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ABSTRACT
Leader-follower (LF) equilibria play a central role in several
applications of game theory. In spite of this, the literature
only presents sporadic results for the case with two or more
followers. In this work, we address the problem of computing
LF equilibria in this setting, assuming that the followers play
a Nash Equilibrium after the leader’s commitment.
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1. INTRODUCTION
Leader-Follower equilibria (LFEs) have been much stud-

ied for the case of a single follower who, in an equilibrium, is
known to play w.l.o.g. a pure strategy [6]. In this case, com-
puting an LFE is easy with complete information, whereas
it becomes FNP-hard for Bayesian games [2]. In the case
of multiple followers, the literature shows that, if the follow-
ers play a correlated equilibrium, an LFE can be found in
polynomial time [1] whereas, if they play sequentially, the
problem is FNP-hard [2].

In this work, we address the fundamental case where, after
the leader’s commitment, the followers play a Nash Equi-
librium (NE). It is relevant in many applications, such as
social planning (e.g., urban traffic plans) or monetary eco-
nomics (e.g., monetary policies of central banks). We refer
to the corresponding LFE as Leader-Follower Nash Equi-
librium (LFE-N). Depending on the leader’s assumption on
the followers’ compliance, we define an optimistic and a pes-
simistic variant of the problem where the followers select an
NE which either maximizes or minimizes the leader‘s utility.

2. PROBLEM ANALYSIS
We outline few hardness results of LFE-Ns computation:
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Proposition 1. Computing an optimistic or pessimistic
LFE-N is FNP-hard and it is not in Poly-APX unless P =
NP, even for polymatrix games.

Proposition 2. Deciding whether one of the leader’s ac-
tions is played with strictly positive probability in an opti-
mistic LFE-N is NP-hard.

In general, the computation of an LFE-N amounts to solv-
ing a bilevel program. In the first level, we look for a leader’s
strategy δ while, in the second level and for the given δ, we
look for followers’ strategies ρ1, ρ2, . . . , ρn−1 forming an NE
which either maximizes (optimistic case) or minimizes (pes-
simistic case) the leader’s utility. If we assume the convexity
of the second level problem, bilevel programs can be cast as
(compact) single-level programs by substituting for the sec-
ond level their KKT conditions [4]. This is not needed for
optimistic LFE-Ns, as we can turn the second level problem
into one of pure feasibility over which the leader has full con-
trol: he looks for a strategy δ and, given δ, also for an NE in
the followers’ game such that his utility is maximized. This
allows for the exact solution of the problem via (nonlinear)
mathematical programming. For pessimistic LFE-Ns, we
cannot get rid of the second level objective function as the
leader cannot control which NE the followers choose. More-
over, KKT conditions do not yield a compact reformulation,
as even the sole feasible region of the second level (the set
of NEs of a game parameterized by δ) is highly nonconvex.
For this case, we investigate the use of (heuristic) black-box
optimization techniques, which only assure a lower bound
on the leader’s utility in an optimal LFE-N.

3. COMPUTING LFE-NS
In the following, we consider both Normal-Form (NF) and

PolyMatrix (PM) games, randomly generated with GAMUT.

3.1 Optimistic variant
To compute optimistic LFE-Ns, we propose different exact

mathematical programming formulations, tailored for both
NF and PM games, which we test with two global optimiza-
tion solvers, SCIP and BARON. Let us first introduce our
notation. Let N = {1, . . . , n} be the set of agents and, for
each i ∈ N , let Ai be the corresponding set of actions, with
mi = |Ai|. For each agent i ∈ N , let xi ∈ [0, 1]mi , with
eTxi = 1 (where e is the all-one vector), be his strategy,
where each component xai represents the probability that
action a ∈ Ai is played. Let Ui ∈ Rm1×...×mn denote, for
each agent i ∈ N , his multidimensional payoff matrix, where

1363



each component Ua1,...,an
i is the utility of agent i when the

agents play actions a1, . . . , an. Let agent n be the leader,
whom we relabel as `, and F = N\{`} be the set of followers.
While we assume n = 3 (F = {1, 2}) and m` = m1 = m2,
the generalization to n > 3 and general mis is straightfor-
ward. For all f ∈ F , we adopt the notation f ′ := F \ {f}
and denote x`, x1, x2 by δ, ρ1, ρ2, respectively. The follow-
ing formulation is the one which turned out to be the most
efficient (when solved with SCIP):

max
δ,ρ1,ρ2,vf≥0

uf ,rf ,yf ,z≥0

sf∈{0,1}

∑
i∈A`

∑
j∈A1

∑
k∈A2

z
ijk
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ijk
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j
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ik
f′U

ijk
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y
ij
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ρ
j
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1 ρ

k
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i∈A`

∑
j∈Af

y
ij
f = 1, yf ≥ 0 ∀f ∈ F (5)

∑
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z
ijk

= 1, z ≥ 0 (6)

e
T
δ = 1, e

T
ρ1 = 1, e

T
ρ2 = 1 (7)

vf ≥ ujf ∀f ∈ F, j ∈ Af (8)

r
j
f = vf − ujf ∀f ∈ F, j ∈ Af (9)

ρ
j
f ≤ 1− sjf ∀f ∈ F, j ∈ Af (10)

r
j
f ≤Mfs

j
f ∀f ∈ F, j ∈ Af . (11)

Overall, the formulation contains 2m2+m3 quadratic con-
straints and a linear objective function. Solving it with
SCIP, we obtain average optimality gaps < 30% (< 35% in
the worst-case) for m ≤ 40. This formulation may thus con-
stitute a valid (empirical) approximation algorithm, yielding
a 6.5

10
-approximation.

The average (over 10 random instances) computing times,
which we report as a function of n andm for both NF and PF
games in the following two tables, show that we can tackle
instances comparable, in size, to the largest ones used in [5]
for NE finding algorithms, in spite of our problem being
more general. They also show how, in the PF case, the
formulation (which contains fewer nonlinearities in this case)
allows for a substantial reduction of the computing times.

Normal-form games
m = 2 m = 3 m = 4 m = 5

n = 3 0.06 0.20 0.92 23.79
n = 4 0.19 8.274 142.66 1304.45
n = 5 278.06 409.78 2016.97 –
n = 6 172.90 2350.95 2212.95 –

Polymatrix games
m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

n = 3 0.24 2.17 1.87 7.31 24.45 194.71
n = 4 4.84 10.85 121.57 247.84 622.72 1947.54
n = 5 7.51 90.83 332.04 1982.77 2396.01 2175.29
n = 6 10.31 1169.50 2062.75 – – –

3.2 Pessimistic variant
For the pessimistic case, we introduce a Black-Box ap-

proach (BB) based on a Radial Basis Function (RBF) es-
timation, relying on the solver RBFOpt [3]. The idea is
of exploring the leader’s strategy space (variables δ) with
a direct search which, iteratively, builds an RBF approxi-
mation of the objective function, relying on the solution of
an oracle formulation for the objective function evaluation.
Given an incumbent value δ̂, the oracle solves the (NF or

PM) pessimistic second level problem (where the leader’s
utility is minimized) with the following exact mathematical

programming formulation, with δ fixed to δ̂:

min
ρ1,ρ2,vf≥0

uf ,rf ,y≥0
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∑
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y
jk
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Constraints (7)–(11). (16)

In Fig. 1 (a), we compare BB (also in the optimistic set-
ting) to the exact (optimistic) formulation. On the instances
with m ≤ 5 (for which, being solved to optimality by SCIP,
we know the optimal solution value), we see that the gap
between optimistic and pessimistic LFE-Ns is rather small,
suggesting that, in the pessimistic case, the leader could
force the followers to play a strategy providing him with a
utility not dramatically smaller than that which he would
obtain in the optimistic setting. The figure also shows the
limit of the approach, indicating that, for m ≥ 15, the time
needed to solve the oracle formulation becomes too high for
the method to be practical.
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Figure 1: Black-Box approach.
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