
Verifying Security Properties in
Unbounded Multiagent Systems

Ioana Boureanu
Department of Computing

Imperial College London, UK
i.boureanu@ic.ac.uk

Panagiotis Kouvaros
Department of Computing

Imperial College London, UK
p.kouvaros@ic.ac.uk

Alessio Lomuscio
Department of Computing

Imperial College London, UK
a.lomuscio@ic.ac.uk

ABSTRACT
We study the problem of analysing the security for an un-
bounded number of concurrent sessions of a cryptographic
protocol. Our formal model accounts for an arbitrary number
of agents involved in a protocol-exchange which is subverted
by a Dolev-Yao attacker. We define the parameterised model
checking problem with respect to security requirements ex-
pressed in temporal-epistemic logics. We formulate sufficient
conditions for solving this problem, by analysing several finite
models of the system. We primarily explore authentication
and key-establishment as part of a larger class of protocols
and security requirements amenable to our methodology. We
introduce a tool implementing the technique, and we validate
it by verifying the NSPK and ASRPC protocols.

1. INTRODUCTION
Formalisms grounded in the multi-agent systems (MAS)

paradigm have made a significant contribution to the de-
velopment of a wide range of applications, including search
and rescue [19], automatic negotiation [13], and security [9].
For the MAS paradigm to continue to drive the sound devel-
opment of forthcoming topical applications, the underlying
MAS formalisms need to evolve to capture and solve the
theoretical challenges that arise in these applications.

The “internet of things” (IoT) is an important area of
current and future growth, where MAS can play a leading
role. In current IoT applications networked objects equipped
with sensors and computing capabilities exchange data over
the Internet. It is expected that some of these objects will
become autonomous and will independently cooperate and
negotiate with their peers while representing the needs of a
human user or an organisation. Security and privacy aspects
of IoT applications remain a concern. Users may not be
willing to adopt the technology if the data being exchanged
can be directly traced back to them, or tampered with by
unauthorised third parties. It is therefore important to
guarantee that the protocols run by IoT applications are
robust and cannot be hijacked by attackers. One important
property is the correctness of the underlying authentication
and key-establishment procedures.

Of course these have long been the object of research in
security. Several noteworthy protocols, including versions of

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

secure RPC [30] discussed herein, have been analysed by a
variety of methods, including model checking [5]. However,
these results cannot in general be applied to IoT. This is
because verification of security protocols traditionally analy-
ses a bounded number of interacting principals. In contrast,
IoT’s unbounded connectivity intrinsically calls for the need
to verify an arbitrary number of protocol executions.

The aim of this paper is to put forward a novel method-
ology for the unbounded verification of a class of security
protocols. A key feature of our work is that, similarly to [7],
we also capture the epistemic properties of the principals
in a secure exchange. To do so we develop a Dolev-Yao
threat model in a MAS setting (Section 2); we define and
solve the parameterised model checking problem for these
systems (Section 3); we present a tailored verification toolkit
for the automatic verification of protocols described in a new,
security-oriented language (Section 4); and we showcase the
methodology on NSPK [27] and ASRPC [30]. In doing so, we
answer the open question of model-checking an unbounded
number of protocol executions against temporal-epistemic
properties.

2. PARAMETERISED SECURITY MODEL

High-level protocol descriptions.
Consider the following high-level description of the well-

known Neeham-Shroeder public-key (NSPK) protocol [27].
At step 1, A encrypts the concatenation of her identity and
a nonce nA with the public key of B and sends this to B. At
step 2, upon receipt and decryption, B concatenates a new
nonce nB to the received nA, encrypts this with the public
key of A and sends the overall result to A. The rest follows
similarly. We refer to the full representation of A’s variables
and actions as the A-role.

The High-Level Description of NSPK

Protocol:

1. AÑ B : encppA,nAq; pubBq

2. B Ñ A : encppnA, nBq; pubAq

3. AÑ B : encpnB ; pubBq

Longterm Vars: privA; pubA;A; privB ; pubB ;B;

Prot. Vars: nA, nB : nonce;

nA bound A; nB bound B

Goals: A:B:authpA,nA, pubAq; secretpnAq;

In protocol executions, high-level roles are embodied by
parties with concrete credentials. If a party acts according to

1209

an A-role, we call it an A-party. Longterm Vars refer to data
belonging to parties and not varying with protocol executions:
an A-party called alice has skeyalice as her long-term secret
key. In turn, the Prot. Vars part contains sub-messages
which are freshly generated in each new, correct session:
e.g., nA is a nonce. It originates from an A-party, as “nA

bound A” stipulates. So, we say that nA is bound to the
A-role. Contrarily, nB is free in the A-role, as nB is bound
to the B-role. NSPK’s goals here amount to two security
requirements. By “A:B:authpA,nA, pubAq” it is meant that
in any session, the B-party is convinced of communicating
to a specific A-party on the basis of A,nA, and pubA, and
that it was this party who sent the data. By “secretpnAq”,
it is intended that in any one session, nA should only become
known to the two participating A- and B-parties.

Intermediate level protocol description.
Any protocol Pr can be described algebraically by consider-

ing: 1) a set S of sorts (e.g., Keys, Nonces); 2) a sort-indexed
set of variables X “ pXs | s P Sq – in NSPK, for s=Nonces,
Xs “ tnA, nBu; 3) a signature Σ over X, which then gives a
set TΣ,X of terms to symbolise the protocol-messages, e.g.,
encppA,nAq; pubBq for NSPK; 4) a universal algebra A with
infinitely countable support-sets As, used to interpret Σ; 5) a
term algebra T; 6) a set or theory E of equations over terms
encoding the cryptographic operations on them.

Assignments δ of variables into the algebra A and their
homomorphic extension to terms, actions and roles model
protocol executions. At the start, parties ignore the values
of variables free in their role (like nB for NSPK’s A-role).
To denote this, we use null values denoted K or Ks for a
specific sort s P S. We extend A to the algebra AK, which
has AsK =As Y tKsu as support-sets and all operations over
null values returning null values.

Shorthands & building blocks.
We call a protocol receiver-transparent if receivers can deci-

pher messages down to variables upon their receipt. NSPK and
many other authentication and key-agreement protocols [31]
are receiver-transparent.

As in protocol-descriptions, we differentiate between longterm
variables (LT), free variables (FR) and bound variables (BR)
in some role R. This extends naturally to terms (i.e., if a
term contains a free variable it is free in that role, otherwise
it is bound to that role). On this, we give the range of a
term homomorphically, as follows.

Definition 2.1 (Range of a term for role). The
range RangeRptq of a term t P TΣ,X for a role R is as follows:
RangeRptq=
$

’

’

’

’

’

&

’

’

’

’

’

%

As if t P pBRqs XXs

AsK if t P pFRqs XXs

pAs1 ˆ . . .ˆAsn q YAs if t P pBRqs, t “ σpt1, . . . , tnq,
σ P Σps1,...,snq,s, ti P TΣ,X,si

pAs1 ˆ . . .ˆAsn q YAsK if t P pFRqs, t “ σpt1, . . . , tnq,
σ P Σps1,...,snq,s, ti P TΣ,X,si

The maximal range of a term t, writtenRangeptq, is defined
as the union of RangeRptq over all the roles R. Ranges of
long-term variables do not vary with roles: for t P LT ,
Rangeptq “ Aω, where ω P S˚ is the type of t. We consider
a variable called step of sort Steps, to encode the actual
protocol steps. Ranges RangeRpstepq of steps for a given
role R are finite and in line with the protocol description.

Let Msg Ĺ TΣ,X denote strictly the protocol-messages.

For a protocol-role R, let the sets SentMsgR Ĺ Msg and
RecvMsgR ĹMsg respectively denote the messages sent and
received by R. We introduce a functional symbol out of type
pSentMsgR;Stepsq, which is interpreted as the particular
protocol-step at which a message is sent. We write outptq “ x
to denote that a message t is sent at step x, i.e., in NSPK,
outpencppA,nAq; pubBqq=1. Similarly, let in be a functional
symbol of type pRecvMsgR;Stepsq which is interpreted as the
protocol-step at which a concrete message is to be received.

Let Subptq be the set of proper sub-terms of t and V arsptq
denote the variables in t. In NSPK, V arspencppA, nAq; pubBqq
=tA,nA, pubBu and pA,nAq P SubpencppA,nAq; pubBqq.

Templates and parameterised systems for security.
Interleaved interpreted system (IIS) [23] are a multi-agent

system semantics in which agents synchronise on one sole
action to be performed at each point in time. IIS components
can be described in a parametric way via templates [21]. The
instances of these templates, also called agents, unravel an
actual, concrete system. Next, we will present a security
model based on templates.

Definition 2.2 (Template (adapted from [21])). A
template is a tuple T=pX,L, ι,Act, P, tq, where X is a set
of variables, L Ď X ˆ A is a set of local states describing
variables X with their values in the support sets of the algebra
A, ι P L is a unique initial local state, Act is a nonempty
set of actions defined over X, P : L Ñ Act is a protocol
function dictating which action can be performed at a local
state, tr: LˆActÑ L is a local evolution function specifying
state-updates caused by actions. A “null” action λ P Act can
be performed at any state and yields no state update.

Templates here differ from [21] in that they have an alge-
braic nature, with sorted variables and ranges over infinitely
countable sets of a term-algebra. We will also partition these
sets driven by a security semantics. This will then open for
new techniques of instantiating templates into agents. For
instance, agents herein will be able to share variables and
their ranges.

We say that an action is executable in a template if given
a concrete, local state of some arbitrary instance of this
template, this action can take place at that local state.

We say that an executable action is setting in a template
if once this action is performed at a local state of some
arbitrary instance of this template, then that local state is
consequently updated.

Protocol roles to templates.
Let R be a protocol-role in a receiver-transparent proto-

col Pr. We will map each such protocol-role R into a template
for R, written T -R.

T -R’s variables. These are described by the set XT R=
tLT Y FR Y BRu.

So, T -R’s variables distinguish between those free and those
bound in R, as well as longterm variables.

The local states of T -R. These are described by the re-
lation LT R=pt ::RangeRptq | t P XT Rq between terms and
their respective ranges for the R-role.

The local states for the T -A in NSPK are as follows: pstep::
N, nA ::N, nB ::NK, pubB ::KeysK, A::IDq, where step, nA P BA,
nB , B P FA and A P LT .

1210

In the initial state ι of the T -R, we assign bound and
long-term variables to arbitrary non-null values over their
ranges, free variables to null, and all steps are set to 1.

Actions for templates for roles. The actions of the T -R
template are given by:
ActT R “ tsend interceptpt1q, receive transmitpt2q, λu, for
all t1 P SentMsgR and t2 P RecvMsgR.

So, templates’s actions encode the sending and receiving
of abstract messages, or perform the empty action λ. For
the operational semantics, we need a ‘handle’ to concrete
values and template-instances. This is as follows.

Representative values in T -R. Let t P TΣ,X . A repre-
sentative value for t in T -R, written valT Rptq or simply
valptq, is the value in RangeRptq held for t in an arbitrary
instance of T -R at a given point.

We now give the operational semantics of T -R’a actions.

Operational sending actions. Let t P SentMsgR. An
action send interceptptq is executable in T -R if valpvq ‰ K,
for all v P V arsptq.

In other words, an instance of T -A in NSPK needs to have
non-null values for nB, i.e., valpnBq ‰ K, in order to send
the NPSK’s third message m3. Its initial state appears as
pstep “ 1, nA “ n, nB “ K, . . .q; the send interceptpm3q

action is enabled only once it is in a state pstep “ 1, nA “

n, nB “ n1 . . .q, with n, n1 P N.

Operational receiving actions. Let t P RecvMsgR. An
action receive transmitptq is executable in T -R if the fol-
lowing holds: for each v P V arsptq, if valpvq ‰ K then
valpvq “ δptq|v, where δptq is a concrete value for t now being
sent to an instance of T -R and δptq|v returns the value of v
within δptq.

An executable action receive transmitptq is setting in T -R
if for all v P V arsptq such that valpvq=K, the application of
receive transmitptq changes valpvq to δptq|v.

Thus, a receive-transmit action is executable if any value
received at some point is consistent with data held previ-
ously and locally. This is in line with the matching re-
ceiving semantics in [29]. In NSPK, when an A-party re-
ceives a value δpencppnA, nBq; pubAqq for the second message,
she checks that her previously used value valpnAq for nA

matches the nA-value δpencppnA, nBq; pubAqq|nA sent via
δpencppnA, nBq; pubAqq. An executable receive-transmit ac-
tion is setting if it causes variable-updates in concrete in-
stances of templates. In NSPK, a local value for nB would
be extracted out of the received δpencppnA, nBq; pubAqq and
valpnBq would be consequently updated.

Local protocol for T -R. Let l be a local state of T -R,
t1 P SentMsgR, t2 P RecvMsgR. Then, the local protocol
function PR : LT R Ñ ActR is defined as follows:
$

’

’

’

’

’

&

’

’

’

’

’

%

PRplq “ send interceptpt1q, if vpstepq “ outpt1q,
send interceptpt1q
is executable in T -R;

PRplq “ receive transmitpt2q, if vpstepq “ inpt2q,
receive transmitpt2q
is executable in T -R.

If an action a is such that a P PRplq, we say that a is
enabled (at l) in T -R.

So, any T -R instance is able to perform an action if she is at
the right protocol step for it and if the action is executable
(i.e., all values to send are non-null and values to receive are
consistent with those already held).

Local evolution for T -R. Let a1, a2 P ActR such that a1=
send interceptpt1q and a2=receive transmitpt2q. Let l be
an arbitrary local state of T -R and valp¨q denote values held
by some arbitrary instance of T -R at their instance of l.

The local evolution function is trR: LT R ˆActR Ñ LT R

with trRpl, aiq “ l1 if ai P PRplq (for i P t1, 2u) and the
following holding:

"

valpstepq ` `, if ai “ a1 p1q
valpstepq ` ` and a2 is setting, if ai “ a2 p2q,

where valp¨q denotes values held at l1.
The above says that enabled actions, once performed,

update the current local state with incremented protocol-
steps, and receiving actions may set new values.

The Environment template.
We will now present a special template called the Envi-

ronment template and written T -Env. It models the outer
network hosting both the honest parties’ from the adversary.
In a concrete multi-agent system, T -Env is instantiated into
concrete Environment which we denote by Env.

Local states for T -Env. These are defined by a series of
variables, emulating the following map for each role R:
logrt, tv :: val | v P V arsptqus with t P SentMsgR, and
val P Rangepvq Y tKu.

That is, T -Env tracks the values of the variables v inside
each protocol-message t. For encppA,nAq; pubBq in NSPK,
T -Env stores three variables for A, nA, and pubB .

In T -Env’s initial states all the log are set to null-values:
i.e., logrtsrvs :“ K, for all v P V arsptq, for all t P Msg,
denoting that no tracking has yet occurred.

The concrete environment Env contains in fact several
copies of a logrt, ¨s map, one reserved for each instance of
T -R having emitted a value for t, as depicted below.

Representative values in T -Env. Let t P SentMsgR.
Representative values for t in T -Env are the set of arbitrary
values in 2RangeptqYK held in Env for V arsptq under the
handle trep of t, written logrtrep, tv | v P V arsptqsu.

So, if an instance rep of T -A sends NSPK’s m1 as some
δpencppA,nAq; pubBqq, then Env sets logrmrep

1 srnas to
δpm1q|na , sets logrmrep

1 srAs to δpm1q|A, etc., where logr¨repsr¨s
is a rep-reserved’ copy of logr¨sr¨s.

Actions for T -Env. These are given by the set ActT Env “

ActT RYttamper logptqu, for allR-roles, for all t P RecvMsgR.

The tamper logptq actions refer to the threat model; we will
describe these later in the section. The other actions are
in tandem with T -R: if T -R sends something, then T -Env
intercepts it, and if T -R receives something it is because
T -Env transmits it.

Let t P SentMsgR, t1 P RecvMsgR be as above. Let rep
be an arbitrary instance of T -R at a given point.

Operational intercept. The action send interceptptq is
executable in T -Env at any local state of T -Env.

An action send interceptptq is setting in T -Env in that
logrtrepsrvs becomes δptq|v, for all v P V arsptq, where δptq is
the arbitrary concrete value for t sent within rep and δptq|v
returns the value of v within δptq.

1211

The second part of the above says that all send-intercept
actions are setting: they make the corresponding logs of
Env’s take the respective values from the messages sent.

Operational transmit. The action receive transmitpt1q
is executable in T -Env if logrt1srvs ‰ K, for all v P V arspt1q.

A receive-transmit action is executable in T -Env if all the
necessary sub-parts of the message to be received by a T -R
instance have been logged by T -Env, symbolising that the
concrete message is present over the network.

The local protocol or local evolution function for T -Env
are implicitly specified by the operational semantics above.

The Intruder Template.
We will now present a special template called the Intruder

template, written T -In, which encapsulates a Dolev-Yao (DY)
threat model [14]. We instantiate the T -In template by one
agent only which we call Intr or concrete intruder.

T -In’s local states. These are defined by the following:
1) a set of variables, emulating the maps constrrt, tv :: val |
v P V arsptqus, for each role R, with t P SentMsgR, and
val P Rangepvq Y tKu;
2) a series of boolean variables posspvalq, for each val P
RangepvqztKu, for each v P V arsptq, for each t PMsg;

The T -In’s constr-variables capture the protocol’s mes-
sages as formed by the attacker. The poss-variables denote
the intruder’s data-possessions. I.e., posspaliceq “ .T. de-
notes that the intruder knows the name alice to be a protocol
participant; possp300q “ .F. encodes that the intruder cannot
use 300 as a fresh value.

Representatives for T -In. Let rep be an arbitrary instance
of T -R. All term t linked to rep that the intruder tracks or
manipulates w.r.t. to this instance is referred to as trep.

Like with Env, the concrete Intr would replicate constrrt, ¨s
into constrrtrep, tv :: val | v P V arsptqus for each rep.

In T -In’s initial states, all the constr-variable are set to
null-values; some of the poss-variables are set to true, some
are set to false denoting the intruder initial knowledge. This
is done in such a way that T -Rs and T -In share no value for
variables that are not long-term.

Actions for T -In. The actions of the T -In template are
given by: ActIntr “ tDY pt1q, tamper logpt2q, λu, for all R-
roles, for all t1 P SentMsgR, for all t2 P RecvMsgR.

We introduce a shortcut to intercepts by the intruder: the
Intr is allowed conceptual access to the values of messages
inside any arbitrary instance of T -R. He performs closure of
DY-analysis and DY-synthesis [28] of these messages. This
is formalised below.

Operational DY actions. Let rep be an arbitrary instance
of T -R, t P SentMsgR, valptq be the homomorphically com-
posed value of t within rep, t1 P RecvMsgR1 , and rep2 be an
arbitrary instance of T -R1.

An action DY ptq is executable in T -In if constrrtrepsrvs “
K, for all v P V arsptq.

An executable DY ptq action is setting in T -In if the fol-
lowing is the case:
$

&

%

possrxs “ .T., if x P analzpvalptq, possq, x ‰ K p1q

constrrtrep21 srvs :“ y, if y P synthpanalzppossq, t1q, y ‰ K p2q

By point p1q above, once a DY action is performed, it
sets values in poss upon analysis of the value of t inside
T -R’s instance rep. As per p2q above, the values in poss
are then used to try and compose a value for message t1:
i.e., synthpanalzppossq, t1q denotes closure of DY synthesis
and analysis over all Intr possessions, for the construction of
t1. If successful, the synthesised value y is recorded in that
constrrtrep21 srvs :“ y.

We took DY ptq-action to be executable if constrrtrepsrvs
is K; so, we see now that this equates to Intr decomposing
values of messages t that he has not formed himself. For
example, let instance rep of T -A for NSPK have a local value
δpm1q for the first message encppA, nAq; pubBq such that for
the value δpm1q|pubB , Intr’s poss has δpm1q|privB set to true.
Then Intr can decrypt δpm1q and, according to p1q above,
posspv1q becomes .T., where v1 “ δpm1q|na . Next, according
to p2q, the DY action is such that constrrt1rep2 srnas :“ v1,
where rep2 is another instance of T -A and Intr is now con-
structing a message replaying in it the value of na as per
rep1 possibly purporting to be from rep2.

The operational semantics for the tamper log-actions in
T -In and in T -Env follows.

Operational tampering actions. Let t P SentMsgR.
An action tamper logptq is executable in T -In if constrrtsrvs ‰
K, for all v P V arsptq.

An action tamper logptq is executable in T -Env at any
local state of T -Env.

Let rep be an arbitrary instance of T -R. An executable
action tamper logptq is setting in T -Env in that logrtrepsrvs
becomes constrrtrepsrvs in Env, for all v P V arsptq.

The operational semantics of tampering actions stipulates
that Intr is able to perform a tamper logptq-action if it has
constructed all the parts needed in t, i.e., it holds a value
v ‰ K, for all the variables of t. In T -Env, these actions are
executable at any point and have as effect the injection of
the intruder’s constructions in constr in Env’s the log-vars.

The local protocol or local evolution function for T -In are
specified implicitly via the operational semantics above.

Definition 2.3 (Parameterised security system).
A parameterised security system (PSS) for a protocol Pr is a
tuple S=pT , T Intr, T Envq, where T “

Ť

R role in PrtT Ru,
with the components defined as above.

3. UNBOUNDED SECURITY IN MAS
A concrete instance of template T -R is defined construc-

tively and inductively based on the instances who already
‘joined’ a concrete system modelled by a PSS. A non-basic
step of this inductive definition is given below. For the next
two definitions, we assume w.l.o.g. that there are two roles
R and R1 in the protocol Pr.

Concrete agents.
Definition 3.1 (Concrete role-agents). Let R be

an arbitrarily fixed role and T -R = pX “ BRYFRYLT , L Ď
X ˆ A, ι,Act, P, trq as above. Let m ě 1 be the total num-
ber of instances present in the system. Let n ě 1 be the
total number of instances of T -R present in the system.
Let i with 1 ď i ď n. The pi, n,mq-concrete instance of
T -R, written agiR or for simplicity ag, is defined by the
pXag, Lag, ιag, Actag, P ag, tragq tuple as follows:
I. Xag is a multi-copy of X, where:

1212

1). If x P BR, then xag P Xag;
2). If y P FR X BR1 , then yag1 , . . . , yagm´n P X

ag;
3). If z P LT , then zag1 , . . . , zagm P Xag.

II. Lag
Ď Xag

ˆ 2RangepXq is as follows:
1). Let x P BR YLT . Then, px,Rangeagpxqq P L

ag where
Rangeagpxq is a subset of RangeRpxq with |Rangeagpxq|=n`
1 such that Rangeag1pxq Ľ Rangeagpxq, where ag1 is the
pi, n1,m1q-concrete instance of T -R and n1 ą n;

2). Let x P XSteps. Then, px,RangeRpxqq P L
ag.

III. Actag is a multi-copy of Act, as local terms are expanded
over Xag;
• Any a P Act is send interceptptq or receive transmitptq,

with t P Msg. Then, aag1 , . . . , aags P Actag, where s “
|Rangeagptq| with Rangeagptq “

Ś

xPV arsptqRangeagpxq.

IV. ιag, P ag and trag are defined as on T -R expanded over
Xag, Lag, Actag above and homomorphically instantiated.

Point I.1 in Definition 3.1 says that the agent keeps just
one single local copy of each variables bound to its role. By
I.2, for each party that may provide ag with a value for a
variable free in its role, ag holds a separate copy of that
variable. Indeed, an A-party in NSPK may receive nb’s for
all the B-parties that she engages with. Finally, I.3 describes
the fact that long-term values may be associated to all m
parties in the system, i.e., the agent has public-keys of all
the parties she communicates to. Point II shows that we
capture a truly unbounded system and we expand the ranges
of variables on-the-fly, as more instances ‘join’ the system.
Point II.1 expresses that constructing a new instance of T -R
makes the ranges of its bound variables grow: at the i-th
instance, this range has a size of n ` 1 (as n could cause
logic omniscience). Point II.2 stipulates that protocol-steps
do not vary with instances. And, upon point III, an agent
will have send or receive actions over all the possible values
(in Rangeagptq) derived homomorphicaly from the variables
x in t and their ranges defined as per point II.

Definition 3.2 (Concrete pn,mq-intruder). Let T -
Intr = pX,L Ď X ˆ A, ι,Act, P, trq as above. Let m ě 1
be the number of all role-agents present in the system. For
an arbitrary role R, let all n ě 1 instances of T -R therein
define the set Ag. The concrete pn,mq-intruder Intrpn,mq,
or simply Intr, follows the definition of T -In, where:
I. XIntr is a multi-copy of X expanded by Ag:

1). For each t P SentMsgR, for each v P V arsptq, for each
ag, we have that x P XIntr, where x “ constrrtagsrvs;
Then, let RangeIntrpxq be

Ť

agPAg Rangeagpvq Y R1 Y R2,

where R1 Ď tRangepvqzt
Ť

agPAg Rangeagpvqu|v R LT u and

|R1| “ n, R2 Ď tRangepvqzt
Ť

agPAg Rangeagpvqu|v P LT u
and |R2| “ m.

2). Let x1 P XIntr, x1 “ constrrtsrvs as above. For each
val in RangeIntrpx

1
q, let x “ possrvals. Then, x P XIntr;

Also, let RangeIntrpxq be ttrue, falseu.
II. LIntr

Ď XIntr
ˆ2RangepXq where px,RangeIntrpxqq P L

ag

for each x P XIntr as above.
III. ActIntr is a multi-copy of Act, as local terms and
their values are homomorphically expanded over x P XIntr

and RangeIntrpxq. The resulting DY p¨q actions are denoted
Act DY Intr.
IV. ιIntr, P Intr and trIntr are as in T -Intr expanded over
XIntr, LIntr, ActIntr and homomorphically instantiated.

Point I.1 in Definition 3.2 shows that the intruder can
compose and decompose messages over all the respective
values inside the role-agents present in the system. Then, by

the set R1, we see that for each role-agent that “joins” the
system, Intr gets a new possible value for each variable that
is not long-term; so, he could inject all needed fresh values
in each session. The set R2 shows that he can get long-term
values for all instances; so, he could potentially be a party
in any session using appropriate long-term keys. The rest is
self-explained or explained in the template T -Intr.

Definition 3.3 (Concrete pn,mq-environment).
Let T -Env = pX,L Ď X ˆ A, ι,Act, P, trq as above. Let
m ě 1 be the number all role-agents present in the system.
For an arbitrary role R, let all n ě 1 instances of T -R therein
define the set Ag. Then, the concrete pn,mq-environment
Envpn,mq follows the definition of T -Env such that:
• XEnv is a multi-copy of X, where for each t P SentMsgR,
for each v P V arsptq, for each ag instance of T -R, we have
that x P XEnv, with x “ logrtagsrvs;
Let RangeEnvpxq be RangeIntrpxq;
• LEnv

Ď XEnv
ˆ 2RangepXq where px,RangeEnvpxqq P L

ag

for each x P XEnv.
• ActEnv is

Ť

agPAg Act
ag
YAct DY Intr.

• ιEnv, PEnv and trEnv are defined as on T -Env expanded
over XEnv, LEnv, ActEnv and homomorphically instantiated.

Iteration of instances and their systems.
Let R,R1, R2, . . . be all protocol roles in the system. As-

sume nR, nR1 , nR2 , . . . to be the number of instances of
T -R, T -R1, T -R2,. . . , respectively, present in the system.
Consider m to be the total numbers of role-agents in the
system. Then, the interactions over all agents i ď nR of
the pi, nR,mq-concrete instances of T -R with a pnR,mq-
concrete environment and a pnR,mq-concrete intruder, for
each protocol-role T -R, define a concrete or product system
of size n “ pnR, nR1 , nR2 , . . .q. This contains a concrete envi-
ronment and a concrete intruder, which we denote Envpnq
and Intrpnq, respectively.

Atomic propositions for templates and agents.
Role and agent predicates. Let T -R = pX,L Ď X ˆ

A, ι, Act, P, tq as above. Let APR be a set of atomic proposi-
tions over X and VR : LÑ PpAPRq be a valuation function
of these atoms in T -R. Let ag be an instance of T -R. The
above construction of ag over T -R induces a set AP ag

R of
atomic propositions over Xag. Let Vag

R : Lag
Ñ PpAP ag

R q be
a valuation function of these atoms in ag.

Let T -Intr = pX 1, L1 Ď X 1ˆA1, ι1, Act1, P 1, t1q be as above.
Let APT Intr be a set of atomic propositions over X 1. From
the definition of IntrpnR,mq, we derive AP IntrpnR,mq and
VIntrpnR,mq : LIntrpnR,mq

Ñ PpAP IntrpnR,mq
q. We do the

same for EnvpnR,mq. On a concrete system, these are
extended to Envpnq and Intrpnq.

Let a product system be built as above and AP be the
union of all its resulting atoms. Then, let
Vpnq :

Ś

1ďiďnR
Li
ˆ . . .ˆ LIntrpnq

ˆ LEnvpnq
Ñ PpAP q be

defined as Vpnqppl1, . . . , lIntrpnq, lEnvpnq
qq “ tp | p P V a

plaqu,
for a P t1, . . . , Intrpnq, Envpnqu.

Concrete systems.
Definition 3.4 (Concrete security system). Let R

be a role, S be a PSS, and n be as above. A concrete se-
curity system (CSS) of size n for S is the tuple Spnq “
pppagiRqiPt1,...,nRu

qR, Intrpnq, Envpnq,Vq.

1213

The tuple Spnq given above is an interleaved interpreted
system whose components are defined as in Sections 2 and 3.

The product of local objects (e.g., states, actions) in a
CSS define global objects. The unwound CSS Spnq is the
underlining Kripke structure obtained from a given CSS.
The global actions and the global transition function induce
paths over the global states of a CSS, as usually [16]. The
indistinguishability relations over global states are: „agi

R
for

agents, „Intrpnq for the intruder, „Envpnq for the environ-
ment. These are defined on local equalities: g „j g

1 iff gj
=g1j where j P tagiR, Intrpnq, Envpnqu, and gj is the local
state of j in the global state g. This indistinguishability
relation is correct cryptographically due to the fact that we
model receiver-transparent protocols.

Specification language.
System properties are expressed in a variant of CTLK [16],

stemming from the following BNF:

φ ::“ p | φ | φ_ φ | EXφ | EpφUφq | EGφ | Kiφ

where i P T R, T Intr and p P APRYAPIntr. Dual temporal
modalities and the universal path quantifier A (“for all paths”)
are defined as usual [18]. These formulae are interpreted over
any unwound interpreted system, like CSSs, as expected [16];
for formula satisfaction, we write Spnq |ù φ.

Since variables and atoms are indexed by roles, we now
introduce a variant of indexed CTLK ; we will use the AG-
fragment of this.

Formula-schemata. We use abstract formula-schemata
specified over a PSS. Applying instantiations to these, pro-
duces concrete formulae in the corresponding CSSs, irrespec-
tive of the numbers of concrete agents within. With our
models, we only use formulae generated upon this schema:

rT R :
Ñ
x,
Ñ
u, . . . , T Intr :

Ñ
ws`AGpφpppx, uq, . . . , p1pwq, . . .qq,

where
Ñ
x ,

Ñ
u ,

Ñ
w are lists of variables, x P

Ñ
x , u P

Ñ
u , w P

Ñ
w,

p P APR, p1 P APT Intr, φ is formed with the atoms p, p1.

The values of the variables in
Ñ
x will iterate over the names

of T -R instances, and elements of
Ñ
u and

Ñ
w will span values

of variables inside atoms in APR and APT Intr, respectively.
Concrete formulae. An expansion of a schema inside

a CSS is the conjunction over all the ‘names’ a of agents

iterated over with
Ñ
xs, over all the values b inside their atoms

iterated over with
Ñ
us, over all references to values c in atoms

of Intr iterated over with
Ñ
w:

ľ

Ñ
x“

Ñ
a ,

Ñ
u“

Ñ
b ,...,

Ñ
w“

Ñ
c

AGpφppagpa, bq, . . . , , pIpcq, . . .q,

where pag P AP ag
R , pI P AP Intr.

Indexed specifications. A formula following the above

schema is called a
Ñ
v -indexed formula, where

Ñ
v is called the

index of the formula; it denotes all lists of variables bound to

templates as per the schema. We use @Ñ
v
AGφp

Ñ
v q to denote

both an indexed schema in a PSS or its expansion in a

CSS. By #p
Ñ
v q we refer to the vector #p

Ñ
v q “ pmR,mR1 , . . .q

denoting the number mR of variables in
Ñ
v bound to each

template T -R; we assume w.l.o.g that mR ě 1 for each T -R.

Parameterised model checking and cut-offs of PSS.
Parameterised MC problem [21]. Given a PSS and an
Ñ
v -indexed formula @Ñ

v
AGφp

Ñ
v q, the parameterised model

checking problem (PMCP) concerns answering whether

@n ě #p
Ñ
v q, Spnq |ù @Ñ

v
AGφp

Ñ
v q,

The PMCP is undecidable [3] over general unbounded
transition systems. For systems with communication pat-
terns [21] similar to those of PSSs, the problem can be decided
by finding a cut-off. This is the number of system compo-
nents that suffices to be considered when evaluating a given
specification.

Definition 3.5 (PSS Cutoff). Let S be a PSS and
Ñ
v be an arbitrary index in an indexed formula. Let c “
pcR, cR1 , . . .q be a vector of size equal to the number of protocol-
roles R, R1 in PSS, with cR, c

1
R ě 1. The vector c is said to

be a PSS cutoff if the following holds:

Spcq |ù @Ñ
v
AGφp

Ñ
v q iff @n ą c. pSpnq |ù @Ñ

v
AGφp

Ñ
v qq,

where Spnq is S’s unwound CSS of size n “ pnR, nR1 , . . .q.

To give a cut-off for PSS, we need the following notion. A

trivial assignment of variables for an index
Ñ
v assigns different

variables of the same sort (e.g., different nonces) to different
values in their ranges. We can map these values to indices or
natural numbers, since our ranges or our algebra support sets
are infinitely countable; we use this in the next proofs. For

@Ñ
v
AGφp

Ñ
v q under a trivial assignment, we write AGφp

Ñ
ε q.

Theorem 3.1 (Symmetry reduction). Let S be a

PSS and
Ñ
v be an arbitrary index in an indexed formula. For

a
Ñ
v -indexed formula @Ñ

v
φp
Ñ
v q, we have that

Spnq |ù @Ñ
v
φp
Ñ
v q iff Spnq |ù AGφp

Ñ
ε q,

where Spnq is S’s unwound CSS of size n “ pnR, nR1 , . . .q

Proof. We adapt [15] for S, poising on receiver-transparency.

This lemma reduces the size of the formulae to check,
making it sufficient to consider exactly one value from the
domains of each of the variables. This is exploited next.

Finding cut-offs for PSSs.
Consider c “ pcR, cR1 , . . .q, where each cR denotes as

many agents as the number of variables admitted by T -

R and appear in @Ñ
v
AGφp

Ñ
v q, plus 1 special agent; i.e., if

pmR,mR1 , . . .q “ #p
Ñ
v q, then cR “ mR ` 1 for each protocol-

role T -R. We show that c is a cutoff. To do this, we establish
a relation between the CSS Spcq and an arbitrary CSS Spnq
with n ě c. More specifically, we define a function ζc that
maps a path in Spcq to a path in Spnq, and a function ζn that
maps a path in Spnq to a path in Spcq. Since the transition
function in each system is triggered by one precise action
at a time, any sequence ga1a2 . . ., where g is a concrete
initial state and a1, a2 . . . are concrete actions, specifies a
well-defined path. We begin with ζn which is defined as
ζnpga

1a2 . . .q “ g1a11a12 . . ., where
• g1 is any initial state in Spcq such that the intruder’s

poss-variables that refer to a concrete (special) agent agcRR ,
for any role R, are set to true;
• for each i ě 1, if ai P Act

agxR , where x ě cR, then a1i is
the null action;
• for each i ě 1, if ai P Act

agxR , where x ă cR, then a1i is
the action obtained from ai by replacing each variable with
index greater than cR with cR;
• for each i ě 1, if ai is an intruder’s action, then a1i is

the action obtained from ai by replacing each variable with
index greater than cR with cR.

1214

We now define ζc by ζcpg
1a11a12 . . .q “ ga1a2 . . ., where

• g is an initial state in Spnq such that an intruder’s poss-
variable is set to true iff the variable is admitted by the
intruder in Spcq and it is set to true in Spcq;
• for each i ě 1, ai “ a11.
On PSSs, we imposed that agents synchronise on actions.

This is the core of the mappings above, which entail the
following theorem, showing c to be our cutoff.

Theorem 3.6. Spcq |ù @Ñ
v
AGφp

Ñ
v q iff Spnq |ù @Ñ

v
AGφp

Ñ
v q

for any n ě c.

Proof. (ñ) Assume Spcq |ù @Ñ
v
AGφp

Ñ
v q and choose n ě

c. By Theorem 3.1, Spcq |ù AGφp
Ñ
ε q. Let π be an arbitrary

path in Spcq originating from an initial state. We have

that pSpcq, gq |ù φp
Ñ
ε q for every g in π. Consider ζcpπq.

By definition of ζc, pSpnq, gq |ù φp
Ñ
ε q for every g in ζcpπq.

Therefore, Spnq |ù AGφp
Ñ
ε q.

(ð) As above, but using ζn.

The above provides a methodology to solve the PMCP for
PSSs by checking every concrete systems up to the cutoff.

4. IMPLEMENTATION
We implemented the theoretical grounds of verifying pa-

rameterised security systems (PSS) in MCMAS-S, as an exten-
sion of the MCMAS-P model-checker [20]. We designed the
input language for MCMAS-S, SISPL, tailored to our semantics.

A MAS-specification language for security proto-
cols. Next, we use SISPL snippets. We start with an SISPL

excerpt for the A-role in NSPK. Template for roles in SISPL

include types of variables with denotation and range as per
the security semantics:

Template Role_A
Protocol Vars: -- bound to the A-role

...
n_a : {null,atom_a};

end Vars
Log Vars: -- free in the A-role

n_b logs Role_B.n_b; ...
end Vars
Longterm Vars: -- longterm data

a : {null,alice}; ...
end Vars

Under Log Vars, n b models the nb free variable in NSPK’s
A-role. So, concrete values for n b depend on the ranges
defined in the B-role template (i.e., n_b logs Role_B.n_b).
In a concrete system, with each new instance i of Role A, a
new value atom ai is added to the growing range of na, and
each such instance will hold as many copies of nb as there are
instances of Role B. To encode the operational semantics
of actions, we designed several, overloaded shorthands to be
used in a part called Messaging Actions:

... Messaging Actions ...
receive_byTransmit_msg2 composes (+n_a-,-n_b+,+a-);...

The keyword composes denotes that the concrete messages
to be sent or received have ranges homomorphically defined
via the ranges of the variables within. Then, the sign ‘+’ in
front of a variable denotes that the concrete agent has to
have a non-null value for that variable in order for the action
to be enabled or executable (see Section 2). A sign ‘-’ in

front of a variable stipulates that the action is executable
irrespective of the value of this variable; due to composes

(...,-n_b...,), a Role A agent in NSPK would receive the
second message no matter the value of n b. For this action,
the ‘+’ preceding n a is used to implement matching-receive
semantics: an instance of Role A would not accept the sec-
ond message in NSPK unless its inner value for na coincided
with her a-priori value of n a. Lastly, the sign ‘+’ after a
variable implements the setting nature of actions (see Sec-
tion 2): composes (...,n_b+...,) denotes that the receipt
of NSPK’s second message by an instance of Role A will as-
sign a concrete value for n b accordingly. The specification
of protocol and evolution functions is minimalistic (as per
Section 2) and uses PISPL [21] syntax, i.e., as in the MCMAS-P
model-checker that we extended..

We now discuss the environment’s SISPL specification.

Template Environment
Log Vars:

a_log_protocol_msg1 logs Role_A.a;
n_a_log_protocol_msg1 logs Role_A.n_a; ...

end Vars
Messaging Actions ...
-- A sends msg1, Env intercepts
sent_intercept_msg1 composes

(-a_log_protocol_msg+,-n_a_log_protocol_msg1+,
-b_log_protocol_msg1+);

-- Env’s logs might be rewritten by Intr
tamper_log_msg1 composes

(-a_log_protocol_msg1+,-n_a_log_protocol_msg1+,
-b_log_protocol_msg1+); ...

The Log Vars part is inline with T -Env discussed in Sec-
tion 2: in an instance-by-instance fashion, the environment
stores the values for all the messages exchanged. In the Mes-

saging Actions part, by the preceding ‘-’ signs, we mean
that the environment does not need any particular value
to intercept messages; this will set all due values (i.e., the
suffix + signs). The tamper_log_msg1 lines show the Env-
Intr synchronisation, where Env’s intercepted logs may be
overwritten by Dolev-Yao compositions.

Now consider a snippet from the Intruder template:

... Messaging Actions ...
analz_msg_1_as_enc_pair composes
(-a_in_protocol_msg1+,-n_a_in_protocol_msg1+,
+b_in_protocol_msg1+);...

It is a part of the Dolev-Yao analysis on a NSPK message: if
Intr knows the decrypting key (i.e., “+b_in_protocol_msg1”),
then his variables will be set to the inner-values of this mes-
sage (i.e., n_a_in_protocol_msg1+).

The specification of logical formulae is as in PISPL [21].

MCMAS-S: a prototype model checker for security
protocols given as MAS specifications. The input to
MCMAS-S is a PSS S and a set of logical formulae in indexed
CTLK following our schemata, written as SISPL file. The
model checker solves the PMCP for PSS. MCMAS-S is based on
the same core parameterised model checking techniques as
MCMAS-P [21]. In other words, it implements the techniques in
Section 3, exploiting agent-environment synchronisation and
symmetry reductions to find cut-offs as in Theorem 3.6. Once
a cut-off c is calculated, the reachable state-space of Spcq is
computed and encoded symbolically. Then, the formulae are
checked on this and a result is presented.
MCMAS-S differs from MCMAS-P primarily in that agents can

share variables and ranges. Like in MCMAS-P, the construction

1215

of these ranges is done on-the-fly, as larger systems and
formulae up to the cut-off c are being considered; however,
the semantics in Section 3 implies that in MCMAS-S we expand
these ranges differently with a security-driven fine-tuning in
mind.

The C++ implementation of MCMAS-S is available at [1].

5. EXPERIMENTAL RESULTS
We evaluated our theoretical results and the implementa-

tion by verifying two authentication and key-establishment
protocols: NSPK [27], presented in Section 2, and ARSPC [30].
The PSSs and the indexed CTLK formulas to express their
respective authentication and secrecy goals were coded in a
SISPL file.

Following Section 2, NSPK’s authentication goal is

AGpendAp
Ñ
u ,
Ñ
v q^endBp

Ñ

u1,
Ñ

v1q Ñ agree naABp
Ñ
u ,
Ñ

u1,
Ñ
v ,
Ñ

v1,
Ñ
w,

Ñ

w1qq,

where endA P APA denotes that template T -A of A-role is

at the end-step of the protocol,
Ñ
u and

Ñ
v range over instances

of T -A, agree naAB is a conjunction of atoms in APA and
APB expressing that the values of A, nA and B are the same

in (instances of) T -A and T -B, and
Ñ
w iterates over the values

of A, nA and B inside T -A. Similarly,
Ñ

u1,
Ñ

v1 span instances

of T -B and
Ñ

w1 ranges over the values of the cited variables
inside T -B.

Following Section 2, NSPK’s secrecy goal is

AGpendAp
Ñ
u ,
Ñ
v q ^ endBp

Ñ

u1,
Ñ

v1q Ñ

 KIntrpholds nap
Ñ
u ,
Ñ

u1,
Ñ
v ,
Ñ

v1
Ñ
w,

Ñ

w1qqq,

where holds na is a conjunction of atoms in APA and APB

expressing that the value of nA is the same in (instances of)
T -A and T -B, and the rest is as previously explained.

By using MCMAS-S, we obtain a cut-off of p2, 2q underpin-
ning an attack which refuted the first formula above. This
attack consists of two A-parties and two B-parties, with the
intruder tampering with the sessions of these parties.

Indeed, for the first formula, we also find a counterexample
emulating the famous Lowe-attack [24] on NSPK. For the
second formula, MCMAS-S offers us a longer counterexample
but analogous to that of Lowe’s attack, showing that the
intruder learns the value of na in an instance of T -A and
replays it to an instance of T -B, with KIntrpholds nap. . .qq
failing therein.

Many authentication and key-establishment protocols have
inter-session attacks similar to Lowe’s attack in NSPK. Indeed,
ARSPC (Andrew Secure RPC) [30] is a key-establishment pro-
tocol where two concurrent sessions can be exploited in this
way [25]. To avoid this, Lowe proposed [25] a strengthen-
ing [22] of ARSPC.

We used MCMAS-S to check this version of ARSPC against a
CTLK formula similar to NSPK’s authentication-requirement
but expressed for the key established in ARSPC. We found a
cut-off of p2, 2q as above; by checking the concrete models,
we were able to establish that Lowe’s version of ARSPC is
correct in the unbounded setting.

On a PC with an Intel(R) Core(TM)2 Quad CPU Q8200
2.33GHz, with 4GB of total memory, running Ubuntu 3.13.0-
55-generic, it takes approximately 5 seconds to find the
cut-offs above and to check the corresponding systems. The
SISPL files for these tests are available together with MCMAS-S

at [1].

6. CONCLUSIONS
Forthcoming pervasive applications in the IOTcall for the

deployment of MAS to be secure. To this end, this paper puts
forward a technique to verify whether the security protocols
underlying these applications are correct in a provable way.
Concretely, we introduced a semantics that accounts for an
unbounded number of protocol sessions and unbounded size
data-exchanges under a Dolev-Yao threat and we defined the
parameterised model checking problem for these. Though
the problem is generally undecidable, in our case we solved it
by analysing a finite number of bounded systems. This was
possible due to our models enjoying agent-environment syn-
chronisations and a certain symmetry, which is in part down
to he class of protocols considered. We mechanised these in
MCMAS-S: a model checker which verifies parameterised MAS
modelling security protocols against requirements given a
fragment of CTLK. We verified versions of the NSPK and AS-

RPC authentication and key-establishment protocols [31], and
we proved their (in)security in an unbounded-session setting.

Related Work. We built upon [20, 21], where the pa-
rameterised model checking problem for MAS and the model
checker MCMAS-P were introduced. However, neither the se-
mantics nor the tool in [20] can account for security models.
For instance, in [20] there is no support for multiple tem-
plates, partitioned variables in templates, or for unbounded
variables and ranges inside the agents; these are needed to
express protocol-roles and the unbounded ranges of, e.g.,
long-term keys.

The Dolev-Yao-based [14] security semantics is widely
adopted in security-verification [5, 29, 12]. But few of these [7]
support agent-driven models and temporal-epistemic speci-
fications. Unlike [7], we consider an unbounded number of
protocol sessions and agents therein, and so we check a pro-
tocol in general terms rather than just draw conclusions for
a specific number of principals and sessions of its exchanges.
ProVerif and Tamarin are tools for security-verification

in unbounded settings [26, 6], based on methods other than
model-checking. They are semidecidable, halting only when
an attack is found. This is not the case of MCMAS-S, which
ascertains both correctness and incorrectness of unbounded
systems. Moreover, those tools generally cannot handle state-
based properties in unbounded-size models. And even when
they can do so in the bounded setting [4], their requirements
cannot pertain to agency-based logics, so they cannot reason
on the epistemic states of the principals explicitly, as we do
here. As such, it has often been argued that using primitives
on agents’ knowledge can simplify and clarify specifications of
security protocols [2, 17, 11]. Indeed, note that the epistemic
formulae we verify, KIntrp. . .qq, can be used à la [8] to
express privacy requirements via the attacker’s ignorance
w.r.t. to facts spanning the whole state-space of the systems.

Future Work. We will extend the approach to other
classes of protocols and exhibit the analysis of privacy re-
quirements, given their intrinsic epistemic nature.

7. ACKNOWLEDGEMENTS
This research was funded by the European Union’s Horizon

2020 research and innovation programme under the Marie
Sk lodowska-Curie grant agreement No 661362 and by the
EPSRC under grant EP/I00520X and a Doctoral Prize Schol-
arship.

1216

REFERENCES
[1] MCMAS-S.

http://vas.doc.ic.ac.uk/software/extensions/,
2016.

[2] M. Abadi and M. R. Tuttle. A semantics for a logic of
authentication. In Proc. of the 10th Annual ACM
Symposium on Principles of Distributed Computing
(PODC’91), pages 201–216, 1991. ACM Press.

[3] K. Apt and D. Kozen. Limits for automatic verification
of finite-state concurrent systems. Information
Processing Letters, 22(6):307–309, 1986.

[4] D. Basin, J. Dreier, and R. Sasse. Automated symbolic
proofs of observational equivalence. In Proc. of the
22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS’15), pages 1144–1155,
2015. ACM.

[5] D. Basin, S. Modersheim, and L. Vigano. OFMC: A
symbolic model checker for security protocols.
International Journal of Information Security,
4(3):181–208, 2005.

[6] B. Blanchet. An efficient cryptographic protocol verifier
based on prolog rules. In Proc.of the 14th IEEE
Workshop on Computer Security Foundations
(CSFW’01), pages 82, 2001. IEEE Computer Society.

[7] I. Boureanu, M. Cohen, and A. Lomuscio. A
compilation method for the verification of
temporal-epistemic properties of cryptographic
protocols. Journal of Applied Non-Classical Logics,
19(4):463–487, 2009.

[8] I. Boureanu, A. V. Jones, and A. Lomuscio. Automatic
verification of epistemic specifications under convergent
equational theories. In Proc. of the 11th International
Conference on Autonomous Agents and Multi-Agent
systems (AAMAS’12), pages 1141–1148. IFAAMAS
Press, 2012.

[9] M. Brown, B. An, C. Kiekintveld, F. Ordóñez, and
M. Tambe. An extended study on multi-objective
security games. Autonomous Agents and Multi-Agent
Systems, 28(1):31–71, 2014.

[10] M. Burrows, M. Abadi, and R. Needham. A logic of
authentication. ACM Transactions on Computer
Systems, 8(1):18–36, 1990.

[11] R. Chadha, S. Delaune, and S. Kremer. Epistemic logic
for the applied pi calculus. In Formal Techniques for
Distributed Systems, volume 5522 of LNCS, pages
182–197. Springer Berlin Heidelberg, 2009.

[12] B. Conchinha, D. Basin, and C. Caleiro. FAST: an
efficient decision procedure for deduction and static
equivalence. In Proc. of the 22nd International
Conference on Rewriting Techniques and Applications
(RTA’11), pages 11–20, 2011.

[13] J. Dickerson, J. Goldman, J. Karp, A. Procaccia, and
T. Sandholm. The computational rise and fall of
fairness. In Proc. of the 28th AAAI Conference on
Artificial Intelligence, pages 1405–1411, 2014.

[14] D. Dolev and A. Yao. On the Security of Public-Key
Protocols. IEEE Transactionson Information Theory
29, 29(2):198–208, 1983.

[15] E. Emerson and A. Sistla. Symmetry and model
checking. Formal methods in system design,
9(1):105–131, 1996.

[16] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning about Knowledge. MIT Press, Cambridge,
1995.

[17] J. Y. Halpern and R. Pucella. Modeling Adversaries in
a Logic for Security Protocol Analysis. In Proc. of the
Workshop on Formal Aspects of Security (FASec02),
volume 2629 of LNCS, pages 115–132. Springer-Verlag,
2002.

[18] M. R. A. Huth and M. D. Ryan. Logic in Computer
Science: Modelling and Reasoning about Systems (2nd
edition). Cambridge University Press, Cambridge,
England, 2004.

[19] J. Jennings, G. Whelan, and W. Evans. Cooperative
search and rescue with a team of mobile robots. In
Proc. of the 8th International Conference on Advanced
Robotics (ICAR’97), pages 193–200, 1997.

[20] P. Kouvaros and A. Lomuscio. A cutoff technique for
the verification of parameterised interpreted systems
with parameterised environments. In Proc. of the 23rd
International Joint Conference on Artificial Intelligence
(IJCAI’13), pages 2013–2019. AAAI Press, 2013.

[21] P. Kouvaros and A. Lomuscio. Parameterised
verification for multi-agent systems. Artificial
Intelligence, 234:152–189, 2016.

[22] Laboratoire Spécification et Vérification (LSV), École
Normale Supérieure Cachan. Lowe’s version of the
ARSPC protocol. A Library of Cryptographic
Protocols Descriptions.

[23] A. Lomuscio, W. Penczek, and H. Qu. Partial order
reductions for model checking temporal-epistemic logics
over interleaved multi-agent systems. Fundamenta
Informaticae, 101(1):71–90, 2010.

[24] G. Lowe. An attack on the Needham-Schroeder
public-key authentication protocol. Information
Processing Letters, 56(3):131–133, Nov. 1995.

[25] G. Lowe. Some new attacks upon security protocols. In
Proc. of the 9th IEEE Workshop on Computer Security
Foundations (CSFW’96), pages 162, 1996. IEEE
Computer Society.

[26] S. Meier, B. Schmidt, C. Cremers, and D. Basin. The
TAMARIN Prover for the Symbolic Analysis of
Security Protocols. In Proc. of the 25th International
Conference on Computer Aided Verification (CAV’13),
pages 696–701, Berlin, Heidelberg, 2013.
Springer-Verlag.

[27] R. Needham and M. Schroeder. Using Encryption for
Authentication in Large Networks of Computers. ACM
Communications, 21(12):993–999, Dec. 1978.

[28] L. Paulson. The Inductive Approach to Verifying
Cryptographic Protocols. Journal of Computer
Security, 6(1-2):85–128, Jan. 1998.

[29] M. Rusinowitch and M. Turuani. Protocol Insecurity
with Finite Number of Sessions is NP-complete. Proc.
of the 21st IEEE Symposium on Security and Privacy
(S&P’01), 2001.

[30] M. Satyanarayanan. Integrating security in a large
distributed system. ACM Trans. Comput. Syst.,
7(3):247–280, Aug. 1989.

[31] SPORE. Security protocols open repository.
http://www.lsv.ens-cachan.fr/spore.

1217

http://vas.doc.ic.ac.uk/software/extensions/
http://www.lsv.ens-cachan.fr/Software/spore/andrewLowe.html

	Introduction
	Parameterised Security Model
	Unbounded Security in MAS
	Implementation
	Experimental results
	Conclusions
	Acknowledgements

