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ABSTRACT

The Nash equilibrium is an important benchmark for be-
haviour in systems of strategic autonomous agents. Poly-
matrix games are a succinct and expressive representation
of multiplayer games that model pairwise interactions be-
tween players. The empirical performance of algorithms to
solve these games has received little attention, despite their
wide-ranging applications. In this paper we carry out a com-
prehensive empirical study of two prominent algorithms for
computing a sample equilibrium in these games, Lemke’s al-
gorithm that computes an exact equilibrium, and a gradient
descent method that computes an approximate equilibrium.
Our study covers games arising from a number of interest-
ing applications. We find that Lemke’s algorithm can com-
pute exact equilibria in relatively large games in a reasonable
amount of time. If we are willing to accept (high-quality)
approximate equilibria, then we can deal with much larger
games using the descent method. We also report on which
games are most challenging for each of the algorithms.

General Terms

Algorithms, Economics

Keywords

Game Theory; Nash Equilibrium; Approximate Equilibria;
Polymatrix Games; Auctions; Bayesian Two-Player Games;
Lemke’s Algorithm; Gradient Descent

1. INTRODUCTION

In multiagent systems it is often the case that autonomous
agents interact with each other, but do not necessarily have
the same objectives or goals. This situation can be described
as a game played between the agents, and the tools from
game theory can be used to analyse the possible outcomes.
In particular, the concept of a Nash equilibrium [37] de-
scribes a stable situation in which no agent can increase its
reward by changing its behaviour. Therefore, to gain in-
sight into the possible behaviours that a system of rational
agents will produce, one can compute the Nash equilibria of
the game that is played between the agents.
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Games are often represented in strategic-form, where for
each possible combination of strategy choices, a numerical
payoff is specified for each of the players. However, the size
of this representation grows exponentially in the number of
players. For example, for a game with n players who can
each choose between 2 strategies, n - 2" payoffs must be
specified. Hence, the strategic-form is typically unsuitable
for the types of games that arise from multiagent systems.

Many realistic scenarios do not need the flexibility that
strategic-form games provide. In particular, it is often the
case that only the pairwise interactions between players are
important. In this paper we study polymatriz games which
model this. In these games the interaction between the play-
ers is specified as a graph. Each player plays an indepen-
dent two-player game against each other player that he is
connected to, and the same strategy must be played in all
of his games. A player’s payoff is then the sum of the pay-
offs from each of the games. Crucially, the representations
of these games grow quadratically in the number of players,
which makes them more suitable for representing the large
multiagent systems that arise from real-world scenarios.

While there has been a large amount of theoretical work
on polymatrix games [14,15,17,24, 26, 28], the practical as-
pects of computing equilibria in polymatrix games have yet
to be studied. In this paper, we provide an empirical study
of two prominent methods for computing equilibria in these
games. Firstly, we study Lemke’s algorithm. The Lemke-
Howson algorithm is a famous algorithm for finding Nash
equilibria in bimatrix games [35], and Lemke’s algorithm is
a more general technique for solving linear complementarity
problems (LCPs). Miller and Zucker [36] have shown that
the problem of finding a Nash equilibrium in a polymatrix
game can be reduced to the problem of solving an LCP that
can then be tackled by Lemke’s algorithm.

Secondly, we study a method for finding approzimate equi-
libria in polymatrix games. In contrast to a Nash equilib-
rium, where no player has an incentive to deviate, an approx-
imate equilibrium allows the players to have a positive, but
small, incentive to deviate from their current strategies. Ap-
proximate equilibria have received a large amount of interest
in theoretical work [9,11,18,22,30,45], because the problem
of finding an exact Nash equilibrium in a polymatrix game,
even for only two players, is known to be PPAD-complete
(which implies that there is unlikely to be a polynomial-time
algorithm for this problem). From a practical point of view,
it is reasonable to use sufficiently accurate approximate equi-
libria to study real-world systems, because often there is a
non-negative cost to changing strategy, which could deter an



agent from deviating even if doing so would lead to a small
increase in payoff. Also, if the game is derived from real
data, then any uncertainty in the actual payoffs of the un-
derlying situation means that agents may be perfectly happy
in the real world, even if the game model says that they can
gain a small amount through deviation.

We study a recently proposed gradient descent-like al-
gorithm for finding approximate equilibria in polymatrix
games [22], which is the only known approximation tech-
nique for (general) polymatrix games. It generalizes the al-
gorithm of Tsaknakis and Spirakis (T'S) for bimatrix games
[45]. A recent study found that the TS algorithm typically
finds high-quality approximate equilibria in practice [25],
much better that its theoretical worst-case performance.

Our contribution. We provide a thorough empirical study
of finding exact and approximate Nash equilibria in polyma-
trix games. We develop an extensive library of game classes
that cover a number of applications of polymatrix games in-
cluding cooperation games, strictly competitive games, and
group-wise zero-sum games. We also study Bayesian two-
player games, which can be modelled as polymatrix games.
In particular, we focus on various forms of Bayesian auctions
(e.g., item bidding combinatorial auctions) and Bayesian
variants of Colonel Blotto games, which have applications
to task allocation and resource allocation problems between
agents [44]. All of our algorithm implementations and game
generators are open source and publicly available®, so that
any new algorithms developed for polymatrix games can be
tested against our test suite.

We study Lemke’s algorithm and the descent method on
all of the problems that we consider. In total we applied
Lemke’s algorithm to 188,000 instances using 26 months of
CPU time, while we applied descent to 213,000 instances us-
ing 2.7 months of CPU time. We found that Lemke’s algo-
rithm can compute exact equilibria in relatively large games
in a reasonable amount of time, though the descent method
is much more scalable and can be used to compute approxi-
mate equilibria for instances that are an order of magnitude
bigger. Moreover, in contrast to its theoretical worst-case
performance guarantee, the descent method typically finds
very high quality approximate equilibria.

Related work. The problem of equilibrium computation
has received much attention from the theoretical point of
view. Firstly, it was proven that computing an exact Nash
equilibrium is PPAD-complete [14,17], even for games with
only two players. While the class NP captures decision prob-
lems, the complexity class PPAD captures problems where
it is known that a solution exists. It is assumed that it is
unlikely that there exists a polynomial time algorithm for
PPAD-complete problems. For this reason a line of work that
studies approximate notions of Nash equilibria has arisen [9,
11,18,30,45]. Specifically for polymatrix games, there is the
recent descent procedure studied in this paper [22], and a
recent QPTAS for polymatrix games on trees [6].

There are empirical studies on equilibrium computation
both for exact equilibria [4, 5, 25, 40, 43] and approximate
equilibria [25], but none of them focused on polymatrix
games. Instead, these studies mainly focused on games cre-
ated by GAMUT [38], the most famous suite of game gener-
ators. GAMUT has a generator for some simple polymatrix
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games, but it converts them to strategic-form games which
blows up the representation exponentially.

Polymatrix games have received a lot of attention recently.
Computing a Nash equilibrium in a polymatrix game is
PPAD-hard even when all the bimatrix games are either zero-
sum or coordination games [12]. Recently, it was proven that
there is a constant € > 0 such that it is PPAD-hard to compute
an e-Nash equilibrium of a polymatrix game [42]. Govindan
and Wilson proposed a (non-polynomial-time) algorithm for
computing equilibria of an n-player strategic-form game,
by approximating the game with a sequence of polymatrix
games [28]. Later, they presented a (non-polynomial) reduc-
tion that reduces n-player games to polymatrix games while
preserving approximate Nash equilibria [29].

Many papers have derived bounds on the Price of Anar-
chy [8,27,41] in item bidding auctions [16]. Only recently
Cai and Papadimitriou [13] and Dobzinski, Fu and Klein-
berg [23] studied the question of the complexity of the equi-
librium computation problem in this setting. Blotto games
are a basic model of resource allocation, and have therefore
been studied in the agents community [2,39]. There have
also been several papers that study Blotto games with in-
complete information as well, see for example [1,33].

Polymatrix games are examples of graphical games, which
are succinct representations of games where interactions be-
tween players are encoded in a graph. A related succinct
representation is that of Action Graph Games (AGGs); in-
troduced by Bhat and Leyton-Brown, AGGs capture local
dependencies as in graphical games, and partial indifference
to other agents’ identities as in anonymous games [7,20,32].

2. PRELIMINARIES

Bimatrix games. A bimatrix game is a pair (R, C) of two
n X n matrices: R gives payoffs for the row player, and C'
gives the payoffs for the column player. Each player has n
pure strategies. To play the game, both players simultane-
ously select a pure strategy: the row player selects a row ¢,
and the column player selects a column j. The row player
then receives R; ;, and the column player Cj ;.

A mized strategy is a probability distribution over [n]. We
denote a row player mixed strategy as a vector x of length
n, such that x; is the probability assigned to row i. Mixed
strategies of the column player are defined symmetrically. If
x and y are mixed strategies for the row and the column
player, respectively, then the expected payoff for the row
player under the strategy profile (x,y) is given by x” Ry
and for the column player by x7 Cy.

Polymatrix games. An n-player polymatrix game is de-
fined by an n-vertex graph. Each vertex represents a player.
Each edge e corresponds to a bimatrix game that will be
played by the players that e connects. Hence, a player with
degree d plays d bimatrix games. More precisely, each player
picks a strategy x; and plays that strategy in all of the bi-
matrix games that he is involved in. His expected payoff
is given by the sum of the expected payoffs that he obtains
over all the bimatrix games that he participates in. We use
x = (z1,...,%n) to denote a strategy profile of an n-player
game, where z; denotes the mixed strategy of player ¢ € [n].

Solution concepts. The standard solution concept for
strategic-form games is the Nash equilibrium (NE). A re-
laxed version of this concept is the approximate NE, or e-NE.
Intuitively, a strategy profile is an e-NE in an n-player game,



if no player can increase his utility more than e by unilater-
ally changing his strategy. To put it formally, let x denote a
strategy profile for the players and let u;(z,x—;) denote the
utility of player ¢ when he plays the strategy z and the rest of
the players play according to x. We say that x is an e-NE if
for every player 4 it holds that u;(z;,x—;) > ui(z,%x—;)—e¢ for
all possible z. If € = 0, we have an exact Nash equilibrium.

3. ALGORITHMS

Lemke’s algorithm is a complementary pivoting algo-
rithm for the Linear Complementarity Problem (LCP) [34].
Miller and Zucker have shown that finding a Nash equilib-
rium in a polymatrix game can be reduced in polynomial
time to a Lemke-solvable LCP [36]. So, we first turn the
polymatrix game into an LCP, and then apply Lemke’s al-
gorithm. We shall refer to this algorithm as LEMKE.

One drawback is that the reduction assumes a complete
interaction graph even if the actual interaction graph is not
complete (by padding with all-zero payoff bimatrix games).
Hence, for sparse polymatrix games the reduction introduces
a significant blowup, which affects the performance of the
algorithm. To make this blowup clear, in our results we
report the number of payoffs in the original polymatrix game
and the number of matrix entries in the resulting LCP.

Descent is a gradient descent-like algorithm proposed
in [22]. It tries to minimize the regret that a player suffers,
which is the difference between the best-response utility and
the actual utility he gets. The algorithm starts from an ar-
bitrary strategy profile x and in each iteration it computes a
new profile in which the maximum regret (over the players)
has been reduced. The algorithm takes a parameter § that
controls how accurate the resulting approximate Nash equi-
librium is. The theoretical results state that the algorithm
finds a (0.5 + 6)-NE after O(6~?) iterations (for a fixed size
game). We test the cases where ¢ is either 0.1 or 0.001, and
we provide full results for both cases. We shall refer to this
algorithm as DESCENT in our results.

For the strategy profile x, the algorithm first computes a
direction vector (x’ —x), and then moves a certain distance
in that direction. In other words, the algorithm moves to
a new strategy profile x + a(x’ — x), where a is some con-
stant in the range (0,1]. The theoretical analysis in [22]
uses o = 5%_2 in the proof of polynomial-time convergence.
In practice we found that using larger step sizes greatly im-
proves the running time. Hence, we adopt a line search
technique, which we adapt from the two-player setting [46].
It checks a number of equally spaced values for « in [0, 1],
and selects the best improvement that is found. We also
include o = (%2 as an extra value in this check, so that the
theoretical worst-case running time is unchanged. In our re-
sults, we check 201 different points for « in each iteration.
For a justification of the reasonableness of this choice, see
Appendix A in the full version of this paper [21].

4. GAME CLASSES

Bayesian Auctions

Combinatorial auctions. In a combinatorial auction, m
items are auctioned to n bidders. Each bidder has a val-
uation function that assigns a non-negative real number to
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every subset of the items. Notice that in this setting, in gen-
eral, the size required to represent the valuation function is
exponential in m. In combinatorial auctions with item bid-
ding, each player bids for every item separately and all the
items are auctioned simultaneously. A bidder wins an item
if he submitted the highest bid for that item. The bidders
pay according to a predefined payment rule. We study three
popular payment rules. In a first price auction the winner
of an item has to pay his bid for that item, in a second price
auction the winner of an item has to pay the second highest
bid submitted for the item, and in an all pay auction every
bidder has to pay his bid irrespective of whether he won the
item or not. If more than one bidder has the highest bid
for some item, we resolve this tie according to a predefined
publicly known rule. We study two tie-breaking rules: either
we always favor one of the players, or we choose the winner
for each item independently uniformly at random.

We say that a combinatorial auction allows overbidding if
a bidder is allowed to make a bid for a item greater than
his value for it. A common assumption in the literature is
that overbidding is not allowed, since allowing overbidding
leads to the existence of trivial equilibria. Therefore, in our
experiments we do not allow overbidding.

In a Bayesian combinatorial auction the valuation func-
tion for every player is chosen according to a commonly
known joint probability distribution, which in this paper is
always discrete. The different valuation functions that may
be drawn for a player are known as his types.

Item bidding auctions. We create two-bidder Bayesian
item bidding combinatorial auctions with 2 to 4 items for
sale and 2 to 5 different types per player. Each player’s type
(valuation function) is chosen uniformly at random. We
study several well known valuation functions:

e Additive: the value of each bundle of items is the sum of
the values of the items contained in the bundle.

e Budget additive: the value of each bundle is the minimum
of a budget parameter and the sum of the values of the
items contained in the bundle.

e Single minded: each bidder has positive value for a specific
bundle of items (and the same value for any other bundle
of items containing that bundle) and zero otherwise.

o Unit demand: the value of each bundle is the maximum
value the bidder has for any single item contained in the
bundle.

e AND-OR: the first bidder has positive value only for the
grand bundle of items and zero otherwise, while the second
one has a unit demand valuation.

To create the valuations, we set a maximum value M € N
that a player can have for any item, and a minimum value
m € N such that in every valuation there must be an item
with a value of at least m. Bids are restricted to N, so M
and m define the number of pure strategies a player has,
and consequently the size of the game. For a player with a
single-minded valuation function, we choose a random sub-
set of items and a random value for that subset in the range
[m, M]. For additive and unit demand valuations, we ran-
domly select a value for each item from the set of allowed
valuations. The same procedure is extended for budget ad-
ditive bidders: first we draw values for items as for additive
bidders; then we draw the budget as a random integer in
[M, N] where N is the sum of the values for the items.



Multi-unit auctions. In these auctions all the items being
sold are identical. When there are n items for sale, a valua-
tion is given by an n-tuple (v1,...,vy), where v; represents
the player’s marginal value for receiving a j-th copy of the
item. Hence, the valuation for a bidder when he wins k items
is the sum of the values v1 up to vg.

Again we study the three most common payment rules:
the first price rule, a.k.a. the discriminatory auction, where
a player that won k items has to pay the sum of his k highest
bids; the second price rule, a.k.a. the uniform-price auction,
where the price for every item is the market-clearing price,
i.e., the highest losing bid; and the all-pay rule, where a
player has to pay the sum of his bids.

We consider two well known valuation functions: addi-
tive, where v; = vy for all j > 1, and submodular, where
v; > vjt1 for all j € [n — 1]. We create games with 2 to
4 items and 2 to 5 different types per player. The sam-
pling of non-additive sub-modular valuation functions is not
described here; we refer the reader to the source code for
further details?.

Other Bayesian Two-player Games

A two-player Bayesian game is played between a row player
and a column player. Each player has a set of possible types,
and at the start of the game, each player is assigned a type
according to a publicly known joint probability distribution.
Each player learns his type, but not the type of the other
player. Rosenthal and Howson showed that the problem of
finding an exact equilibrium in a two-player Bayesian game
can be reduced to finding an exact equilibrium in a poly-
matrix game [31], and this was extended to approximate
equilibria in [22]. The underlying graph in the resulting
polymatrix game is a complete bipartite graph where the
vertices of each side represent the types of a player. More
specifically, if the row player has n types and the column
player has m types, the corresponding polymatrix game has
n + m vertices and the payoff matrix for edge (uv) corre-
sponds to the payoff matrix of the Bayesian game where the
row player has type u and the column player has type v. We
study the following Bayesian two-player games.

Colonel Blotto games. In Colonel Blotto games, each
player has a number of soldiers m1, mo that are simultane-
ously assigned to n hills. Each player has a value for each hill
that he receives if he assigns strictly more soldiers to the hill
than his opponent and any ties are resolved by choosing a
winner uniformly at random. The value that a player has for
a hill is generated independently uniformly at random and
the payoff a player gets under a strategy profile is given by
the sum of the value of the hills won by that player. We con-
sider games with 3 and 4 hills and 3 to 15 soldiers per player.
We study two different Bayesian parameters: the valuations
of the players over the hills and the number of soldiers that
each player has. In the game we looked at, only one of these
two parameters was used (i.e., for the other there was com-
plete information). For both cases we study games with 2 to
4 types per player. When the types correspond to different
valuations for hills, for every type, the valuations for each
hill were drawn from independent uniform distributions on
[0,1]. When the types correspond to the number of soldiers,
we drew independently from {3,...,15} for each player and
each type.

’http://polymatrix-games.github.io/
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Adjusted Winner games. The adjusted winner proce-
dure fractionally allocates a set of n divisible items to two
players [10]. Under the procedure, n — 1 items stay whole
and at most one is split between the players. Each player
has a non-negative value for each item, and these values sum
to 1. Both players have additive valuations over bundles of
items. For a split item that a player has value v for, if the
player receives w € [0, 1] of the item, he gets gets w - v value
from this part of the item.

The players simultaneously assign m points to the items.
Suppose player 1 assigns «; points for the items i =1,...,n
with >, a; = m, and similarly player 2’s assignment is
(B1,---,Bn). The procedure starts with an initial allocation
in which each item goes to one of the players that assigned
most points to it. If the players get equal utilities it stops.
Otherwise it next determines which player gets higher utility
under this allocation, say player 1. Next it finds the item ¢
that is currently allocated to player 1 and has the smallest
ratio «;/B;. If possible it splits this item in a such a way as
to equalize the total utilities of the two players, or, if not,
completely reallocates this item to player 2, and repeats this
step until the utilities of the two players are equalized. Thus,
at most one item is actually split.

We create Bayesian games where the players’ types are
different valuations for the items. We study the cases of 2
to 4 items and between 3 and 15 points for the players to
assign. Independently for every type, the valuations for each
item were drawn from independent uniform distributions on
[0,1], and then normalized to sum up to 1.

Multi-player Polymatrix Games

We study several types of game. For each, we study a range
of underlying graphs: complete graphs, cycles, stars, and
grid graphs. In each case the entries of the payoff matrices
are drawn from independent uniform distributions on [0, 1].

Net coordination games. In these games, every edge e
corresponds to a coordination bimatrix game (A., Ac). These
games posses a pure NE, which is PLS-complete to compute.
The complexity of finding a (possibly non-pure) exact equi-
librium is in PLS N PPAD [12].

Coordination/zero-sum games. Here each edge is ei-
ther a coordination or zero-sum game, i.e., on edge e the
bimatrix game is (Ae, Ae), or (Ae, —Ac). These games are
PPAD-complete [12] to solve. We create games having a pro-
portion p of coordination games for p € {0,0.25,0.5,0.75,1}.
We study how p affects the running time of the algorithms.

Group-wise zero-sum games. The players are parti-
tioned into groups so that the edges going between groups
are zero-sum while those within the same group are coor-
dination games. In other words, players inside a group are
“friends” who want to coordinate their actions, while players
in different groups are competitors. These games are PPAD-
complete [12] to solve even with 3 groups. We create games
with 2 and 5 groups, all played on complete graphs. In every
case, each group is approximately the same size, and each
player is assigned to a group at random.

Strictly competitive games. A bimatrix game is strictly
competitive if for every pair of mixed strategy profiles s
and s’ we have that: if the payoff of one player is better in
s than in s’, then the payoff of the other player is worse in



s than in s’. We study polymatrix games with strictly com-
petitive games on the edges, which are PPAD-complete [12].

Weighted cooperation games. The unweighted version
of these games was introduced in [3]. Each player chooses
a colour from a set of available colours. The payoff of a
player is the number of neighbours who choose the same
colour. These games have a pure NE that can be computed
in polynomial time. We study the more general case where
each edge has a positive weight. The complexity for the
weighted case is unknown [19]. We create games where all
players have the same number of available colors k, where k
is in {15,...,45}. For every player, his available colors are
chosen uniformly at random from all k-sized subsets from a
universe of colors of size either 2k or 5k.

S. EXPERIMENTAL SETUP

The algorithms and game generators were implemented
in C. The CPLEX library was used for solving LPs in the im-
plementation of DESCENT. Our implementation of LEMKE
uses integer pivoting in exact arithmetic using the GMP
library; we were unable to produce a numerically stable
floating point implementation (generally our attempts would
start to fail on LCP instances of dimension 60). All exper-
iments had a time-out of 10 minutes. In our results, the
average runtime of the algorithms, as well as the approxi-
mation guarantee found, include the instances which timed
out. The experiments used a cluster of 8 machines with Intel
Core i7-2600 CPU’s clocked at 3.40GHz and 16GB of mem-
ory, running Scientific Linux 6.6 with kernel version 2.6.32.

6. RESULTS

We ran both LEMKE and DESCENT on all of our input
instances. Table 1 shows the results for auctions, Table 2
shows the results for other Bayesian two-player games, and
Table 5 shows the results for multi-player polymatrix games.
While we tested games of many different sizes, for the pur-
poses of exposition, the tables display the largest instances
that LEMKE can solve without timing out.

One general feature of our results is that DESCENT is much
faster than LEMKE. To illustrate this, Figure 1 shows the
performance of the two algorithms on the three types of ad-
ditive item-bidding auctions included in the study. It can
be seen that on the hard instances (first price and all pay),
LEMKE starts to struggle when there are around 5 million
payoffs in the game, whereas even the slower and more ac-
curate of the two DESCENT variants (6 = 0.001) can handle
games with 30 million payoffs in under a minute. Indeed,
a runtime regression for Bayesian Blotto games found that
LEMKE has roughly quadratic running time (with an R? of
0.75 for the regression), while DESCENT has roughly linear
running time (with R%s of 0.88 and 0.96 for the § values of
0.1 and 0.001 respectively).

However, good runtime performance for DESCENT would
be of limited value if it only found poor quality approximate
equilibria. Fortunately, our results show that this is not
the case. In almost all experiments DESCENT found high
quality approximate equilibria. The variant with § = 0.1
typically found an e-NE with € < 0.05, while the variant
with 6 = 0.001 typically found an e-NE with ¢ < 0.002.

Figure 2 shows a box and whisker plot for the quality of
approximate equilibrium found by accurate DESCENT vari-
ant. It can be seen that even the worst performance of the
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algorithm is relatively good for several classes of game. The
overall worst approximate equilibrium was a 0.1065-NE that
was found on a weighted cooperation game. While this is far
larger than the average performance, it is still much better
than best-known theoretical upper bound of 0.5.

We now make more detailed observations about the spe-
cific classes of games that we tested. For auctions, one in-
teresting observation is that on certain classes of auctions
LEMKE will often find a pure Nash equilibrium. This is
shown in the “% Pure column” of Table 1. This phenomenon
is particularly prevalent for second-price auctions, where in
some cases we found that LEMKE always finds a pure, and
in these cases it does so in a very small amount of time.

We also found that the tie-breaking rule used in the auc-
tion can have a huge impact on the time that LEMKE takes
to find an exact equilibrium. Table 3 shows the performance
of the algorithm on otherwise identical auctions with differ-
ent tie-breaking rules. It can be seen that resolving ties
deterministically makes the game much easier to solve than
resolving ties randomly.

Finally, we discuss the results in Table 4 for DESCENT
with and without line search. It can be seen that, without
line search, the DESCENT algorithm with § = 0.001 is of-
ten slower than LEMKE, and that using line search greatly
speeds it up (and so in our other results we always used
line search). Interestingly, the line-search variant of the al-
gorithm also finds better quality approximate equilibria; it
would be interesting to understand why.

7. CONCLUSIONS

In this paper we extensively studied the performance of
two algorithms for computing a sample equilibria of polyma-
trix games. Both algorithms produce good results for most
of the test instances, even though many were drawn from
theoretically hard classes. More specifically, we saw that
combinatorial auctions with two bidders are relatively easy
to solve. This raises the natural question whether we can de-
rive efficient algorithms for auctions with two, or a constant
number of players. Furthermore, we saw that tie resolution
significantly affects the difficulty of the auctions (see [13] for
a discussion of this issue in a theoretical context).

In all of our experiments DESCENT produced e-NE far bet-
ter than the (best-known) 0.5 theoretical worst-case guaran-
tee, which is not known to be tight. So it would be interest-
ing to understand if this good performance is due to the na-
ture of the games we studied or if there is a better theoretical
analysis. In [25], a genetic algorithm was used to construct
a bimatrix game for which the Tsaknakis and Spirakis (TS)
algorithm computes an 0.3393-NE, which shows the analy-
sis of the TS algorithm is essentially tight. Since bimatrix
games are a special case of polymatrix games, this gives a
lower bound of 0.03393 for the best-possible approximation
guarantee for DESCENT in polymatrix games. Can a better
lower bound, closer to the 0.5 upper bound, be found? We
believe that it should be easier to construct a bad game for
the DESCENT algorithm compared to the TS algorithm, be-
cause DESCENT computes a single strategy profile, whereas
TS computes three profiles (one by descent, and then two
further profiles are derived from that one) and then chooses
the best one.
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Games LEMKE DEsceNT 0.1 LS || DEsceNT 0.001 LS

Valuation Avg. Size | Auc || Time | % Timeout | % Pure || Time € Time €
FP 35.005 0.0 0.0 0.200 | 1.133e-02 || 1.287 | 2.630e-04
Additive 623990 SP 0.764 0.0 100.0 0.233 | 7.103e-03 || 0.232 | 2.312e-05
AP || 214.049 12.0 0.0 0.289 | 6.163e-03 || 1.610 | 1.943e-04
FP 46.351 0.0 34.0 0.199 | 6.249e-02 || 3.336 | 3.063e-02
Unit 650417 SP 203.107 19.0 58.0 0.459 | 1.442e-02 || 1.831 2.647e-04
%D AP 14.709 0.0 21.0 0.168 | 4.182e-02 || 2.757 | 1.113e-02
E FP 280.322 23.0 0.0 0.194 | 1.927e-02 || 1.732 | 1.594e-04
F‘é AndOr 519055 SpP 1.269 0.0 100.0 0.279 | 7.026e-03 || 0.595 | 1.019e-04
g AP 166.011 9.1 0.0 0.171 | 8.662e-03 || 1.328 | 2.842e-04
- FP || 100.444 5.0 3.16 0.206 | 3.055e-02 || 2.003 | 4.064e-03
Budget 647583 SP 9.438 1.0 84.85 0.348 | 2.543e-02 || 0.915 | 2.186e-04
AP || 248.739 24.0 0.0 0.271 | 1.990e-02 || 2.199 | 2.233e-03
FP 82.166 7.37 5.0 0.139 | 2.775e-02 || 1.551 1.822e-03
SingleMinded 606511 SpP 110.341 17.0 48.19 0.475 | 1.045e-02 || 1.359 1.669e-04
AP 59.942 3.0 1.0 0.162 | 1.856e-02 || 1.544 | 1.038e-03
D 9.504 0.0 30.0 0.295 | 1.452e-02 || 1.481 | 4.411e-04
."é Additive 836465 U 0.954 0.0 100.0 0.380 | 1.321e-02 || 1.870 | 3.579e-04
= AP || 512.564 64.0 0.0 0.417 | 4.080e-03 || 2.182 | 3.170e-04
ﬁzﬂ D 29.054 0.0 5.0 0.270 | 1.326e-02 || 1.954 | 3.209e-04
= | SubModular 878491 U 5.818 0.0 83.0 0.272 | 2.636e-02 || 1.741 | 8.645e-04
AP || 210.290 12.0 0.0 0.323 | 1.115e-02 || 2.192 | 3.273e-04

Table 1: Results for item bidding and multi-unit auctions with 3 items and 3 types per player. Ties are broken by favouring
the second player for item bidding, and by allocating the item uniformly at random in the multi-unit case. For LEMKE, we
report the average running time, the percentage of instances that exceeded our timeout of 10 minutes, and the percentage
of instances for which the algorithm finds a pure equilibrium. For DESCENT, we report the average running time and the
approximation quality of the approximate equilibrium that was found.

Games LEMKE DEeSCENT 0.1 LS DesceNT 0.001 LS
Game # Types | # Points/Troops Time % Timeout Time € Time € % Timeout
AdjWinner 30 5 281.407 21.0 0.939 4.450e-02 3.065 7.469e-03 0.0
AdjWinner 3 60 233.963 10.0 138.584 | 2.683e-02 || 220.254 | 1.827e-03 10.0
Blotto 3 8 71.814 0.0 0.032 9.181e-03 0.480 5.281e-04 0.0
Blotto 3 10 382.497 23.0 0.063 8.859e-03 0.845 5.408e-04 0.0
Blotto 3 12 573.663 91.0 0.118 8.590e-03 1.392 6.268e-04 0.0

Table 2: Results for Adjusted Winner and Blotto games. The two rows for Adjusted Winner show similar running times but
actually correspond to very different input sizes, with the second row corresponding to much larger games. The underlying
reason is that the number of players in the polymatrix game (i.e., number of types) affects the running time much more that
the number of actions (i.e., number of items/troops). Also see Appendix B in the full version of this paper [21].

Auc Player 1 Random

Time | % Timeout Time | % Timeout
FP 63.411 0.0 408.223 43.0
SP 3.663 0.0 39.727 3.0
AP 100.949 4.0 248.665 19.0

Table 3: Results for LEMKE showing the impact of the tie-breaking rule. We report on first price (FP), second price (SP)
and all-pay (AP) auctions with budget additive valuations, 3 items, and 5 types per player. In the first two columns, all tied
items are allocated to player 1, while in the last two, tied items are allocated uniformly at random.

LEMKE || DESCENT 0.001 | DESCENT LS 0.001
Time Time € Time €

FP 229.4 508.0 | 5.4e-03 || 4.894 | 6.768e-04
SP 1.6 470.8 | 3.7e-03 || 0.491 | 1.013e-05
AP 547.3 496.0 | 6.5e-03 || 5.551 | 3.283e-04

Table 4: Results showing the impact of line search for DESCENT. We report results for first price (FP), second price (SP), and
all-pay (AP) auctions for additive bidders. LEMKE timed out on 13% and 44.5% of FP and AP auctions respectively, while
DESCENT without line search times out on 61.5%, 56 % and 94% of instances on the respective auctions.
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Games LEMKE DESCENT 0.1 LS DEsceENT 0.001 LS
Game Graph # Payoff LCP p Time % T || Time € Time € % T
0 1.270 0.0 0.034 | 2.103e-02 0.760 9.951e-04 | 0.0
0.25 || 63.407 4.0 0.033 | 2.115e-02 0.748 1.026e-03 | 0.0
Complete 26010 32400 0.5 337.443 | 45.0 | 0.034 | 1.859e-02 0.750 1.070e-03 | 0.0
0.75 || 522.207 | 74.0 || 0.033 | 1.604e-02 0.725 1.076e-03 | 0.0
1 116.354 0.0 0.034 | 4.844e-03 0.598 5.087¢-04 | 0.0
0 18.430 2.0 0.103 | 3.352e-02 3.612 1.093e-03 | 0.0
0.25 || 184.451 | 21.0 || 0.103 | 3.157e-02 3.534 1.167e-03 | 0.0
° Cycle 25920 136900 0.5 || 412.947 | 55.0 || 0.105 | 2.859e-02 3.430 1.136e-03 | 0.0
E 0.75 || 593.414 | 96.0 || 0.103 | 2.626e-02 3.206 1.121e-03 | 0.0
-5 1 600.097 | 100.0 || 0.107 | 1.906e-02 2.712 6.557¢-04 | 0.0
§ 0 35.447 3.0 0.072 | 3.143e-02 2.257 1.023e-03 | 0.0
O 0.25 || 260.455 | 35.0 || 0.069 | 3.239e-02 2.233 1.137e-03 | 0.0
Grid 26136 93636 0.5 || 451.699 | 61.0 || 0.072 | 2.955e-02 2.254 1.170e-03 | 0.0
0.75 || 552.286 | 82.0 || 0.072 | 2.786e-02 2.106 1.186e-03 | 0.0
1 599.349 | 99.0 | 0.070 | 2.159e-02 1.802 6.489¢-04 | 0.0
0 0.276 0.0 0.060 | 1.012e-02 0.818 1.175e-03 | 0.0
0.25 0.542 0.0 0.062 | 1.997e-02 0.806 1.220e-03 | 0.0
Tree 25992 152100 0.5 73.443 5.0 0.062 | 2.139e-02 0.814 1.246e-03 | 0.0
0.75 || 165.418 4.0 0.061 | 2.150e-02 0.796 1.084e-03 | 0.0
1 162.420 0.0 0.063 | 1.469e-03 0.778 7.686e-04 | 0.0
2 368.032 | 36.0 || 0.025 | 1.976e-02 0.564 1.093e-03 | 0.0
20250 25600 3 495.919 | 66.0 || 0.025 | 1.762e-02 0.550 1.129e-03 | 0.0
o 5 435.207 | 29.0 || 0.025 | 1.308e-02 0.525 9.926e-04 | 0.0
N 2 438.650 | 59.0 || 0.034 | 1.855e-02 0.760 1.068e-03 | 0.0
=) Complete 26010 32400 3 576.439 | 91.0 | 0.034 | 1.583e-02 0.731 1.120e-03 | 0.0
S 5 582.924 | 88.0 | 0.033 | 1.186e-02 0.677 9.738¢-04 | 0.0
@) 2 545.997 | 84.0 | 0.052 | 1.564e-02 1.073 1.049e-03 | 0.0
36000 44100 3 598.616 | 99.0 | 0.051 | 1.396e-02 1.037 1.110e-03 | 0.0
5 600.088 | 100.0 || 0.051 | 1.101e-02 0.969 9.721e-04 | 0.0
Complete 20250 25600 5 356.009 | 17.0 | 0.024 | 1.878e-02 0.552 1.054e-03 | 0.0
3 Cycle 20480 108900 5 580.891 | 85.0 || 0.087 | 1.729e-02 2.102 1.068e-03 | 0.0
a—"’; Grid 20184 72900 5 551.795 | 77.0 | 0.066 | 1.612e-02 1.428 1.108e-03 | 0.0
Tree 20808 122500 5 79.560 0.0 0.048 | 2.571e-03 0.664 8.111e-04 | 0.0
2 194.233 8.0 8.455 | 1.446e-02 86.116 | 9.603e-04 | 0.0
- Complete | 995000 1440000 3 410.118 | 38.0 || 6.551 | 1.909e-02 73.485 | 1.047e-03 | 0.0
,8 5 552.583 | 81.0 || 4.957 | 2.585e-02 64.676 | 1.130e-03 | 0.0
g 2 103.403 0.0 0.227 | 1.334e-01 577.984 | 3.094e-02 | 73.0
& Cycle 17500 4410000 3 90.062 0.0 0.172 | 1.412e-01 529.581 | 4.199e-02 | 48.0
8 5 78.883 0.0 0.156 | 1.427e-01 || 438.707 | 3.950e-02 | 28.0
2 2 116.157 0.0 0.864 | 8.298e-02 || 275.839 | 5.461e-03 | 1.0
=5 Grid 27200 3006756 3 81.933 0.0 0.464 | 1.110e-01 || 480.608 | 1.368e-02 | 15.0
%0 5 58.054 0.0 0.131 | 1.384e-01 358.662 | 3.028e-02 | 2.0
= 2 240.215 0.0 0.750 | 0.000e+00 2.768 3.253e-04 | 0.0
Tree 24950 9000000 3 220.510 0.0 0.709 | 0.000e+00 2.533 1.194e-04 | 0.0
5 204.919 0.0 0.653 | 0.000e+00 2.345 8.947¢-05 | 0.0

Table 5: Results for multi-player (non-Bayesian) polymatrix games. The underlying graphs are complete graphs, cycles, grids
and star graphs. %7 is the proportion of the timed out instances. On Cooperation-Zerosum games, the value of p represents
the proportion of games which are coordination games, for group zero-sum games, it represents the number of groups, and
for weighted cooperation games, it represents the multiplier dictating the total number of colours available, i.e. if there are k

colours per player, then there are k - p total colours available.
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Multiunit auctions with additive valuations
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Figure 1: Plots showing the performance of the algorithms on multi-unit auctions with first price, second price, and all-pay
payment rules. The left plot shows the performance of LEMKE’s algorithm. It can clearly be seen that the allocation rule
impacts the performance of the algorithm. The right chart right shows the performance of DESCENT with § = 0.001. The
y-axis scales on the two charts are not equal: DESCENT is much faster than LEMKE.
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Figure 2: Box and whisker plots showing the approximation quality of the approximate equilibria found by DESCENT with
0 = 0.001. The results show that DESCENT almost always finds a high quality approximate equilibrium. It can be seen that
on many classes of games, even the worst approximation quality over all test cases is very good.
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