist. [m] 1.54 1.45 1.90 3.68 3.60 2.92 4.97 4.76 4.22
comp. time [s] 69.89 68.48 72.24 110.92 161.60 270.56 885.45 262.55 428.05
exec. time [s] 16.17 32.42 43.28 65.71 83.36 62.14 112.47 116.26 97.56
performance [%] 86.50 86.75 90.50 70.25 69.25 41.75 48.50 39.25 62.75

Skim

Cart. dist. [m] 1.81 1.62 2.01 5.48 4.95 3.75 5.58 5.65 5.89
comp. time [s] 107.17 44.25 90.57 211.14 260.34 255.58 325.97 212.34 199.03
exec. time [s] 32.11 26.51 45.81 113.37 122.76 102.48 108.18 103.29 96.03
performance [%] 88.00 80.25 97.00 71.75 66.50 53.00 94.50 88.50 88.50

Figure 10: The robotic agent Rollin’ Justin accomplishing the collect task in the chopping board scenario.
The outcome is similar to the prediction obtained with the particle distribution representation.

expectations of the simulated behavior of the particles for
small grain dirt particles. It is therefore applicable to infer
the effect of wiping motions generated with the different
coverage strategies and measure the task performance w. r. t.
the constraint definition for the three removal actions. In
conclusion, our approach enables a robotic agent to reason
about the task performance of wiping actions as it is aware
of the desired state change of the particle distribution. This
allows to decide for the most effective strategy to clean a
surface given a certain problem instance.

The task performance for a specific scenario is highly de-
pendent on the selected coverage strategy. While this is
a drawback for onetime tasks, this observation can be ex-
ploited to improve recurring tasks, e. g. industrial manufac-
turing tasks, such as polishing the surface of a car. These
tasks can be autonomously optimized w. r. t. the execution
time by iterating over the available coverage strategies. More-
over, the agent can continuously improve on the task per-
formance by integrating episodic memories of previous ex-
ecutions into the reasoning process. For example, the task
performance of previous trials can be used to benchmark
future trials with alternative task parameters, e. g. a differ-
ent tool alignment or a different force profile. The generic
approach can be utilized to solve previously unseen wiping
tasks, only given the desired semantic goal and the geomet-
ric properties of the tool and the environment. To this end,
we believe that our approach constitutes a valuable addition
for autonomous robotic agents.

Building on our findings, we plan to extend our research
on compliant manipulation towards the closure of the se-
mantic feedback loop based on visual and haptic perception
and the integration of an appropriate uncertainty model to

incorporate bad contact situations. In the case of wiping
tasks, this will allow the agent to reason about the real effect
of its actions and the resulting task performance, update the
qualitative medium representation, and schedule additional
wiping motions to improve the cleaning result.

7. SUMMARY
We described a qualitative reasoning approach to solve

everyday wiping tasks with a robotic agent on a high level
of abstraction. We proposed (i) a qualitative representation
of the medium in wiping tasks (ii) in combination with Se-
mantic Directed Graphs (SDG) which enable the agent to
plan Cartesian task motions w. r. t. the desired semantic goal
state, i. e. the state change of the particle distribution. Fur-
thermore, we proposed (iii) a path following method that
is aware of the free DOF of the tool and the redundant
joint space of the agent to allow for a robust task execution.
Eventually, (iv) we integrated reachability information into
the reasoning process to extend our approach towards wide
area tasks. We have shown that our approach is applicable
to various tasks, i. e. absorbing, collecting, and skimming, in
three different scenarios in simulation, as well as in a real
experiment with the humanoid robotic agent Rollin’ Justin.
The robotic agent experiment proves that our qualitative
representation matches the effects of the real world.
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