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ABSTRACT

This paper proposes mechanisms for agents to model other
agents’ arguments, so that modelling agents can anticipate
the likelihood that their interlocutors can constructs argu-
ments in dialogues. In contrast with existing works on “op-
ponent modelling” which treat arguments as abstract enti-
ties, the likelihood that an agent can construct an argument
is derived from the likelihoods that it possesses the beliefs
required to construct the argument. We therefore also ad-
dress how a modeller can quantify the certainty that its in-
terlocutor possesses beliefs based on previous dialogues, and
membership of interlocutors in communities.
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1. INTRODUCTION

In real world models of computational dialogue involv-
ing computational and or human participants, one needs
to address the strategic choice of locutions and use of en-
thymemes (i.e. arguments with incomplete logical structures
[1]). This requires opponent modelling capabilities i.e. agents
modelling their interlocutors’ arguments. Hence an agent
can anticipate the possible counter-arguments in a given
dialogue, thus moving an argument that is least suscepti-
ble to attack, and avoid sending information in enthymemes
that is already known to others. In such setups, in addition
to constructing its own arguments from its knowledge-base
(first-order arguments), an agent can generate a model of
its interlocutor’s arguments (second-order arguments).

In existing works on opponent modelling, agents assign
values [0, 1] to abstract arguments, representing the likeli-
hood that they can be constructed by other agents. How-
ever, models of second-order abstract arguments are incom-
plete as they do not account for all second-order arguments
that can be constructed from constituent beliefs. Further-
more, most existing works do not address the provenance of
these values. Here we propose two sources for these values:
the information exchanged in dialogues an agent participates
in, and (when dialogical data is insufficient) a quantitative
measure of similarity amongst all agents in the environment,
using the notion of agent communities.
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Figure 1: Several arguments

2. THE MODEL

Consider an agent ¢ determining the likelihood that an-
other agent j can construct a certain argument. Unlike ex-
isting works [3], we argue that this issue cannot be addressed
without explicit access to the constituents of arguments.

Ezample 1. Suppose j submits only arguments A; and A,
in Figure 1, in distinct dialogues with 4. If i treats arguments
only as abstract entities, it would believe that j only has ar-
guments A; and A,, and not As. It is however clear that j can
also construct A; because it has the required beliefs to do so.

Hence access to the constituents of arguments is required
when valuating the likelihoods of their construction. One
common approach, though studied in the context where val-
ues denote likelihoods of truth [2], is to derive the values
associated with arguments from the those associated with
their constituent beliefs. In our context, this would mean
that the likelihood that j can construct an argument A is
derived from the likelihoods that it has the necessary be-
liefs to construct A. The next step thus is to address the
likelihoods that are associated with second-order beliefs.

We consider two complementary mechanisms for 7 to eval-
uate the likelihood that j has a certain belief «. The first is
i’s history of dialogical interactions. For this, an assignment
d;; for any two agents ¢, j is defined, where given 4’s history
of dialogues and a belief «, it returns a number [0, 1] repre-
senting the likelihood that j has «. Additionally, ¢ records
the case where dialogical evidence suggests that j does not
have a (in which case d;j(a) = L1). By default, for every
two agents ¢,j and belief «, d;j(a) = 0, as ¢ has no dia-
logical data regarding j having «. However, once 7 receives
such evidence in a dialogue, d;;(«) is updated. For example,
when j directly commits to a in a dialogue with ¢, in which
case d;j(a) = 1, or when 1 is indirectly informed of j’s belief
in «, e.g. by another agent k, in which case d;;(«) could cor-
respond to ¢’s level of trust in k. Failed information-seeking
dialogues from % to j regarding « would trigger d;;(a) = L.

In case dialogical data is insufficient to determine whether
7 has a, i can refer to its dialogical data regarding other
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Figure 2: The figure corresponding to Example 2

agents knowing «, while factoring in their relationship with
j. This relationship is modelled through the notion of agent
groups and communities.

A group of agents is a set of agents sharing a certain prop-
erty (e.g. organisational roles). A general assumption under-
pinning this model is that the shared property between the
members of a group licenses their sharing of a specific set
of beliefs. As agents may have multiple properties, agent
groups may intersect, and each of these intersections may
themselves license the sharing of a separate set of beliefs be-
tween its members. For example, assume a group A of agents
all having beliefs B4 and a group B of agents with Bg. As-
suming a monotonic relationship between group membership
and having beliefs, for the set Bap of beliefs shared between
agents in AB (i.e. agents in ANB), we have Bap D BaUBB,
where the set Bap \ {Ba U Bp} is the unique set of beliefs
shared amongst AB’s members because of their membership
to “both A and B”. Therefore, given the set ¢ of all groups,
we are interested in 2¢ where each of its elements is called
a community. Given communities {A} and {A, B} (hence-
forth denoted A and AB), the latter is more specific than
the former — due to their members having more properties
— and the former is more general than the latter.®

Ezample 2. Let ¢ = {L, P}, where L and P respectively
denote “lawyers” and “paralegals”, and let a be technical le-
gal information. The experience of i after consulting with
several legal firms is summarised in Figure 2 which shows
agents’ community memberships and whether they believe
(4+) or do not believe (—) «, according to ¢. In this context,
community @, containing all agents, represents “those work-
ing in a legal firm” and Cm(j) is the community j belongs to.

For any belief a and agent ¢, a set c¢;(a) of tuples (k, p) is
determined where x is a community, and p € [0, 1], called a
p-score, is the likelihood that a member of k believes a ac-
cording to ¢. The p-scores can be determined based on stan-
dard conditional probability > di.(a) /[{z € K|diz(c)#0}.

TER
For community @) in Example 2, the p-score would be 15/20,
and so ¢; (o) = {(L, 1), (P,0.71), (0,0.75) }. However in this
approach, some communities (e.g. LP) may not be assigned
any p-score, which could for example be due to incomplete
data (i.e. agent ¢ not having dialogues with any of their
members regarding «). Moreover, some communities (e.g.
() might be assigned superficially high values due to being
too general. In the case of ) (i.e. those working in a legal
firm), the p-score suggests that there is 0.75 probability that
another member of () believes . However, a large propor-
tion of this value (10 out of 15 agents contributing to 0.75)
is due to agents being lawyers.

'In this context, agents in @ € 2% do not need to have any
specific properties, essentially all agents in the environment,
and the beliefs shared amongst them is common knowledge.
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To remedy these issues, the p-scores are calculated itera-
tively, which ensures that a) those communities without a
p-score value inherit the highest value of the most specific
communities that are more general (e.g. L and P in the case
of LP), and b) that each agent contributes only to the p-
score of the community whose membership is the most likely
reason why it believes a (i.e. the community with the high-
est ¢;(a) value). In the case of Example 2, in iteration 1
the p-score of L is set to 1 because it has the highest ¢;(«)
value. Then from the remaining agents and communities, P
will receive 0.71 and () will receive 0.25, thus at iteration 2,
P’s p-score is set to 0.71. In iteration 3, from the remaining
agents, () will be assigned 0, as all of its members are in other
communities with higher p-score values.

These values are then aggregated in a function c¢;.(a) for
every agent i, community ¢, and belief «, representing the
likelihood that a member of ¢ believes a according to i. To-
gether with d;; (), these functions provide an approximate
model of j’s beliefs, according to 1.

3. CONCLUSION

With our proposed mechanisms, an agent is able to utilise
its dialogue history and its knowledge of agents’ distribu-
tion in communities to determine the likelihood that another
agent has certain beliefs, and subsequently derive the likeli-
hood that it can construct arguments from those beliefs.

Suppose now that to persuade j to accept ¢, i wants to
send an argument for ¢. By anticipating the arguments
that j can construct and submit as counter-arguments, ¢
can strategically choose from amongst all its arguments for
¢, those that are least susceptible to be attacked by j. Let
Poss(¢) denote the set of all possible arguments claiming
¢ that ¢ can construct. For each argument A in Poss(¢),
i must first identify every possible counter-argument to A
along with the likelihoods associated with j being able to
construct them. Then for each argument in Poss(¢), ¢ would
consolidate the number of its counter-arguments and their
likelihood values, allowing it to select the argument which
is least likely to be attacked by j.

Another application is the use of enthymemes in dialogues.
For this, i examines all sub-arguments A’ of an argument A
it wants to send to j, and removes A’ from A if its likelihood
value is higher than a certain threshold.

In the future, we will consider enabling agents to not only
anticipate the arguments of other agents, but also what ar-
guments they deem acceptable, which would allow for devis-
ing even more sophisticated strategies in dialogues.
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