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ABSTRACT
Humans are often able to generalize knowledge learned from
a single exemplar. In this paper, we present a novel inte-
gration of mental simulation and analogical generalization
algorithms into a cognitive robotic architecture that enables
a similarly rudimentary generalization capability in robots.
Specifically, we show how a robot can generate variations
of a given scenario and then use the results of those new
scenarios run in a physics simulator to generate generalized
action scripts using analogical mappings. The generalized
action scripts then allow the robot to perform the originally
learned activity in a wider range of scenarios with different
types of objects without the need for additional exploration
or practice. In a proof-of-concept demonstration we show
how the robot can generalize from a previously learned pick-
and-place action performed with a single arm on an object
with a handle to a pick-and-place action of a cylindrical ob-
ject with no handle with two arms.

Keywords
analogical generalization, action learning, robotic architec-
ture, mental simulation

1. INTRODUCTION
Humans are known to employ many different methods for

learning new information, from data-driven statistical learn-
ing (e.g., when infants discover and entrain the motor behav-
iors) to knowledge-based conceptual learning (e.g., based on
“insight” or “understanding”). One striking ability of adult
human learners is that they can bring their learned knowl-
edge at all levels of abstraction to bear when faced with new
learning problems and can thus generalize new information
very quickly from only a few exemplars. For example, hu-
man adult learners, after observing another human demon-
strating a novel action on a novel object, are typically able
to describe the new action and potentially perform it right
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away; and most importantly, they often can immediately
determine whether it might apply to similar objects and
how they would have to modify it to perform it on those
objects. In a sense, humans can learn generalized knowl-
edge from single exemplars and the main goal of this paper
is to demonstrate for the first time a similar, albeit much
more restricted capability (compared to the human case)
for generalization from a single demonstration in a cogni-
tive robotic architecture. This functionality is achieved by
integrating algorithms for analogical reasoning and general-
ization as well as algorithms for generating counter-factual
scenarios from a given scenario together with a physics sim-
ulation into a cognitive robotic architecture.

The paper proceeds as follows. We start with a moti-
vating scenario which we will use throughout the paper to
describe the functionality of our system. Next, we introduce
both existing and new algorithms for mental simulation and
generalization, and then introduce the relevant parts of the
robotic architecture and a proof-of-concept demonstration
of the integrated systems on a physical PR2 robot. We then
evaluate the generalization process, review related work, and
conclude with a discussion of our work and future directions
enabled by the integrated architecture and the generaliza-
tion capabilities.

2. MOTIVATION
Consider a scenario where a robot is tasked with picking

up a medical kit from a table. Initially, the robot has no
concept of the steps necessary to perform the task, which is
then demonstrated by a human who picks up the medical
kit by its handle and moves it aside. Suppose the robot is
then able to construct a step-wise representation that en-
ables it to imitate the human and pick up the same medical
kit by the handle and move it to the side. Figure 1 (left)
shows the robot demonstrating its ability to use the action
representation to mimic the demonstrated action.

This newly learned action, however, is very specific to the
human demonstration and does not automatically generalize
to other scenarios (e.g., different object orientation/location
on the table, different types of objects with and without
handles, etc.). A human learner in this case would, for ex-
ample, notice that many details about the object (e.g., the
color, the texture, the size within some ranges, the orienta-
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Figure 1: The PR2 performing the action learned
from a single exemplar (left) and its generalization
to a new object and action (right).

tion) do not matter for the particular pick-and-place action
as long as it has a handle; and even if it did not have a han-
dle, there might be different ways to pick it up (e.g., using
two hands). Alternatively, humans can adapt the sequence
of actions (e.g. add, remove, or repeat some) in a man-
ner that still accomplishes the goal. But how do humans
achieve this feat? One suggestion is that humans perform
quick mental simulations, possibly physics-based, that allow
them to imagine different scenarios and try out the learned
activity “in their mind” [1]. Based on these “mental exper-
iments”, they are then able to generalize to the successful
cases and exclude the unsuccessful ones. The successful or
unsuccessful outcome of a mental simulation is, of course, no
guarantee that an action will or will not work. Clearly, the
accuracy of the simulation together with the appropriate-
ness of the assumptions about objects and their properties
will be a major determinant of how well mental simulation
can predict actual outcomes. However, even when the ac-
curacy of the simulation is not very high, the simulations
can at the very least be used as a guideline for whether the
simulated action should be considered as a valid alternative
to be incorporated into a generalization of the action. When
a new scenario is presented and the robot has not learned
an appropriate action for it, the generalized action obtained
through a series of mental simulations is a promising choice
that can later be refined through practice.

3. FROM LEARNED ACTIONS TO
GENERALIZATIONS AND BACK

Given a robotic control architecture that comprises the
functionality (implemented in various components, say) to
learn and execute an action script (such as the one for pick-
ing up a medical kit), the question we address in this paper
then is how such an architecture can be augmented to al-
low for action generalization, i.e., what architectural exten-
sions and algorithm integrations are needed for the robot
to be able to generalize and immediately execute the previ-
ously learned actions in different scenarios. Note that there
are several important gaps between the given and the de-
sired architectural capabilities that such an extension has to
bridge. These gaps are intrinsically connected to the tension
between the concrete and the abstract as well as the tension
between the physical world and the mental simulation.

Specific vs general:.
On the one hand, we have very specific knowledge about

a single (learned) exemplar, yet we want to generate more
abstract knowledge about a class of exemplars. Statisti-
cal approaches bridging this gap by learning from numerous
specific exemplars are not applicable, hence we attempt to
bridge this gap with a novel combination of simulation and
analogical reasoning.

Continuous vs discrete:.
Some of the involved sensory data is typically continuous

(the robot’s vision system might create a point cloud repre-
sentation of the perceived object, where each point is along
three dimensions in continuous space). Similarly, the robot’s
arm motion is described by 3-D vectors along a continuous
trajectory, while classes of trajectories in an action repre-
sentation might be denoted by single action modifier (e.g.,
“up” as in “lift up”). One way to bridge this gap is to add
explicit links between these continuous and discrete repre-
sentations (e.g., in the form of a predicate that relates “up”
to the vector for moving up).

Exemplars vs generalization:.
Every exemplar has associated with it far more informa-

tion than is encoded in the generalization (this concerns all
aspects of the exemplar including the involved objects and
actions as well as other details of the scene). The process
of creating the generalization naturally eliminates irrelevant
information, but what information is irrelevant? The gener-
alization must maintain enough information such that it is
sufficient for performing the generalized action for an inter-
esting class of exemplars. The mental simulation in conjunc-
tion with systematic variations of the scenario can partly
address this problem by allowing the robot to discover rel-
evant aspects (e.g., if a particular variation led to action
failure that that variation was relevant for performing the
action).

Simulated vs physical world:.
There are three primary gaps between these worlds: physics,

objects, and perception. The obvious gap in the physics is
that the simulation is just an approximation of the actual
physics of the real world. This is best exemplified in colli-
sions. In the simulation world, collisions can optionally be
ignored and in some cases need to be ignored (e.g., at the
moment when the gripper“becomes one”with the object). A
significant difference in the representation of objects is that
in the simulation world we can assume complete knowledge
of the object. This means we know its weight, color, size,
shape, location, etc. In the physical world, we cannot eas-
ily know some of this information (such as the weight) and
other information is based on inferences by the vision sys-
tem. An example is that in the simulation world we have a
full 3-D model of the object, but in the physical world we can
only get a 2.5-D model of the object. Lastly, the assump-
tion of complete knowledge in the simulation world allows
us to avoid problems with inaccurate or wrong perceptions,
which have to be addressed in the real world. However, note
that action selection, execution, and learning must operate
in simulation in nearly the exact same way as in the real
world.

To bridge these various gaps, we propose the process de-
picted in Figure 2: given an initial action representation,
(e.g., via learning from demonstration or some other method),
the robot can use the representation to either execute the
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action or construct a generalization of the action. The gen-
eralization process performs mental simulations in counter-
factual scenarios that differ from the given one in some re-
spects. The robot must store enough information about the
context in which it learned the action to be able to gen-
erate counter-factual scenarios. The resulting generalized
action representation is applicable to both scenarios it con-
sidered during mental simulation and others it did not con-
sider. Note that the robot can either generalize the learned
action right away (after having learned it), or it can perform
the generalization at a later point.

Figure 2: The action generalization process. The
letters correspond to the subsections below and de-
pict the typical data flow.

3.1 Action and Scene Representation (A)
The input to this process is a representation of an action

and the context in which the action can be applied. This
information may have come from a human demonstrating
the action, or it may have been provided to the robot in some
other form, such as instruction. A description of the action
is not sufficient – the context of the action, including all
relevant objects and agents involved and relations between
these entities, is essential and must be included.

The action representation gives the robot a basic under-
standing of how to perform the desired action by provid-
ing a set of step by step action sequences. In the case
of the pick-and-place action representation for picking up
a medkit, three simplified action scripts for picking up an
object, moving it aside, and setting it back down can be
seen in Figure 3. The top-level action is composed of two
sub-actions – a pick action and a place action (both action
scripts themselves), and the pick sub-action is composed of
the three stages: moving to the object, grasping the object,
and lifting it vertically relative to its original position. The
place sub-action is broken down into a lateral and down-
ward movement, and finally the object is released. Here,
the lowest level actions (i.e., move-to-object, grasp-object,
move-to-relative, release-object) are action primitives that
can be executed by a component in the architecture.

Each action also defines a set of parameters and a set of
pre- and post-conditions. The post-conditions serve two im-
portant roles. Given an arbitrary goal, the action that has
the goal as a post-condition may be executed to accomplish
the goal. This is commonly seen in planning systems. Addi-
tionally, the post-conditions define the means by which we

pick-and-place ?robot ?object ?arm ?dest

pick ?robot ?object ?arm

place ?robot ?object ?arm ?dest

pick ?robot ?object ?arm

move-to-object ?robot ?arm ?object !grasp

grasp-object ?robot ?arm ?closepos ?object

move-to-rel ?robot ?arm !up-pt ?orient

place ?robot ?object ?arm ?dest

move-to-rel ?robot ?arm !over-pt ?orient

move-to-rel ?robot ?arm !down-pt ?orient

release-object ?robot ?arm ?object

Figure 3: Simplified action scripts for picking up an
object, moving it aside, and setting it back down.

measure the success of the goal. For example, the pick-and-
place action has the post-condition at(?object,?dest), mean-
ing that the object is at the destination location. The action
is intended to move the object to this location, but if the ac-
tion is not successful (e.g., because it is not the right action
or used with the wrong parameters) then the object will not
have been displaced.

In addition to the action representation, the scene has ad-
ditional contextual information that must be represented in
order to instantiate meaningful counter-factual simulation
scenarios. Here it must be determined what information is
relevant, what should be stored (e.g., to allow for simulations
to be constructed in the future), and what should be varied
during simulation. Scene representations include basic in-
formation about objects properties and the relation between
the objects. Properties of the object include basic physical
properties (e.g. mass, color, etc.), the shape and structure
(e.g. cylindrical with a vertical handle on the side), and the
location of the object. An object may be related to other
objects spatially, compositionally, or otherwise (e.g. the cup
is on the table, or the mass of the box is greater than that
of the cup). The scene must also have some representation
of the agent performing the action and any other relevant
agents. For the example of picking up a medical kit by its
handle, it is important that the agent have a mechanism by
which it can do this. Thus the agent description must in-
clude a physical description of the agent and its capabilities
(e.g. the robot has a gripper, gripper can grasp object). The
scene representation is not limited to a physical description
of the scene. An action may be relevant to other contextual
information, such as social roles (e.g. the agent giving the
instruction is a manager) or cultural norms (e.g. shaking
hands when greeting).

3.2 Scenario Generation (B)
The robot knows (because it was been told, it has been

demonstrated, or it has been instructed) that a given action
is applicable to a specific scenario. This is just one scenario
in which the action may be applicable, but it must con-
sider alternative scenarios that may be equally applicable.
The robot conducts a scenario generation process to produce
counter-factual scenarios that will be subject to simulation
and incorporated into the generalization.

Each variant of the exemplar produced during scenario
generation is intended to give the robot multiple virtual ex-
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periences so that it can form an understanding of the effects
of variations on the provided goal. Each counter-factual sce-
nario is constructed by varying one or more variables in the
exemplar. Variables can describe either the robot’s actions
(i.e., action variables as defined above) or scene variables
that describe the world with which the robot interacts.

Each scenario variable is carefully defined to allow auto-
mated generation of variants and contains five important
properties: (1) whether it is an action variable or scene vari-
able, (2) type (continuous or discrete values), (3) its relation
to other variables (i.e., valid states), (4) the degree of effect
on the success of the simulation, and (5) state history from
previous scenarios, to reduce duplication of generated vari-
ants on the demonstration. Some of the variables that may
be varied and the set of possible values are shown in Table 1.

Table 1: Some variables that may be varied during
scenario generation pertain to the action, but many
describe the object. Variables have either a set of
discrete values or a range of values. Color is unique
in that it has 3 range values.

Name Action? Values
base shape N sphere, cylinder, box
height N [0.01, .4]
radius N [0.035, .15]
width N [0.07, .4, 1]
length N [0.07, .4, 1]
has handle N handled, handleless
handle type N loop, bar, knob
handle location N top, left, right, front
handle N vertical, horizontal
mass N [0.01, .1]
color N [0, 1],[0,1],[0,1]
y offset N [-.2, .2]
grasp type Y close, apart, push, two arm
arm Y right, left, both
gripper % open Y [.01, .1]
gripper % closed Y [.01, .1]

When generating variables that describe the scene, we
take advantage of the abilities that generalization by ana-
logical reasoning provides. One such ability is to be able to
analyze a scenario with changes in multiple variables at a
time and still perform effective analogical analysis between
the scenarios. Thus, each counter-factual scenario gener-
ated may contain multiple variables that have been altered.
The scenario generation algorithm performs (1) a system-
atic variation of the action variable that affects the greatest
number of actions and (2) two random variations on less im-
portant variables defining the object to be interacted with.
This three-variable variation for each scene allows a signif-
icant reduction in the number of scenes required for mean-
ingful learning to occur while still maintaining the accuracy
of produced analogies.

The way we generate the values of variables defining our
scenario variations involves important assumptions the robot
has about the world it must interact with. For example,
ubiquitous physical properties such as friction are given de-
fault values unless otherwise provided by the demonstration.
We also assume that the objects the robot performs actions
on can be adequately represented by a combination of a sim-
ple base shape (sphere, cylinder, or box) and a handle (knob,
loop, or bar) centered on one of its visible faces.

Another relevant assumption about the generated objects
is that object interaction is limited to a set of allowable
points on the object which the robot can grasp. The ef-
fective production of these points has been demonstrated
in other research (e.g., [20, 4]), and we did not attempt to
re-implement them here. As a result, the object is given a
set of predefined grasps based on the object’s geometry and
handle number.

3.3 Mental Simulation (C)
The mental simulation stage begins by instantiating the

scene in the simulation world. The robot is initialized to a
specified state, while the rest of the scene is initialized from
the scene variables defined in the scenario generation stage.
These robot and scene specifications are used to produce a
realistic representation of each scenario in the physics sim-
ulator. For our scenario, each scene consists of a robot, a
table, and single object located on the table-top. Once the
simulation scene has been initialized, the robot attempts to
execute the action script using the action variables defined
in the scenario generation stage.

Figure 4: Four examples of the robot simulating the
pick-and-place action on different objects.

While the robot performs these actions in the simulated
environment (see Figure 4 for examples), the success of the
actions it attempts is monitored, and a simulation success
rating is recorded for each simulation run. During a sim-
ulation run, the inability to perform a required primitive
action is considered a failure, ending the simulation of that
scenario, resulting in a low score. Otherwise, the robot will
execute the entire action script, reevaluating the overall suc-
cess after each action is completed. The degree to which the
action is successful is based on the post- conditions of the
action. If the action is to pick up the object but the object
is still on the table, then the action was not successful and
the simulation success rating would be low. Some actions
may not fully succeed or fully fail. For these there needs
to be a measure of success. For example, if the goal of the
action is to move the object one meter to the right, but the
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action only moved it half way, then the action is given a
score representing the partial success.

3.4 Generalization by Analogy (D)
The Generalization by Analogy produces a set of gener-

alizations of the exemplar action where each generalization
is a structurally different abstraction of the action that still
accomplishes the same goal. The generalizations are con-
structed by analogically comparing each the of counter- fac-
tual scenarios to the original exemplar. If the scenario is
sufficiently similar, it is assimilated into the generalization.
If it is not, then a new generalization is constructed with the
scenario as the base exemplar. The algorithm described be-
low has the following enhancements from the one proposed
in [21]: (1) incorporating of simulation results and (2) con-
structing multiple generalizations.

Evidence from psychology (e.g. [8], [9], [14]) suggests
that humans use analogical comparison in learning gener-
alizations. Moreover, prior computational approaches have
demonstrated that generalizations [12] or schemas [10] can
be learned through a series of analogical comparisons. Ana-
logical generalization is thus an alternative from of learning
general concepts compared to statistical approaches which
typically rely on extracting abstractions from data alone us-
ing a large amount of data. In contrast to statistical ap-
proaches, analogical generalization can learn general con-
cepts with only a small number of exemplars, which also
more closely resembles human rates of learning [15]. An-
other advantage of analogical generalization is that it can
abstract away insignificant elements even if they are fre-
quent enough. For example, the color of an object does not
matter for the pick-and-place task and analogical generaliza-
tion will be able to abstract away this insignificant property
as it appears in the majority of the exemplars.

The analogical comparisons done during the generaliza-
tion process we describe here are done using the Structure
Mapping Engine (SME) [5], which is a computational model
of analogy based on Structure mapping theory [7]. Given
two descriptions – in our case, one for the original exemplar
and a counter-factual – SME aligns their common structure
to find a mapping between the scenarios. This mapping con-
sists of a set of correspondences between entities, attributes,
and relations in the two scenarios. Structure mapping theory
defines the principles of systematicity and structural consis-
tency [7], which then provide the basis for the scoring of the
analogical similarity. This score, called the structural eval-
uation score, combined with the simulation success score
gives the overall score that is used to determine whether a
scenario should be integrated into a generalization.

Algorithm 1 describes the overall process of creating a
set of generalizations of an action and its context (β) given
a set of counter-factual scenarios (T). Each scenario (τ) is
compared with each generalization (γ). If the analogical
similarity combined with the simulation success produces a
score above a pre-specified threshold (θ), then the scenario
is assimilated into the generalization. If the scenario is not
sufficiently similar to any of the generalizations, then a new
generalization is created with that scenario as the base of it.

3.5 Action Selection and Execution (E)
Given a new scenario in which the robot is to accomplish

a goal, the robot must select the appropriate action. Se-
lecting a generalized action requires comparing the overall

Algorithm 1 Generalization of β given T

1: function generalize(β, T ) : set of generalizations
2: γ ←newGen(β)
3: Γ← {γ}
4: for all τ ∈ T do
5: flag ←F
6: for all γ ∈ Γ do
7: µ←compare(γ, τ)
8: µ← µ× simulationSuccess(τ)
9: if µ > θ then

10: assimilate (τ, γ)
11: flag ←T
12: end if
13: end for
14: if 6flag then
15: γ ←newGen(τ)
16: Γ← Γ + γ
17: end if
18: end for
19: return Γ
20: end function

context of the new scenario (including the goal, the objects
involved, and the environment) to the generalized action.
If the comparison concludes that there is a sufficient simi-
larity between the generalization and the current scenario,
then the generalized action is likely to be applicable. It has
been shown that the specific details of the action that are
necessary for executing the action may be inferred as part
of an analogical comparison of the current scenario with the
generalized scenario [21].

4. PROOF-OF-CONCEPT
IMPLEMENTATION ON THE ROBOT

We describe here the integration of this approach into a
cognitive architecture and a demonstration of learning to
adapt an action to a new object.

4.1 System Architecture
To demonstrate the utility of our approach we have imple-

mented a proof-of-concept demonstration for a simple sce-
nario which has been implemented using the DIARC (Dis-
tributed Integrated Affect, Reflection, and Cognition) archi-
tecture [18]. A detailed view of the DIARC implementation
for this demonstration can be seen in Figure 5. Here, we
have highlighted three major computational groups: (1) the
Physical World, (2) Simulation Management and Learning,
and (3) the Simulated World.

The architectural components in the Physical World make
up the core set of capabilities for the physical robot. The
Simulation Management and Learning group is responsible
for setting up each simulation environment, running the sim-
ulations, collecting simulation results, and using the col-
lected results to learn new actions. The Simulation World
configuration used by the Simulation Management and Learn-
ing group is nearly identical to that of the Physical World.
This is critical, and ensures that the actions explored in sim-
ulation are available on the physical robot, and provides a
reasonable certainty of behavioral equivalence between the
physical and simulated worlds. One notable difference is
the simulated vision component. Because the simulation
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setup component is responsible for initializing each simu-
lation environment (based on the scene representation de-
scribed above), perfect ground truth of each object and ob-
ject location is known and no perceptual processing of video
or point cloud data is necessary.

In addition to the DIARC cognitive architecture, we also
use the Robot Operating System (ROS) to leverage existing
low-level capabilities of this framework (e.g., robot model,
motion planning). In particular, we make heavy use of ROS
MoveIt! [19], a software package for mobile manipulation.
The tight integration between DIARC and ROS is achieved
through an off-line tool used to auto-generate rosjava nodes
that can then be instantiated in DIARC components to cre-
ate a seamless bridge between the two frameworks and al-
lows easy use of the Willow Garage PR2 robot and Gazebo
simulator.

Simulation Management & Learning

Simulated World

Physical World

Goal Manager

PR2Vision

PR2 Robot

ROSADE Proxy

Goal Manager

PR2Vision

Gazebo
& Simulated PR2 Robot

ROS MoveIt!

ROSADE Proxy

Sim Setup

MEGA

ROSADE Proxy

R
O

S
 G

az
eb

o

ROS MoveIt!

ADE Component

ROS Node

Robot and World

Virtual ADE Component

Figure 5: High-level view of the integrated archi-
tecture. The blue computational groups represent
partial architecture configurations for the physical
robot (left) and simulated robot (right). The salmon
colored group contains novel algorithms for general-
ization through analogical reasoning.

4.2 Demonstration on the Robot
Our demonstration starts with an existing action repre-

sentation for pick-and-place on a medical kit with one arm
by the handle. While situated in an environment that con-
tains a table and medical kit (located on the table), the
physical robot begins by executing the action script to pick
up the medical kit and move it aside.

This action representation is executed by the components
in the Physical World group and requires the coordination of
a goal manager component to execute the action script, and
vision and robot components that provide perception and
manipulation capabilities, respectively. The vision compo-
nent is responsible for the detection of the table plane and
medical kit (assumed to be on the table). Here, we use a
Microsoft Kinect sensor to provide colored 3D point cloud
(RGB-D) data, and perform plane detection to detect the

table top. Once a table is detected, objects located on the
table are segmented from the scene and classified against a
predefined database of objects using global feature descrip-
tors (Viewpoint Feature Histograms [17]). Once classified,
an object is pose-aligned with the matching database object
to transfer a list of known grasp poses to the new object.
Given the information about the detected object along with
information defined in the action script, the robot compo-
nent is then able to plan and execute the motion commands
for the pick-and-place action.

Next, the Simulation Management and Learning group
begins the process of generalizing the given action script.
The MEGA component determines the scenario (scene and
action) to simulate, and then passes that information to a
simulation setup component to instantiate the simulation
scene. The modified action script is then passed to the goal
manager component in the Simulated World group to exe-
cute the action in much the same way as described in the
Physical World above. The results from the simulation run
are collected by the MEGA component, and the process is
repeated for each simulation. Once all the simulations have
completed, the MEGA component carries out the general-
ization process and produces a generalized action script.

In general, the details of the scenarios instantiated and
explored by the simulation process should be guided by the
robot’s current scenario, outcomes from previous simulation
runs, and also the kinds of scenarios the robot expects to
encounter. This is an open research question and we in-
stead choose five predefined scenarios to simulate based on
the scenario that is expected at the end of the generaliza-
tion (i.e., picking up a cylindrical tub). For the scenario
presented here, the simulations are able to achieve speeds
of up to twice real time (using the Gazebo simulator on a
machine with two Quad-Core i7 Xeon Processors and 24
GB RAM), and all five take less than five minutes in to-
tal. While this might seem like a considerable amount of
time, the runtime would be considerably longer if these sim-
ulations were instead carried out on the physical robot. It
should also be noted that each simulation was performed in
serial, and the generalization process is amenable to parallel
processing, where each simulation could run in parallel in
future implementations.

Finally, to validate the usefulness of the generalized action
script, the physical robot is presented with a new object (a
small plastic tub), and the robot demonstrates that it can
perform the pick-and-place action on the new object. The
same process as described above for the medical kit pick-
and-place is applied here, where instead the new generalized
action script is executed which perform a two-handed grasp,
successfully picking up the tub. If instead, the original med-
ical kit action script was executed in an attempt to pickup
the tub, a one-handed grasp would have been attempted
resulting in a failed pick-and-place. A video of this proof-of-
concept can be seen here: https://youtu.be/hcm-nxnYd5k.

5. GENERALIZATION EVALUATION
The proof-of-concept demonstrates that the robot can learn

how to adapt an action to accommodate changes in the ob-
ject. Our approach is capable of learning far more, including
fundamental differences in the action representing structural
changes. The purpose of this evaluation is to verify that the
approach is able to recognize these structural differences and
group structurally similar scenarios into the same general-
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ization. An example of a structural difference is a step in an
action being skipped, repeated, or added. If our approach
were limited to learning the appropriate set of parameters
to use to accomplish an action, then we would not be able to
consider changes to the overall action that are not param-
eters. Allowing for changes in the structure of the action
enables us to explore a broader range of actions that are
still applicable to the scenario. The purpose of the evalua-
tion is to confirm that the analogical generalization process
will identify structural differences and construct an alterna-
tive generalization.

To evaluate this, we defined 22 scenarios to be general-
ized. These scenarios could be generated by the scenario
generation process described above, could be an example of
a scenario that has been attempted or was demonstrated, or
could have been described to the robot. It does not matter
what the source of the scenario is in the evaluation of the
generalization. Most of the scenarios (19) resemble the orig-
inal exemplar in that they had every action and every step
of every action. Three of the scenarios represent pushing
the object instead of picking it up and placing it. These sce-
narios skip the steps of lifting the arm and lowering the arm
but the goal of moving the object from its original location
to the new location is still achieved. All other action steps
persist (reaching for the object, grasping it, moving the arm
aside). Since we are strictly looking at the generalization
process, we assume that each scenario would have success-
fully simulated. As such, the scenarios we constructed are
ones in which the simulation would be successful.

When running the generalization process on the set of
scenarios, two generalizations were constructed. One gener-
alization closely resembles the initial action in that it has all
of the same actions and steps. The second generalization is
structurally different in that the two actions are absent. In
both generalizations, the object is moved from the start lo-
cation to the end location, thereby accomplishing the goal of
the action. Table 2 summarizes the results of the evaluation.
The number of predicates in the generalization is less than
the average number of predicates in each exemplar because
many of the terms are abstracted away. These predicates
include insignificant descriptions of the object (e.g. color,
mass, dimensions, etc.). We conclude from this evaluation
that the generalizations have successfully abstracted away
irrelevant information and that the generalization process is
able to create generalizations for groups of scenarios that
are more structurally similar.

Table 2: Summary of two generalizations con-
structed in evaluation. The first generalization is
most similar to the original exemplar. The second
generalization resembles a pushing action that still
moves the object from the original location to the
destination.

Generalization 1 Generalization 2
No. exemplars 19 3
No. actions 9 7
Avg. no. predi-
cates in exemplars

108.15 102

No. predicates in
generalization

98 97

6. RELATED WORK
While there are other integrated architectures that use

mental simulations (e.g., [2, 11]), none has been demon-
strated to accomplish the kind of generalization learning
from a single exemplar and immediate execution in a dif-
ferent scenario. The most closely related work is that of
Kunze and his colleagues [13], where they use some of the
same technologies (i.e. ROS, Gazebo, and the PR2) to con-
duct mental simulations in order to learn about actions.

The difference is that our work goes beyond learning pa-
rameters of actions, and attempts to construct a general-
ized representation of the action. This is in contrast to the
approach taken by Kunze, who uses decision trees to clas-
sify data from simulations and crowdsourced data, to learn
the appropriate parameters (e.g., angle to pour) for a de-
sired outcome (e.g., size of pancake). Our approach is able
to learn parameters (e.g., close position of gripper) but is
also able to learn to adapt the structure of the action (e.g.,
adding or removing particular sub-actions). A push action
learned from a pick-and-place action will, for example, have
the lift-up and set-down sub-actions removed from its action
representation, as they are not required to accomplish the
goal.

It is this kind of structural adaptation that is necessary
for two hands instead of one, or to push the object instead
of pick it up. The end goal of our approach is not just
to learn particular parameters (though this is a necessary
step) but to learn the more general concept of an action for
which a variety of parameters and sub-actions may work to
accomplish the overall goal of the action.

An agent can learn a goal-directed sequence of actions us-
ing Reinforcement Learning (RL). For example, [16] demon-
strates a robot learning a pick-and place behavior, but poli-
cies learned from RL are not necessarily general and appli-
cable to a wide variety of novel scenarios. We demonstrate
here that the robot can apply a generalized action in a sce-
nario that it has not seen before.

We highlight the significance of the analogical generaliza-
tion and contrast it with previous approaches to analogical
generalization. Hummel and Holyoak [10] have a process of
schema induction using analogical generalization, but their
approach to analogy does not necessarily follow the princi-
ples defined in structure mapping theory [7]. These prin-
ciples, structural consistency and systematicity enable the
analogical generalization to recognize scenarios in which the
actions are more structurally similar and group them into
the same generalization.

Others have used the Structure Mapping Engine (SME)
[5] to implement the principles of structure mapping theory
in analogical generalization [12]. We are also using SME to
do the analogies, and there are some similarities and differ-
ences in our generalization algorithm. In both algorithms,
the similarity score generated by SME influences how or
whether the exemplar is integrated into the generalization.
Contrasting with previous approaches, we modify the simi-
larity score with the simulation success rating before deter-
mining if an exemplar is to be incorporated into a general-
ization. There are also key differences in how an exemplar is
integrated into a generalization. Previous work used a prob-
ability for each entity in a relation based on the frequency
with which it occurred. The frequency of an element still
affects how we incorporate elements in our algorithm, but
the frequency is weighted by a significance score. Our work
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associates a significance score with each entity, where this
score is calculated using the overall similarity score, the score
associated with each mapping within a comparison, and the
simulation success rating.

We also note that the generalization process we have demon-
strated requires a relatively minimal amount of knowledge.
Some knowledge about objects, their properties, and possi-
ble values must be known. Additionally, knowledge of the
available actions to the robot are required. We contrast this
with other computational uses of analogical generalization
that use a large knowledge base like OpenCyc [12, 6, 3]. In
comparison, we require a small amount of knowledge but are
still able to construct generalizations that the robot is able
to use.

7. DISCUSSION
The integrated system together with the proof-of-concept

evaluation demonstrates that it is possible for a robot to
generalize actions from single exemplars and successfully ex-
ecute these generalized actions on novel objects. Critical for
this accomplishment was the integration of various compo-
nents and component algorithms that had to be connected
in the right way, bridging various representational and pro-
cessing gaps. While these components and their interactions
thus point to an integrated architecture that could enable
unprecedented rapid learning for robots in the future, the
current system is not there yet as several simplifications had
to be made in the process of developing it. For one, the entire
architecture was known a priori which allowed all software
components to be manually instantiated. A more general
approach would allow the architecture to introspect on the
current Physical World configuration and dynamically repli-
cate this configuration in a Simulation World when starting
the learning process. Another shortcut was the prior knowl-
edge of grasp points on the actual objects (in the real world)
and the newly generated objects in the simulation. Ideally,
these points would have to be determined based on percep-
tions only (e.g., using algorithms like [20]). In addition,
background knowledge of what dimensions are available to
be altered for simulation and which are important for gen-
eralization were given to the robot ahead of time, instead
of letting the robot infer them from the task or to learn
them. Finally, even though our system is able to generate
mupliple generalizations, the proof-of-concept only uses one
generalization. Previously we have demonstrated how to use
analogy to select the appropriate generalization [21].

Paramount in our approach is the analogical generaliza-
tion. Strictly learning parameters to an action does not
allow for the robot to learn more novel (and perhaps cre-
ative) means of accomplishing the same goal. Our evalu-
ation confirmed that the analogical generalization process
is able to identify the structural differences and construct
alternative generalized actions. While our evaluation was
limited to removing action steps, other forms of structural
changes would also be possible. This includes changing the
order of the actions, adding constraints, or using some differ-
ent actions. Additional constraints may include the spatial
relation between the robot and the object or that the color
of the target location must match the color of the object.
Using a different action brings along with it a different set
of arguments, preconditions, and postconditions. This could
radically change the structure of the action representation,
especially if there is little overlap in the preconditions and

postconditions with other actions. Future work will explore
the limits of the structural variations in the actions that can
be adequately generalized.

Exploring a wide range of variations can be a time con-
suming process. We point out that the generation of scenar-
ios, simulating them, and generalizing does not necessarily
need to occur immediately after the initial action has been
demonstrated. There are three time scales on which we en-
vision this process to occur. The first is as demonstrated
in our proof-of-concept, where immediately after the action
has been demonstrated a small set of scenarios are generated
and simulated to that a generalization may be constructed
to meet immediate needs. The exploration of possible sce-
narios in this case can be constrained by the requirements of
the current scenario. The second time scale allows the robot
to create a generalization of the action that may be needed
in the near future but there is no immediate need. While
the robot is idle, it can explore the state space of scenarios
and produce the appropriate generalizations. At a later time
(minutes, hours, or days later), the robot may finally need
to perform an action similar to the originally demonstrated
action. At this time the robot can examine the set of gen-
eralizations that have been produced to see if any of them
are applicable. If one is applicable it can be immediately ap-
plied, and if none are applicable then it can actively generate
and simulate scenarios based on the constraints of the cur-
rent situation. Lastly, the robot can actively explore a broad
state space, requiring significant processing resources. This
approach allows the robot to consider scenarios that differ
greatly from the original action. In particular, the robot can
consider scenarios with more structural differences, where
different primitive actions are attempted or some action is
repeated multiple times. This proactive exploration of the
set of possible scenarios is likely to produce numerous gen-
eralizations, where some represent novel and creative ways
to accomplish the same goal as the original action.

8. CONCLUSION
In this paper we demonstrate the first integrated robotic

architecture that can learn generalized actions from a single
exemplar and immediately apply this knowledge to perform
modified actions on similar objects in different scenarios.
In a next step, we intend to improve the architecture by
addressing the shortcomings mentioned in the Discussion
section and by parallelizing some the mental simulations to
achieve better real-time performance. We also plan to im-
prove the algorithms for devising counter-factual exemplars
by integrating them with the goal and context knowledge
of the architecture to allow for better determination of rel-
evant scenarios that should be generated. Future work will
also test the limits of the analogical generalization by consid-
ering larger numbers of scenarios and ones that significantly
differ from the original. Finally, we plan to combine the cur-
rent system with previous systems that could learn a new
action from natural language instruction and observation to
demonstrate the whole sequence of learning and generaliza-
tion from a single exemplar.
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