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ABSTRACT
As increasingly large-scale multiagent simulations are being
implemented, new methods are becoming necessary for con-
cisely summarizing the results of a simulation run. Here
we pose this as the problem of simulation summarization:
how to extract the causally-relevant states from the trajec-
tories of the agents. We present a simple algorithm to com-
press agent trajectories through state space by identifying
the state transitions which have significant impact on the fi-
nal outcome of interest. We apply it to a complex simulation
of a major disaster in an urban area and present results.
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1. INTRODUCTION
Large-scale multiagent simulations are becoming increas-

ingly common in many domains of scientific interest, includ-
ing economics, epidemiology, social science, and disaster re-
sponse. These simulations have complex models of agents,
environments, infrastructures, and interactions.

Often the goal is to study a hypothetical situation in a de-
tailed and realistic virtual setting, with the intention of mak-
ing policy recommendations. However, analyzing results for
such simulations pose some challenges:

1. They are computationally too expensive to run enough
number of times to obtain the statistical power.

2. Often the kind of interventions to evaluate are not
known. Ideally, we would like to run simulation to
get some insights that help suggest interventions.

3. Large-scale simulations can generate much more data
in each simulation run than goes into the simulation.

As a first step towards addressing these kinds of problems,
we introduce the problem of simulation summarization. Our
perspective on summarizing a multiagent simulation is that
the summary should capture the causally-relevant states of
the simulation. By“causally-relevant”, we mean agent states
that have a measurable impact on outcomes of interest, even
if the impact is delayed. In line with this intuition, we adapt
the approach of “causal states” for stochastic process.
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2. CAUSAL STATES
Consider a stochastic process as a sequence of random

variables Xt, drawn from a discrete alphabet, A. Let
←−
X =

X−∞ . . . Xt−2Xt−1Xt and
−→
X = Xt+1Xt+2 . . . X∞ denote

the past and the future of the sequence, respectively.
Crutchfield et. al. [1] suggested a simple method for mod-

eling a stochastic process that captures the mutual informa-

tion that is communicated from the past
←−
X to the future

−→
X

of the sequence: group together all the histories that predict
the same future. This gives rise to a state machine, called
an ε-machine, defined as:

ε(←−x ) = {←−x ′|Pr(
−→
X |←−x ) = Pr(

−→
X |←−x ′)}. (1)

Shalizi et. al. have presented an algorithm for learning
ε-machine from time series, known as Causal State Splitting
Reconstruction (CSSR) [4]. It learns an ε-machine as a Hid-
den Markov Model (HMM) in an incremental fashion. The
HMM is initialized with one state which consists of null his-
tory of length 0. The algorithm tests the distribution over
the next symbol given progressively longer past sequences.
Let L be the length of the past sequences considered so far.
At the next step, it looks at sequences of length L+ 1, e.g.,
axL where xL is a sequence of length L and a ∈ A. If axL

belongs to the same causal state as xL, then we would have,

Pr(Xt|axL) = Pr(Xt|Ŝ = ε̂(xL)), (2)

where Ŝ is the current estimate of the causal state to which
xL belongs. This hypothesis can be tested using a statistical
test such as the Kolmogorov-Smirnov test. If the test shows
that the LHS and RHS of equation 2 are statistically signifi-
cantly different distributions, then CSSR tries to match the
sequence axL with all the other causal states estimated so
far. If Pr(Xt|axL) turns out to be significantly different in
all cases, a new causal state is created and axL is assigned
to it. This process is carried out up to some length Lmax.

3. OUR APPROACH
Our approach adapts the causal state formalism by treat-

ing the trajectory of each agent in the simulation as an in-
stance of the same stochastic process. Let N be the number
of agents in the simulation. State of an agent a is denoted by
a k-dimensional state vector xa(t) = [x1(t), x2(t), . . . xk(t)]ᵀ,
which evolves over time. Let di be the number of possible
values xi can take and hence d = d1 × d2 × . . . × dk is the
number of ways in which agent state can evolve. Let the
outcome variable for agent a be denoted by ya.
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Our goal is to compress the trajectory of each agent through
state space to a small number of important states that have
a significant impact on the outcomes we care about.

At each time step t, the agent population is devided into a
set of clusters, C(t) = {C1(t) ∪ C2(t) ∪ . . . Cm(t)}. Initially,
all the agents belong to one cluster. At each next time step,
the state of each agent can change in d ways. Hence, an
arbitrary cluster of agents, Ci(t) can split into up to d groups
at time step t + 1. But not all of these changes may have
a significant impact on the outcome. We treat each group
derived from Ci(t) as a candidate cluster, CCi,j(t+1), where
j ∈ 1 . . . d. At each step, we compare Pr(Y |Ci(t)) with
Pr(Y |CCi,j(t+1) using the Kolmogorov-Smirnov test. Our
null hypothesis (analogous to equation 2) is,

Pr(Y |CCi,j(t+ 1)) = Pr(Y |Ci(t)). (3)

We also introduce a parameter δ, which is a threshold
on the “effect size”, measured as the KL-divergence between
Pr(Y |Ci(t)) and Pr(Y |CCi,j(t+ 1)). If the null hypothesis
is rejected at a level α (say 0.001) and DKL(Pr(Y |Ci(t))||
Pr(Y |CCi,j(t+1))) > δ, then candidate cluster CCi,j(t+1)
is accepted as a new cluster at time t + 1. If none of the
candidate clusters at time step t+1 are accepted, then Ci(t)
is added to the set of clusters for time step t+ 1.

Thus, the entire simulation is decomposed into a tree
structure of agent clusters. Furthermore, each cluster splits
only when the corresponding state change is informative
about the final outcome of concern. The trajectory of each
agent traces a path through this tree structure. We com-
press the trajectory by retaining only those time steps at
which the cluster to which the agent belongs splits off from
its parent cluster. The set of compressed agent trajectories
constitutes our summary representation of the simulation.

The parameter δ allows to control the number of new clus-
ters formed and consequently, the amount of compression.
A high value of δ will retain only the clusters which have a
large difference in outcomes from their parent clusters.

4. EXPERIMENTS
We apply our algorithm to a multiagent simulation of a

hypothetical improvised nuclear device detonation in Wash-
ington DC [3]. Our simulation consists of a large, detailed
“synthetic information system” [2] which represents the hu-
man population of the region and detailed models of four
infrastructures: cell phone communication system, power
system, transportation system, and healthcare system.

Agents are defined by a number of state variables. How-
ever, for the purpose of summarization, we focus on six vari-
ables: health (modeled on a 0 to 7 range where 0 is dead and
7 corresponds to full health), behavior (six behaviors men-
tioned below, plus categories indicating if agent is in health-
care location or out of the affected area), whether the agent
has received an emergency broadcast (EBR), the agent’s ex-
posure to radiation, whether the agent has received treat-
ment, and the agent’s distance from the ground zero.

Agent behavior is conceptually based on the formalism
of decentralized semi-Markov decision process (Dec-SMDP)
with communication using the framework of options. High
level behaviors are modeled as collection of options. We
model six behaviors: household reconstitution (HRO), evac-
uation, shelter-seeking, healthcare-seeking, panic, and aid
& assist. These high level behavior options are policies over
low level actions which are to call, text or move. These ac-

tions are supported by infrastructural systems. Details of
agent design and behavior can be found in [3].

4.1 Results
Due to limitation of space, we only present results from

one value of KL-divergence threshold, δ = 5. Compressed
trajectories of agents are stored in a database table along
with the expected value of final health state which can be
used to query any subpopulation of interest.

We evaluate two queries that identify top 10 transitions
in first three hours where current health state remains same
(so improvement is not due to current health state) but the
expected health state is improved or reduced, ordered by
expected improvement or reduction in descending order.

Results show that for agents who are close to ground zero
and in health state 4 or 5, reaching healthcare location early
helps to improve health, even if the exposure level is high.
For agents in healthstate 5 to 7, who are far from ground
zero though with medium exposure, getting out of the area
helps. Also, for agents in health state 7, who are far from
ground zero, with medium exposure, and panicking, receiv-
ing EBR helps (as it provides information about the event
and recommends sheltering).

For agents who are currently in a full health, close to
ground zero, and have high exposure level, doing household
reconstitution (HRO) reduces their expected outcome. Even
if the current health state is good, this accounts for the
delayed effect of radiation. For people who are already in
low health (health state 3), panicking or seeking healthcare
(which makes them travel to healthcare location and get ex-
posed to more radiation) deteriorates expected health state,
even if far from ground zero.
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