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1. INTRODUCTION
Consider the motivating example of crowdsourcing of a

sequence of large translation jobs which arrive online. Each
job has to be completed within a deadline and with an as-
sured level of accuracy. To accomplish this, the requester
could split such a job into tasks and allocate each task to
a crowd worker. A worker, if employed for a long duration,
might commit errors. We refer to the duration until which
an agent works without committing any error as the time to
failure (TTF). The time taken by a worker to complete the
job all by himself is called the job completion time (JCT)
of that worker. Each worker incurs a certain cost to com-
plete the entire job. Note that the workers are heterogeneous
in terms of their costs and stochastic parameters JCT and
TTF. Importantly, the crowd workers are strategic and may
misrepresent their costs in the hope of gaining higher utility.

In this work, we consider jobs which (a) arrive online, (b)
are divisible (into tasks), (c) have strict completion dead-
lines, and (d) are to be completed with an assured accu-
racy. We propose a multi-armed bandit (MAB) mechanism
which learns the two parameters (mean job completion time
(MJCT) and mean time to failure (MTTF)) of the workers
while eliciting their privately held costs truthfully [1].

2. THE MODEL
LetN = {1, . . . , n} denote the set of crowd workers (agents)

available to the requester. A sequence of T homogeneous
jobs arrives at the platform, one at a time. Following are
some of the design issues of the requester.
Job Parameters: (a) Deadline: We use D to denote the
deadline on each job starting from the arrival of that job,
before which the job is required to be completed in expecta-
tion. (b) Task creation: The requester can divide a current
job t (t = 1, . . . , T ) into a certain number of tasks to meet
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deadline D. We use x
(t)
i to denote the fraction of the job t

assigned as a task to the worker i. We call an allocation xi
feasible when 0 ≤ x(t)i ≤ 1 and

∑n
i=1 x

(t)
i = 1. (c) Threshold

on probability of failure: We say a worker has failed when
he commits an error. We use ε to denote (the common)
threshold on probability of failure for any task.
Worker Parameters: (a) Job Completion Time (JCT): A
worker has a stochastic job completion time, which is the
time he requires to complete the entire job by himself. JCT
for a worker is a random variable with a fixed but unknown
mean. We refer to the mean job completion time (MJCT)
of worker i as ρi, which the requester wishes to learn. The

task allocation x
(t)
i will meet the deadline constraint in ex-

pectation if x
(t)
i × ρi ≤ D. (b) Time to Failure (TTF): A

worker is also characterized by a stochastic time to failure,
which denotes the duration for which a worker would work
without a failure. Like JCT, TTF also has a fixed yet un-
known mean (MTTF). Let Fi be the CDF of TTF for agent
i, the requirement on threshold probability error dictates

Fi(x
(t)
i × ρi) ≤ ε. Like MJCT, a requester also seeks to

learn MTTF. (c) Cost Incurred : Worker i has a privately
held cost ci ∈ [c, c̄] which represents the cost incurred by
worker i to complete the job entirely on his own. Therefore,

the cost involved to complete x
(t)
i fraction of the job by the

worker i is cix
(t)
i .

Goal of the Optimization Problem: The constraints on
deadline and task accuracy, which in turn depend on MJCT
and MTTF, have to be met in a cost optimal way for every
online job t. Thus, this problem is a biparameter learning
problem.
We model the JCT of a worker as a log-normal distribution
with unknown mean ρi ∈ [ρ, ρ̄] while the TTF is modelled
an exponential distribution with mean βi ∈ [β, β̄]. If the
parameters ci, ρi, and βi are known, the requester’s opti-
mization problem is given by eq. (1).

min
Feasible xi
xi∈[0,1]

n∑
i=1

cixi, s.t. , ρixi ≤ min

(
D,βi ln

(
1

1− ε

))
∀i ∈ N.

(1)

In practice, ρi and βi are unknown and need to be learnt.

2.1 Difficulty in Learning βi

In learning of ρi, every allocation contributes a single sam-
ple. However, for estimating βi, each input sample must cor-
respond to a failure, but this is not practical as we do not
observe failure at every instance of allocation. To handle
this difficulty, we propose to use a surrogate random vari-
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able. Consider the experiment where a worker i is allocated
a task on which the worker spends a duration of at least δ.
The experiment is deemed to have failed if the worker i fails
in the first δ duration of allocation, otherwise it is deemed

to be a success. Let N
(i)
δ be the number of such independent

experiments until a failure is encountered. We propose to

use the random variable β
′
δ,i = δ×N (i)

δ to construct a sam-
ple from exponential(βi). The expectation of the surrogate
random variable in the limit coincides with βi(MTTF).

2.2 Non strategic workers: SW-GREEDY
For learning MTTF and MJCT, we use the Robust UCB

technique [2] with truncated empirical mean as the esti-

mator. Let ρ̂+i and β̂+
i denote the upper confidence in-

dices while ρ̂−i and β̂−i denote the lower confidence indices
of MJCT and MTTF, respectively, obtained from Robust
UCB. ρ̂i and β̂i are the empirical estimates of MJCT and
MTTF, respectively, for worker i. The workers are indexed
in increasing order of their costs and each worker i is allo-
cated the largest possible fraction xPST

i which does not vio-
late the constraints in eq. (1) until all tasks of the job are
allocated. A higher value of ρi enforces a lower allocation
to worker i compared to when a lower value of ρi is used.
Hence we refer to ρ̂+i as a pessimistic estimate for ρi. Simi-

larly, we refer to β̂−i as the pessimistic estimate for βi. The
use of pessimistic estimates ensures that even with the true
values of underlying means, the constraint in eq. (1) is sat-
isfied. We refer to the above allocation as SW-GREEDY
(Algorithm 1). Every worker i is paid an amount equal to
the cost incurred, i.e. xPST

i (t)× ci.

3. STRATEGIC WORKERS: TD-UCB
Here, before an allocation is performed, the agents an-

nounce their bids. We denote the bid profile by (bi, b−i).
We introduce a mechanism TD-UCB for which we use the
same allocation rule as SW-GREEDY .

3.1 Payment Scheme
Let ξt denote a tuple of allocation and performance of

the allocated workers for the job t. The learning until job
t is captured in the history ht = {ξk}tk=0. We denote the
externality imposed by agent i on j as xEXT

i,j (bi, b−i;ht, t),
which signifies the additional fraction of the job allocated to
the agent j in the absence of agent i. The externality for the
job t depends on the bid profile (bi, b−i) as well as the history
till job t. Let kt be the agent with the largest reported bid
in the worker set chosen by the allocation scheme.

xEXT
i,j (bi, b−i; t) =


0 if j < kt or i > kt,

Z1 if j = kt,

Z2 if j > kt, where,

(2)

Z1 = min

(
1

ρ̂+j
min

(
D, β̂−j log

(
1

1−ε

))
− xPST

j (t), xPST
i (t)

)
,

Z2 = min

 1

ρ̂+j
min

(
D, β̂−j log

(
1

1−ε

))
, xPST
i (t)−

j−1∑
s=kt

xEXT
i,s (t)


We now propose a payment structure in eq. (3).

pi(bi, b−i; t) =

{
0 if i > kt,

Z3 otherwise, where,
(3)

ALGORITHM 1: SW-GREEDY Allocation Algorithm

Input: Set of workers N , number of jobs T , deadline
D, accuracy level ε, input cost vector:
c1 ≤ c2 ≤ . . . ≤ cn (By re-indexing N)

1 ∀i ∈ N , ρ̂i = ρ̄, ρ̂+i = ρ̄, ρ̂−i = ρ, Ni,t=0

2 β̂i = β, β̂+
i = β̄, β̂−i = β, Nβ

i,t = 0,

3 η
(i)
δ = 0

4 for Online job arrival t = 1, . . . , T do

5 xPST(t) = {xPST
1 (t), . . . , xPST

n (t)} = {0, . . . , 0}
6 i = 1
7 while

∑n
j=1 x

PST
j (t) < 1 do

8 xPST
i (t) = 1

ρ̂+i
min

(
D,β−i ln

[
1

1−ε

])
9 if 1−

∑i−1
j=1 x

PST
j (t) < xPST

i (t) then

10 xPST
i (t) = 1−

∑i−1
j=1 x

PST
j (t)

11 i = i+ 1

12 Define k̄t = max{i : xPST
i > 0}

13 Allocate the job t as per xPST
i

14 Observe τ̃i, the time of completion of xPST
i by i

15 ∀i ∈ {1, . . . , k̄t}, Ni,t = Ni,t−1 + 1

16 ρ̂i =
(
Ni,t−1 × ρ̂i + τ̃i

xPSTi (t)

)
× 1

Ni,t

17 for i ∈ {1, . . . , k̄t} do
18 if Worker i made an error during δ then

19 β̂i =
β̂i×N

β
i,t−1+(δ×η(i)

δ
)

N
β
i,t−1+1

20 Nβ
i,t = Nβ

i,t−1 + 1

21 η
(i)
δ = 0

22 else

23 η
(i)
δ = η

(i)
δ + 1

24 Nβ
i,t = Nβ

i,t−1

Initialize

Pessimistic
Selection

Updates
for
Surrogate
of βi

Z3 =

n∑
s=kt

[
xEXT
i,s (t)× bs

]
+

xPST
i (t)−

n∑
s=kt

xEXT
i,s (t)

× c̄
4. PROPERTIES OF TD-UCB MECHANISM

Theorem 1. The TD-UCB mechanism is Dominant Strat-
egy Incentive Compatible and Individually Rational.

Definition 1. Optimal worker set: For a problem in-
stance with all the parameters known, in the solution to the
optimization problem of eq. (1), we refer to the set of agents
allocated a non-zero fraction of the job as the the optimal
worker set.

Theorem 2. The TD-UCB mechanism selects an opti-
mal worker set after the job t′ ∈ O(log T ).

Theorem 3. The average regret of TD-UCB mechanism
approaches zero asymptotically.

References
[1] S. Bhat, D. Padmanabhan, S. Jain, and Y. Narahari. A truthful

mechanism with biparameter learning for online crowdsourcing.
arXiv preprint arXiv:1602.04032, 2016.

[2] S. Bubeck, N. Cesa-Bianchi, and G. Lugosi. Bandits with heavy
tail. IEEE Transactions on Information Theory, 59(11):7711–
7717, 2013.

1386




