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ABSTRACT

Inspired by the study of control scenarios in elections and com-

plementing manipulation and bribery settings in cooperative games

with transferable utility, we introduce the notion of structural con-

trol in weighted voting games. We model two types of influence,

adding players to and deleting players from a game, with goals such

as increasing a given player’s Shapley–Shubik power index in rela-

tion to the original game. We study the complexity of the problems

of whether such structural changes can achieve the desired effect.
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1. INTRODUCTION
A major task in computational social choice is the complexity

analysis of the question of whether a certain form of influence (such

as manipulation, bribery, and control) is possible in an election

under some voting rule (see, e.g., [11, 2]). Whenever successful

manipulative actions are generally possible, a high computational

complexity may provide some protection against them. Similar

ideas have been adapted to other fields, such as judgment aggre-

gation (again, see, e.g., [11, 2]). In algorithmic game theory, the

question of influencing the outcome of a game has also been studied

extensively. For example, the complexity of manipulation by merg-

ing, splitting, and annexation has been studied in weighted voting

games (WVGs) [1, 6, 9], as well as manipulation of the quota [13].

In dynamic WVGs [5], the quota changes dynamically over time.

Bribery has been studied for path-disruption games [10].

Inspired by the notion of control in elections, we consider control

scenarios in WVGs. We define the problems of whether it is possi-

ble to change the structure of a game by either adding or deleting

players so as to achieve certain goals. One could, for instance, think

of a committee able to decide upon an issue with a certain quota of

votes. In order to increase the significance of some participant,

an organizer might invite further participants or choose a meeting

schedule to make sure that others are excluded. Structural changes

could also be viewed as a change of participation over time with-

out malicious intentions. Goals include increasing and decreas-
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ing a distinguished player’s power in relation to the original game.

Moreover, if an exact number of players is to be added, it might be

desirable to maintain an original player’s power index. All defined

control types are possible in WVGs, we therefore analyze the com-

plexity of whether structural control can be successful in a given

game. The complexity depends on the control type, the goal, and

on whether the number of players that can be added or deleted is

fixed or given in the problem instance.

2. PRELIMINARIES
A simple game G = (N,v) can be compactly represented as a

weighted voting game G = (w1, . . . ,wn; q), where wi is player i’s

weight, q is a quota, and a coalition C ⊆ N wins if ∑i∈C wi ≥ q and

otherwise it loses. To measure player i’s significance in G , power

indices such as the probabilistic Penrose–Banzhaf index (PBI) [4]

and the Shapley–Shubik index (SSI) [12] can be used:

PBI(G , i) = 21−n
∑C⊆Nr{i}(v(C∪{i})−v(C)) and

SSI(G , i) = 1
n! ∑C⊆Nr{i} ‖C‖!(n−1−‖C‖)(v(C ∪{i})−v(C)).

For more background on cooperative game theory, see, e.g., [3].

We use the standard notions of hardness and completeness for a

complexity class (e.g., NP or coNP) with respect to many-one poly-

nomial-time reducibility. #P is the class of all functions that give

the number of solutions of a problem in NP. Probabilistic poly-

nomial time, PP, is the class of all decision problems X for which

there exist a function f ∈ #P and a polynomial p such that for all

instances x, x ∈ X ⇐⇒ f (x) ≥ 2p(|x|)−1. It is considered to be a

rather large complexity class, since it is known that PH ⊆ PPP.

3. CONTROL TYPES AND GOALS
We define control by adding and by deleting players in WVGs.

For each control type, we consider goals, such as increasing or de-

creasing a distinguished player’s power, in relation to the original

game. We first define how adding and deleting a player affects

the coalitional function for WVGs: For control by adding players,

from a given WVG G = (w1, . . . ,wn; q) with N = {1, . . . ,n} and a

set M = {n+1, . . . ,n+m} of m unregistered players with weights

wn+1, . . . ,wn+m, we obtain a new game G∪M = (w1, . . . ,wn+m; q).
For example, for control by adding players to increase a power in-

dex PI we ask: Given a WVG G , a set M of unregistered players

with weights wn+1, . . . ,wn+m, a distinguished player p, 1 ≤ p ≤ n,

and a positive integer k, can at most k players M′ ⊆ M be added

to G such that for the new game G∪M′ it holds that PI(G∪M′ , p) >
PI(G , p)? Analogously, we can ask whether the game can be con-

trolled so as to decrease a certain player’s index; or whether it

is possible to add players to a game without changing the distri-

bution of power among the original players. Deleting a subset
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M ⊆ N of m players from a WVG G = (w1, . . . ,wn; q) yields a

WVG GrM = (w j1 , . . . ,w jn−m
; q) with { j1, . . . , jn−m}=NrM. We

ask whether at most k players M′ ⊆ Nr{p} can be deleted from G

to reach some goal for p. If a player i is deleted from a WVG, any

other player j gains the same amount of power that i would gain if j

were deleted [7]. After deleting a subset M ⊆ Nr{i} of size m ≥ 1

from a WVG G , player i’s PBI changes by at most 1−2−m and by

at least −1+2−m; her SSI changes by at most 1− (n−m+1)!/2n! and

by at least −1+ (n−m−1)!/2(n−2)!.

4. IN- AND DECREASING AN INDEX
Similarly to control by adding or deleting voters or candidates in

elections, adding and deleting players are not merely inverse opera-

tions, as when adding players all original players are guaranteed to

be part of the game before and after the structural change, whereas

when deleting players each player except the distinguished one can

be removed from the game. Hardness in terms of complexity can be

seen as a shield to prevent a game from being controlled to improve

or worsen a player’s significance.

4.1 Control by Adding Players
We show PP-hardness via techniques inspired by related work [9,

6, 13]: For a #P-parsimonious-complete function F , COMPARE-

F = {(x,y) | F(x) > F(y)} is PP-complete. In this manner, COM-

PARE-#SUBSETSUM is PP-complete. We reduce from a PP-hard

restricted variant of this problem, COMPARE-#SUBSETSUM-RR:

Given a set A = {1, . . . ,n} and a function a : A → Nr{0}, i 7→ ai,

with α = ∑
n
i=1 ai, is the number of subsets of A with values that

sum up to (α/2)−2 greater than the number of those summing up

to (α/2)− 1? The results can be adapted to the SSI by means of a

transformation from X3C allowing constant solution sizes.

THEOREM 1. Control by adding a given number of players in

order to increase (decrease) a player’s PBI or SSI is PP-hard.

An upper bound of NPPP can be established whenever the num-

ber of players to be added is given. If the number of players to be

added is fixed, we even obtain a PP upper bound.

THEOREM 2. Control by adding a fixed number of players in

order to increase (decrease) a player’s PBI or SSI is PP-complete.

4.2 Control by Deleting Players
We have the following two initial results.

THEOREM 3. 1. Control by deleting players to increase a

player’s SSI is NP-hard (even if only one player is deleted).

2. Control by deleting players to decrease a player’s PBI is

coNP-hard (even if only one player is deleted).

NP-hardness holds by a reduction from SUBSETSUM with con-

stant solution sizes. Our coNP-hardness result can be shown by a

reduction from the complement of PARTITION.

5. MAINTAINING AN INDEX
In addition to constructive or destructive goals, we now consider

situations with the goal of maintaining a player’s index when an

exact number of players is added. It may, for instance, happen

that legislative bodies such as the EU Commission, national parlia-

ments, or the United Nations Security Council, have to be expanded

by adding a certain number of new members. Then, an old member

may be interested in maintaining power. This goal is not only dif-

ferently motivated but also different in its algorithmic nature. Note

that here we require an exact (fixed or given) number of players

to be added to or deleted from the game to avoid the trivial case

of adding or deleting none of at most a number of players. While

PP-hardness is also valid for control by adding a given number of

players to maintain a player’s PBI or SSI, PP-hardness for a fixed

number of players to be added cannot immediately be deduced.

However, we have a PP upper bound in this case (as PP is closed

under complement) and a coNP-hardness lower bound.

THEOREM 4. 1. Control by adding a fixed number of play-

ers to maintain a player’s PBI or SSI is coNP-hard and in PP.

2. Control by deleting players in order to maintain a player’s

PBI is coNP-hard (even if only one player can be deleted).

6. CONCLUSIONS AND FUTURE WORK
The complexity of some control problems is left open; interest-

ing gaps remain, e.g., between NP-hardness and PP as well as PP-

hardness and NPPP. So far we have studied goals in relation to the

original game. Alternatively, one might think of a situation where

the goal is to increase a player’s power in comparison to the other

players; or where a player is required to exceed a certain constant

index. We might also study obtaining an exact value. There may

be different ways to reasonably model the new game, e.g., similar

to weighted majority games, where players do not make an abso-

lute but a relative contribution to the game. Studying a change of

players dynamically over time is an interesting task for future work.

There seems to be a close connection to the notion of synergies

in cooperative games (see, e.g., [8]), and it will be interesting to

have a closer look at related results here. Other classes of games

might also be affected by control scenarios.
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