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ABSTRACT
In this abstract, we first propose a general robustness defi-
nition as the upper-bound of the stable region of an equilib-
rium strategy by generalizing existing bounded rationality
models. Then, we develop a robustness evaluation frame-
work, of which a key component is the stability test given a
certain level of bounded rationality.
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1. INTRODUCTION
Incentive mechanisms are designed to produce desired out-

comes through incentivizing agents to perform expected stra-
tegies. Incentive is created by inducing a Bayesian game and
having the desired outputs as its Nash equilibrium. How-
ever, in real-life situations, agents often cannot behave fully
rationally, causing mechanisms to fail. To ensure the practi-
cal usability of incentive mechanisms, it is crucial to evaluate
their robustness. Quite a few qualitative studies have been
conducted to judge whether a mechanism is robust. For ex-
ample, Cabrales [1] and Tumennasan [5] considered robust-
ness from testing the existence of convergent trajectories in
all ex-post games under the better response learning process
and the limited logit quantal response process, respectively.

However, one common limitation of these studies is that
they cannot quantitatively evaluate robustness as to what
extent an incentive mechanism can be kept under the ef-
fects of bounded rationality [3]. Furthermore, most of these
studies do not consider precise bounded rationality models,
and thus, are not applicable to real-world scenarios where a
certain kind of bounded rationality dominates [2]. Besides,
the evolutionary processes involved in these studies can only
handle the ex-post Nash equilibrium with fixed agent’s types,
while mechanism design is based on Bayesian Nash equilib-
rium with all agents’ types unknown, i.e. the ex-ante equi-
librium. Thus, we aim to providing a general framework to
quantitatively evaluate the robustness of incentive mecha-
nisms against different kinds of bounded rationality.
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2. ROBUSTNESS DEFINITION
To quantitatively evaluate robustness, we need to define

robustness at first. However, the literature closely linked to
this topic is limited. Thus, we extend the targeted domain
of our definition to common Nash equilibrium in arbitrary
kinds of games, and enforce it to be consistent with exist-
ing ones for correctness. Bounded rationality causes agents
to take sub-optimal strategies of the optimal strategy. To
depict the strategy variations, the uncertainty set US is em-
ployed to generalize existing bounded rationality models as

US(s∗i , s−i, α,G) = {s1i , . . . , sIii }

where G denotes the targeted game and s−i represents the
strategy of other agents. sji stands for agent’s one strategy
which is a probability distribution over all possible actions.
Ii represents the total number of possible strategies. Be-
sides, α is a parameter to describe agents’ bounded ratio-
nality level. To keep consistent among all models, we require
α ∈ [0, 1], where α = 0 and α = 1 denote the cases where
agents are fully rational and irrational, respectively. Then,
for a game with N players, the uncertainty set involves more
than one agent and can be formulated as:

USG(s∗, αG, G) = {s = (s1, . . . , sN )|
si ∈ USi(Pr(s∗i , s∗−i, αi, G),α ∈ Π(αG)}

(1)

where α = (α1, . . . , αN ) represents the bounded rationality
level profile. The parameter αG ∈ [0, 1], termed as sys-
tem bounded rationality level, is used to measure agents’
bounded rationality from system perspective, and it is re-
quired that USG(s∗, 0, G) = {s∗}. Π(αG) denotes all possi-
ble bounded rationality level profiles.

The most classical way to define robustness is to measure
to what extent parameter variation can make systems un-
stable. Following this idea, we give a general definition of
robustness for Nash equilibrium:

Definition 1. Given a game G with a desired equilibrium
sE and the uncertainty set USG(s∗, αG, G) denoting agents’
bounded rationality, the robustness of sE is R such that

R =
Dist

(
USG(sE , 0, G),USG(sE , αMG , G)

)
Dist (USG(sE , 0, G),USG(sE , 1, G))

(2)

where αMG is determined by the stability function S as

αMG = max{αG ∈ [0, 1]|∀α ∈ [0, αG],

S
(
α,G, sE ,USG

)
≤ 0}

(3)
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and the distance function Dist(·) is defined as

Dist
(
USG(sE , p,G),USG(sE , q, G)

)
= max

sp∈USG(p)
max

sq∈USG(q)
max
i∈N

‖spi − s
q
i ‖1

2

(4)

wherein ‖ · ‖1 denotes the 1-norm function.
In other words, the robustness of a desired Nash equilib-
rium corresponds to the maximum system bounded ratio-
nality level, at which the employed stability function S can
keep non-positive and the game remains stable. This defini-
tion provides general guidelines to instantiate more concrete
robustness formulations for specific applications.

3. ROBUSTNESS COMPUTATION
An incentive mechanism M is defined by {x(a), t(a)},

where x and t are the allocation vector and the payoff func-
tion, respectively. The Bayesian game induced byM can be
defined as G = 〈N, {ui,Θi, Ai, fi}i∈N 〉. Here, N denotes the
set of n agents. Each agent draws its type θi ∈ Θi indepen-
dently from a commonly known distribution over Θi with
density distribution fi. The utility of agent i can be calcu-
lated as ui = vi(x(a), θi)− ti(a), where vi represents of the
value obtained from the allocation x. According to Defini-
tion 1, given a certain kind of bounded rationality depicted
in the form of Equation (1), the remaining two tasks for com-
puting robustness are to: 1) test the stability of the desired
equilibrium with a concrete stability function S; 2) solve the
maximum value of αG according to Equation (3). Focusing
on the Bayesian game induced by incentive mechanisms, we
develop a general robustness evaluation framework:
1) Robustness Solver iteratively searches for αGM in [0, 1].
In order to achieve an efficient search, Newton’s Dichotomy
method is used to skip some useless regions. Specifically, the
inputs of our robustness solver include Bayesian game G, the
desired action distribution profile sE and the uncertainty set
USG. At first, the left boundary αL and right boundary αR
are set to be 0 and 1. The fully irrational case with α = 1 is
tested. If the test result is stable, we can conclude that the
equilibrium is stable for all bounded rationality levels; oth-
erwise, the real boundary should be some value between αL
and αR. Then, we repeatedly conduct dichotomy and test
the middle value (αL+αR)/2 until the distance between two
boundaries is smaller than the acceptable threshold.
2) Stability Tester tests the stability of the desired equi-
librium at the given level of bounded rationality. To achieve
this function, we need to develop a convincing evolutionary
process. Those utilized in the literature are not applicable
to the ex-ante equilibrium. A good alternative is the ficti-
tious play (FP) process which was initially proposed to com-
pute equilibrium in normal-form games. Recently, through
introducing new methods to compute the best response, Ra-
binovich et al. [4] used the FP process to compute the pure-
strategy Bayesian Nash equilibrium. Although convergence
of the FP process cannot be assured for all Bayesian games,
it can still be used for our stability test because the divergent
case can be used to identify the unstable region. Specifically,
our algorithm computes the uncertainty set at first, which
acts as the initial belief set of the FP process. Then, the
FP process learns the Bayesian Nash equilibrium through
gradually updating elements in the belief set with the the
best response strategy s∗i (ai). The stability function S is
Dist(USt, {sE})− ε, where ε is the threshold of distance.

3) Best Response Computing is the most challenging
step in stability tester. Existing methods depend on a spe-
cific target domain. To achieve an efficient and general eval-
uation of different mechanisms, we propose a sampling-based
algorithm. Since

∑
ai

Es−i(ai|θi)Pri(ai|θi) ≤ Es−i(a
∗
i |θi),

the best response for a specific θi value should be an ac-
tion a∗iwith the highest expected utility. Thus, the best
response computation depends on the comparison between
the expected utilities of different actions as Es−i [ui(a

l
i|θi)−

ui(a
k
i |θi)] ≥τ ε(l, k), where l, k = 1, . . . , |Ai|, and |Ai| de-

notes the number of elements in Ai. Since the accurate
comparison is impossible for sampling-based methods, the
confidence level τ is introduced, and a ≥τ b represents that
a is bigger than or equal to b with a probability of τ . Thus,
if al

∗
i is the desired best response with probability τ , then

ε(l∗, k) ≥ 0 for k = 1, . . . , |Ai|. Furthermore, to compute
ε(l, k), bootstrap statistics is employed because it does not
rely on explicit assumptions about the shape of a distri-
bution. This feature is useful because nothing is known
about the distribution of agent’s utility. Specifically, in
our algorithm, K samples of opponents’ actions are gen-
erated at first and the utility for every action aki ∈ Ai is
calculated. Then, the distribution of expectation is com-
puted with bootstrap statistics and the lower bound ε(l, k)
is obtained. For those sub-optimal actions, there must ex-
ist at least one action that can achieve better utility, and
{k|maxj∈{1,...,|Ai|} ε(j, k) ≤ 0} represents the optimal set.
If the size of I is 1, the optimal action is found; otherwise,
we need to add another K samples.

4. CONCLUSION AND FUTURE WORK
In this abstract, we proposed a novel framework for eval-

uating robustness of incentive mechanisms. For future work,
we will extend our framework to cover more kinds of bounded
rationality and conduct more experiments on various incen-
tive mechanisms to validate the framework.
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