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ABSTRACT
We discuss several ways to measure the extent to which a
player can exert control over a one-player game, relating
them to the existing literature on the “skill vs chance” di-
chotomy. We focus on measures that depend only on the
rules of the games, and not on how people actually play
them. After presenting a set of desirable properties, we
show that two statistical measures of effect size satisfy them
and we estimate the value of such measures on several well-
known games.
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1. INTRODUCTION
Many games played by people feature a combination of

determinism and chance. Most card games involve an initial
shuffling, board games resort to dice, and electronic games
employ pseudo-random number generators.

There is no established way to measure the amount of
chance involved in a game, besides some isolated efforts that
will be discussed in Section 4. By measuring the amount of
chance, we mean assign a real number between 0 and 1 to
every game, in such a way that a purely deterministic game,
such as Chess, receives value 1, and a purely random game,
such as a lottery, receives value 0. In the spirit of our dis-
cipline, we are interested in measures that can be automat-
ically computed, or at least approximated to an arbitrary
precision. Hence, the candidate measures may depend only
on the rules of the game, and not on how people actually
play it. This property has the additional advantage that the
measures we consider can also be evaluated on games that
are not (yet) played by people, perhaps because they are
still being designed.

The motivation that drives most of the literature on this
subject comes from gambling laws. Many countries distin-
guish games of chance from games of skill and apply different
regulations to each class. Such laws make no attempt to for-
mally define these two classes, leaving this task to judges,
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who may very well hold different opinions on the subject. In
fact, in at least one well-documented case, different courts
have expressed contrasting rulings on the game of electronic
draw poker (a.k.a. video poker) [13], which is one of the
games we examine in Section 7. Our investigation may
clearly contribute to these applications, by providing an ob-
jective and a-priori means to quantify the amount of chance
in a game.

Measures of chance can also help players make informed
decisions on which games to play according to their tastes,
and enable game designers to tune their games for their au-
dience and facilitate innovative game designs. In the words
of game designer Soren Johnson [12]: “The appropriate role
of chance in a game is ultimately a subjective question, and
giving players the ability to adjust the knobs [...] can open
up the game to a larger audience with a greater variety of
tastes.”

Last but not least, we believe that the problem is interest-
ing for its own sake, because it bears connections with differ-
ent disciplines, ranging from learning theory to psychology.
In this paper, we focus on solitaire games. Common soli-
taire games include video poker, Black Jack 1, Minesweeper,
etc. Such games can be modeled as finite-state discrete-time
Markov Decision Processes (MDPs). We can then rephrase
our original problem as a discussion of measures of control-
lability for MDPs. To the best of our knowledge, the only re-
lated work focused on MDPs is [21]. There, the authors look
for metrics on MDPs that may help choose the best learn-
ing algorithm for a planning problem. They propose several
metrics and experimentally evaluate their ability to predict
the performance of different learning algorithms. The intu-
ition behind their proposals is similar to ours: measure the
degree of controllability of the model. However, the purpose
and methodology is very different, leading to a number of
metrics that have a “local” flavor, in the sense that they are
easy to compute based on the information which is available
in a state. It is possible that our investigation may prove
useful in that domain, although the metrics we propose are
likely to be much more computationally demanding than
theirs.

An entirely different domain where similar concerns are
routinely addressed is in effect-size statistics. In many social
and life sciences, investigators try to measure the influence
of some controllable (or at least measurable) variable on
the outcome of a complex process [18]. This is the familiar

1In Black Jack, the dealer follows a deterministic strategy, so
a game between a single player and the dealer is effectively
a solitaire.
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scenario in which a control group is compared with one or
more treatment groups, to evaluate the effect of a drug, a
procedure, or some intrinsic attribute of the subjects. The
same methodology also applies to Computer Science, when
one wants to accurately characterize the influence of some
feature of the input on the performance of an algorithm [3].
In most cases, the complex process which transforms inputs
into an outcome is treated as a black-box, and statistics is
used to analyze the relation between inputs and outputs.

Analogously, the outcome of a solitaire game is influenced
by some controllable input (the player’s moves) and a ran-
dom device. Contrary to the complex systems of Biology,
Medicine, and Psychology, the process that combines con-
trollable inputs and random events is exactly known, being
determined by the rules of the game. On the other hand,
the state-space of a real game can be so large that statistical
techniques remain the only applicable analysis tool. Effect-
size statistics constitute the standard toolbox for analyzing
these scenarios. Many different effect-size measures can be
found in the literature [9], some of which will be presented
in Section 5, and used in Section 6 as measures of average
controllability for solitaire games.

The reason for targeting average controllability, rather
than minimum or maximum controllability, stems from the
observation that the first may more accurately approximate
the behavior of a population of players of various skill lev-
els. After all, min, average, and max are the three canonical
points in the spectrum of rationality, with bounded ratio-
nality and actual human players arguably positioned some-
where between the second and the third point.

Summarizing, after the preliminary notions of Section 2,
our contribution is organized in four sections, followed by
some conclusions. In Section 3, we present a small set of ax-
ioms that we deem desirable for a measure of controllability.
In fact, the property we are trying to measure appears so
nebulous that little to no consensus has been reached by the
scientific community on its interpretation. Hence, we be-
lieve that it is useful to start by enumerating some axioms
that focus our investigation and ease the comparison with
the related literature. Such comparison is indeed the topic
of Section 4, which reviews previous proposals of control-
lability measures, putting them in the context of solitaire
games and analysing them from a computational point of
view. We conclude that previous measures are not suitable
to our aims, and therefore devote Sections 5 and 6 to outline
our proposal, which is based on the effect-size measures“per-
centage of variance explained” and “percentage of absolute
deviation explained”. We show that such measures satisfy a
basic set of axioms but violate a stronger version of one of
the axioms. Then, we prove that these measures define two
different orders between games.

In Section 7, we employ a purpose-built game simula-
tion framework to estimate the value of each measure on
randomized versions of Tic-tac-toe and simplified variants
of Minesweeper, Video Poker, and Black Jack. Moreover,
we include in the comparison an individual sport, archery,
for which we obtained experimental data from an external
source.

2. DEFINITIONS
We represent a solitaire game by a finite-state discrete-

time MDP with partial information and a reachability ob-
jective.

Definition 1. A Markov decision process with partial in-
formation (PIMDP) is a tuple P = (S, s0, I, A,Γ, δ), where
S is a finite set of states, s0 ∈ S is the initial state, I is a par-
tition of S into information sets, A is a finite set of actions,
Γ : I → 2A gives the set of active actions for each informa-
tion set, and δ : S×A×S → [0, 1] is the transition function,
assigning to each triple (s, a, s′) the probability that the pro-
cess moves from s to s′ when action a is selected. Denote
by [s] the information set containing s, for all s ∈ S and
a ∈ Γ([s]), it holds

∑
s′∈S δ(s, a, s

′) = 1.

PIMDPs are a special case of partially observable MDPs [7]
and are similar to the game theoretic notion of extensive
game with imperfect information [19]. In particular, states
belonging to the same information set are indistinguishable
to the player, so that he is forced to take the same action in
all of them.

A path in P is a finite sequence of states s0s1 . . . sn, such
that for all i = 0, 1, . . . , n − 1 there exists a ∈ Γ([si]) such
that δ(si, a, si+1) > 0. A path is maximal if it is not a proper
prefix of another path (because its last state has no active
actions). For our purposes, it suffices to consider acyclic
PIMDPs, i.e., PIMDPs having no path with repeated states.
Notice that, in order for the process to be acyclic, some
states must have no active actions (sink states).

A (memoryless and deterministic) strategy is a function
σ : I → A such that σ(I) ∈ Γ(I) for all I ∈ I. A
path s0s1 . . . sn is consistent with the strategy σ if for all
i = 0, 1, . . . , n, it holds that δ(si, σ(si), si+1) > 0. We denote
by runs(σ) the set of all maximal paths consistent with σ.
As we are assuming that the process is acyclic, each strategy
induces a finite set of maximal paths and a discrete proba-
bility space over it in the usual way (see [7] for details). We
denote by pσ the probability measure induced by σ. If two
strategies give rise to the same probability space, we con-
sider them equivalent. So, when talking about the set of all
strategies in a PIMDP, we implicitly refer to the quotient
w.r.t. such equivalence.

Definition 2. A solitaire game G is a pair (P, T ) where P
is an acyclic PIMDP and T ⊆ S is a non-empty set of target
states.

Given a solitaire game (P, T ), assume w.l.o.g. that states
in T are sinks, and let val be the function assigning 1 to the
paths ending in T , and 0 to all other paths. We denote by
Eσ the probability of reaching T under strategy σ. Notice
that Eσ is also the expected value of the random variable
assigning value val(r) to each run r ∈ runs(σ), under the
probability space induced by σ. So, we also call it the ex-
pected value of σ.

3. DESIRED QUALITIES OF A MEASURE
In this section, we discuss a number of desired properties

for a controllability measure for solitaire games, having in
mind the applications mentioned in the Introduction. First
of all, we choose to restrict to games that can be put in the
form of a PIMDP.

Axiom 0. The measure can only depend on the rules of the
game, as formalized by Definition 2.

Although Axiom 0 sounds perfectly natural in a computa-
tional context, it sets us apart from the previous research on
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the topic (see Section 4), so let us remark once more its ben-
efits. Axiom 0 makes sure that the measure can be applied
to any game that can be put in the form of Definition 2,
allowing us to evaluate hypothetical games, or a proposed
variant to a real-world game, and ascertain whether it would
increase or decrease the randomness of the game.

We say that a game is chance-less if there is a single desti-
nation for each action, i.e., for all s ∈ S and a ∈ Γ([s]) there
exists a unique s′ such that δ(s, a, s′) > 0. Dually, a game is
skill-less if there is a single active action from each informa-
tion set: for all I ∈ I it holds that |Γ(I)| = 1. A skill-less
game has a single strategy. Intuitively, all chance-less (resp.,
skill-less) games should have controllability measure 1 (resp.,
0). However, some degenerate games are chance-less and
skill-less at the same time, giving rise to a single maximal
path. What should be their measure? We stipulate that it
should be 0, as our primary objective is to measure to what
extent the moves of the player decrease the uncertainty in
the outcome. If a game has no uncertainty to begin with,
no control can be exerted by the player.

Axiom 1. For all chance-less games G, we have m(G) = 1,
provided that there are at least two runs r1, r2

in the game, with val(r1) 6= val(r2).

Axiom 2. For all skill-less games G, we have m(G) = 0.

Axioms 1 and 2 are entirely uncontroversial and can be found
in all previous works on the subject.

Next, we introduce an axiom which provides a canonical
game for each possible value of the measure. The family of
games Bp(G0, G1) is depicted in Figure 1(c) and accepts as
parameters a probability p ∈ [0, 1] and two other games G0

and G1. Games Rand and Ctrl are shown in Figures 1(b)
and 1(a), respectively.

Axiom 3. For all p ∈ [0, 1], we have m
(
Bp(Rand ,Ctrl)

)
=

p.

Axiom 3 fixes the value of the measure for the family of
games that are simple mixtures of a specific game of measure
0 and a specific game of measure 1. It is tempting to replace
it with one of the following increasingly stronger versions.
In the first version, games Rand and Ctrl are replaced by
arbitrary games having measure 0 and 1, respectively.

Axiom 3’. For all p ∈ [0, 1], let G0 and G1 be arbitrary
games such that m(G0) = 0 and m(G1) = 1.
Then, we have m

(
Bp(G0, G1)

)
= p.

Notice that Axiom 3’ introduces a discontinuity in the mea-
sure, in the sense that we can exhibit a sequence of games
having measure 1

2
, converging to a game that has measure

1 due to Axiom 1. For i > 0, the i-th game in the sequence
is B1/2(Hi,Ctrl), where Hi is a skill-less game in which the
target T is reached with probability 1

2i . In itself, this dis-
continuity should not be a reason to discard Axiom 3’. After
all, even in a simple Markov chain (with loops), the prob-
ability of eventually reaching a given state is discontinuous
w.r.t. the one-step transition probabilities. In the next sec-
tion, we show that two classical effect size measures recalled
in Section 5 satisfy Axiom 3 but not Axiom 3’.

In another, even stronger version of Axiom 3, games G0

and G1 are entirely arbitrary.

Axiom 3”. For all p ∈ [0, 1], let G0 and G1 be arbitrary

games. Then, we have

m
(
Bp(G0, G1)

)
= p ·m(G1) + (1− p)m(G0).

We now show that Axiom 3” is too strong for our intents.
Consider the game B1/2(G0, G1) where G0 = G1 = Ctrl .
After an initial random move, the player is in total control
and can choose between winning and losing. Axiom 3” pre-
scribes measure 1 for this game, because the sub-games G0

and G1 are entirely controlled by the player and hence have
measure 1 due to Axiom 1. On the other hand, if we iden-
tify (types of) players with strategies, this game has four
different strategies, depending on the choice of the player in
the two sub-games. If the player chooses to win when in G0

and lose in G1 (or vice versa), then the outcome is entirely
decided by the initial random move. In other words, 2 out
of 4 strategies effectively exert no control on the game. For
this reason, we reject Axiom 3”.

The decision to consider all possible strategies in the game
stems from our objective of defining average controllability
measures. In so doing, we violate the classical principle of
Independence of Irrelevant Alternatives. Indeed, we assume
that players, due to their bounded rationality, may fail to
recognize that the two sub-games G0 and G1 are identical,
and hence may behave differently in the two sub-games. A
similar tension between bounded rationality and the classic
tenets of decision theory is noted by Dagsvik [4].

s0

s1 T

s2

(a) The chance-less
game Ctrl .

s0

s1 T

s2

1
2

1
2

(b) The skill-less game
Rand .

s0

G1

G0

p

1− p

(c) The game fam-
ily Bp(G0, G1),
with p ∈ [0, 1].

s0

...

G0

G1
1

G2
1

Gk1

(d) The game family
Ak(G0, G

1
1, . . . , G

k
1), with

k ∈ N.

Figure 1: Significant games. States are circles and
actions are diamonds.

A simple measure that satisfies Axioms 0-3 as well as Ax-
iom 3’ is the difference between the expected value of the
optimal strategy and the expected value of the worst strat-
egy. However, we believe that this measure is too crude to
be useful to our inteded applications. In particular, con-
sider two games G′, G′′ with a thousand strategies each. In
G′, 999 strategies have expected value 1/2, which denotes
no control on the game outcome, and one strategy has ex-
pected value 1. In G′′, the opposite happens: 999 strategies
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win with certainty and one strategy has expected value 1/2.
The measure described above assigns the same measure 1/2
to both games, whereas we would like m(G′′) > m(G′). We
therefore introduce the following axiom, based on the family
of games Ak in Figure 1(d):

Axiom 4. For all k > j > 0, we have
m
(
Ak(Rand ,Ctrl , . . . ,Ctrl)

)
>

m
(
Aj(Rand ,Ctrl , . . . ,Ctrl)

)
.

Axiom 4 states that adding more alternatives for the player
that lead to completely controllable games raises the value
of the measure (even if other controllable alternatives are
already available). Essentially, Axiom 4 implies that we are
looking for an average measure of controllability, rather than
the maximum amount of control that a player can exercise.
Similarly to Axiom 3, we also consider a stronger version
of Axiom 4, which employs generic games with prescribed
measures instead of the two canonical games Rand and Ctrl .

Axiom 4’. For all k > j > 0, let G0, G
1
1, . . . , G

k
1 be

games such that m(G0) = 0, there is at
least one strategy σ in G0 s.t. Eσ ∈ (0, 1),
and m(Gi1) = 1 for all i = 1, 2, . . . , k.
Then, we have m

(
Ak(G0, G

1
1, . . . , G

k
1)
)

>

m
(
Aj(G0, G

1
1, . . . , G

j
1)
)
.

The second constraint on G0 ensures that there is some un-
certainty if the player chooses that game.

In the next section, we review, in the light of these axioms,
the main proposals that have been made in the literature.

4. PREVIOUS APPROACHES
In the literature, the issues we are considering here are

often discussed under the “skill vs luck” dichotomy [17]. We
believe that such terminology is somewhat misleading, be-
cause it may contribute to confounding two different and
largely independent issues: the amount of randomness in
the rules of a game (the “chance” element) and the difficulty
of a game for a human player (the “skill” element). Consider
Tic-Tac-Toe and Chess: the rules of both games involve no
randomness, but nobody would say that they require the
same amount of skill to be played well. Our Axiom 1, shared
by similar works in the literature, makes it clear that we are
interested in the amount of randomness and not in the dif-
ficulty of winning the game. Which (combination) of these
two issues should be of interest to the legislator is up for
debate and we are in no position to contribute. Here, we
focus on measuring the amount of randomness in the rules
of a game, and we call controllability the lack thereof.

Borm and van der Genugten [2], with later contributions
by Dreef [5, 6], seem to be the first to formally define a mea-
sure of controllability for games, coming from an Economic
background, with gambling laws as the reference applica-
tion. They subscribe to our Axioms 1 and 2 and propose
the following measure:

m1(G) =
learning effect

learning effect + random effect
.

Roughly speaking, the learning effect quantifies the differ-
ence between the performance of an expert player and that
of a beginner, while the random effect quantifies the ad-
vantage given by knowing in advance the realization of the
random effects in the game.

The authors then clarify the above definition by semi-
formally defining the following three types of players: (i)
the optimal player, who plays the strategy with the highest
expected payoff, or, in our setting, the highest probability
of reaching the target T ; (ii) the fictive player, who plays
optimally and moreover knows in advance the realization
of the random events that will occur during play; (iii) the
beginner player, who “has only just familiarized himself with
the rules of the game” [5].

Call Eopt, Efic, and Ebeg the expected payoff of the three
player categories outlined above, Dreef et al. define the learn-
ing effect as Eopt−Ebeg and the random effect as Efic−Eopt,
leading to the following expression for m1:

m1(G) =
Eopt − Ebeg

(Eopt − Ebeg) + (Efic − Eopt)
=
Eopt − Ebeg

Efic − Ebeg
.

Even in the context of the original paper, the authors
struggle to define the meaning of the beginner player, dis-
cussing three possible ways to ascertain his behavior: (a) by
postulating that she chooses uniformly at random among
the available moves; (b) by statistically analyzing the actual
behavior of people playing the game; (c) by assigning the
task to a “gambling expert”. In their analysis of minipoker,
Dreef et al. employ option (c), i.e., they devise an ad-hoc
strategy that is deemed appropriate for a beginner. On the
other hand, only option (a) satisfies our Axiom 0 and is
suitable for a fair comparison between different games.

Regardless of the interpretation chosen for the begin-
ner player, the biggest problem with measure m1 is
that it violates Axiom 3. Indeed, in the game family
Bp, knowing in advance the result of the random moves
gives no advantage to the player. Precisely, for game
Bp(Rand ,Ctrl) we have that Eopt = Efic = p+1

2
, and there-

fore m1

(
Bp(Rand ,Ctrl)

)
= 1 for all p ∈ [0, 1]. This critique

to measure m1 was already raised by Heubeck [10].
On the other hand, if we adopt interpretation (a) for “be-

ginner” (i.e., “uniformly random”), the simple expression
m2(G) = 2(Eopt − Ebeg), which is twice the “learning ef-
fect”, gives the desired value p for the game Bp(Rand ,Ctrl),
thus satisfying Axiom 3. However, it is easy to see that m2

violates Axiom 1. Indeed, let G be a chance-less game with
three strategies, two of which lead to the target T . We have
m2(G) = 2/3 rather than the prescribed value of 1.

It should be noted that Dreef et al. [5] mention in their
conclusions that an alternative approach could be based on
the analysis of variance, which is one of the central tenets of
the present paper.

In a recent column [22], Wyner presents a critique of Deer
et al. and advances his own proposal, accompanied by a set
of (semi-formal) axioms he deems desirable. The first two
axioms unsurprisingly coincide with our Axioms 1 and 2. We
quote the remaining four axioms, slightly adapting them to
our notation:

Axiom III. If GN is the convolution of N rounds of game
G, then limN→∞m(GN ) = 1 provided that
m(G) > 0.

The paper does not define “convolution”, but we can sur-
mise it means playing the game multiple times and somehow
combine the obtained payoffs. The intended meaning of the
axiom is that if a game involves a non-zero amount of skill,
in the long-run its outcome will depend entirely on skill.
The axiom makes sense for 2-player games: in the long run,
chance elements should even out and the different skill (or,
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in more neutral terms, different strategies) of the two play-
ers is what really counts towards establishing a winner. In
fact, a similar principle was used in recent work on online
multi-player poker [20].

However, applying this axiom to controllability of soli-
taires appears problematic. In a game with non-zero con-
trollability, the moves of the player have some influence on
the distribution of outcomes. On the other hand, having per-
fect control (measure 1) means that there is no randomness
in the game and the game outcome is directly determined
by the player’s moves. If a game with non-zero controllabil-
ity measure is repeated at will, there is no reason to believe
that the outcome has no randomness left.

Axiom IV. The measure should depend on the distribu-
tion of skill levels of the population of players.

Although perhaps motivated in a context which is strictly
focused on legal applications, this axiom goes squarely
against our Axiom 0 and the idea of achieving a fair com-
parison between different games.

The following axiom is a weaker form of our Axiom 3. In
fact, the game family Bp from Figure 1(c) is a straightfor-
ward generalization of the balanced mixture game of Wyner,
which coincides with B1/2.

Axiom V. It holds m
(
B1/2(Rand ,Ctrl)

)
= 1

2
.

The final axiom refers to the fact that several juristictions
define games of skill as those games where skill plays a pre-
ponderant role, leading to the so-called preponderance test.
Axiom VI suggests to set the threshold at 1/2. We briefly
comment on this axiom in Section 7, after we present our
experimental evaluations.

Axiom VI. Any game G for which m(G) < 1
2

fails the
preponderance test.

After presenting these axioms, Wyner introduces his pro-
posal for a measure of skill in multi-player games. Roughly
speaking, he postulates the possibility to quantify the skill
level of a player. Then, for two skill levels k > j, a match
between two players is termed (j, k)-reversible if its out-
come is reversed when the skill level of the losing player
changes from j to k (and the random events somehow re-
main fixed). The proposed measure is the probability that
a match is reversible “when averaged over players of random
talent against experts” [22]. Clearly, such semi-formal defi-
nition is hard to fit into the current framework, particularly
due to our Axiom 0 and the presence of a single player.

Heubeck [11] discusses measures similar to the percentage
of absolute deviation explained for games of a special form,
in which a completely controllable phase is followed by a
completely random choice of payoff.

Finally, a significant amount of attention has been devoted
to the balance between skill and chance in (multi-player)
Poker [16, 20]. Exploiting the wealth of data currently avail-
able on online poker, these works take an empirical approach
and estimate the correlation between past and future per-
formance of human players.

5. EFFECT-SIZE MEASURES
We recall the basic definitions pertaining the family

of effect-size measures called “percentage of variance ex-
plained”, commonly associated to the statistical framework
ANOVA (analysis of variance) [8]. These measures aim
at attributing the spread in the outcomes to two different
sources: the strategy giving rise to each outcome and the

variation within a single strategy. To compute such a mea-
sure, one summarizes each strategy σ by its expected value
Eσ; then, one quantifies the spread of such averages and
divides it by the total spread, where “spread” can be inter-
preted in different ways.

Given a set of strategies σ1, . . . , σn, let E be the arithmetic
mean of Eσ1 , . . . , Eσn , i.e., E = 1

n

∑n
i=1 Eσi . We obtain the

first measure by interpreting “spread” as variance, leading to
the notions of variance between strategies Varbtw and total
variance Var tot:

Varbtw =
1

n

n∑
i=1

(Eσi − E)2

Var tot =
1

n

n∑
i=1

∑
r∈runs(σi)

(val(r)− E)2 · pσi(r).

The classical effect size measure η2, called percentage of vari-
ance explained is the ratio of the above two statistics:

η2 =
Varbtw

Var tot
=

∑n
i=1(Eσi − E)2∑n

i=1

∑
r∈runs(σi)(val(r)− E)2 · pσi(r)

=

∑n
i=1

(
E2
σi + E

2 − 2EEσi
)∑n

i=1

(
Eσi + E

2 − 2EEσi
)

=

∑n
i=1 E

2
σi + nE

2 − 2E
∑n
i=1 Eσi∑n

i=1 Eσi + nE
2 − 2E

∑n
i=1 Eσi

=

∑n
i=1 E

2
σi − nE

2

n(E − E2
)

.

The value of η2 is undefined when both its numerator and its
denominator are zero, which in our setting happens if and
only if E ∈ {0, 1}. Since this corresponds to games whose
outcome is independent from the player strategy, in this case
we set the value of η2 to 0. We will also be interested in the
square root of η2, naturally denoted by η, which can be
interpreted as the percentage of standard deviation which is

explained by the choice of a strategy: η =
√
η2 =

√
Varbtw√
Vartot

.

If instead “spread” is interpreted as absolute deviation, we
obtain the following definitions of absolute deviation between
strategies and total absolute deviation.

ADbtw =
1

n

n∑
i=1

|Eσi − E|

ADtot =
1

n

n∑
i=1

∑
r∈runs(σi)

|val(r)− E| · pσi(r).

Based on the above, the percentage of absolute deviation
explained γ can be defined as follows:

γ =
ADbtw

ADtot
=

∑n
i=1 |Eσi − E|∑n

i=1

∑
r∈runs(σi) |val(r)− E| · pσi(r)

=

∑n
i=1 |Eσi − E|

2n
(
E − E2) .

As before, we set γ = 0 whenever ADbtw = ADtot = 0,
which happens iff E ∈ {0, 1}.
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6. CONTROLLABILITY MEASURES
In this section, we show that the two effect size measures

η and γ satisfy the basic axioms of Section 3, but fail to
satisfy the stronger Axiom 3’.

By an abuse of notation, for a game G we write η(G) and
γ(G) to signify η(Eσ1 , . . . , Eσn) and γ(Eσ1 , . . . , Eσn), where
σ1, . . . , σn are all the strategies in G, modulo equivalence.

First, we characterize the cases in which the two measures
have value 1.

Proposition 1. Let E1, . . . , En ∈ [0, 1], and E be their
arithmetic average. The following are equivalent:

1. η(E1, . . . , En) = 1;

2. γ(E1, . . . , En) = 1;

3. Ei ∈ {0, 1} for all i = 1, . . . , n, and E ∈ (0, 1).

Proof . [(1)↔(3)]. It holds that

η = 1⇔
∑
iE

2
i − nE

2
= nE − nE2

⇔
∑
iE

2
i = nE

⇔
∑
iE

2
i =

∑
iEi. (*)

As Ei ∈ [0, 1], it follows that E2
i ≤ Ei. By (*), we have that

E2
i = Ei for all i. Since E2

i = Ei iff Ei ∈ {0, 1}, we obtain
the thesis.
[(2)↔(3)]. Let S =

∑
iEi = nE and let I+ (resp., I−) be

the set of indices i ∈ {1, . . . , n} such that Ei ≥ E (resp.,
Ei < E). Assuming that γ = 1, by definition we have that
E ∈ (0, 1). Moreover,∑

i∈I+(Ei − E) +
∑
i∈I−(E − Ei) = 2nE(1− E);∑

i∈I+
Ei − |I+| · E + |I−| · E −

∑
i∈I−

Ei = 2S(1− E);

∑
i∈I+ Ei

S
−
∑
i∈I− Ei

S
+
|I−|
n
− |I

+|
n

= 2(1− E);

1− 2

∑
i∈I− Ei

S
+ 1− 2

|I+|
n

= 2− 2E;

|I+|
n

+

∑
i∈I− Ei

S
= E;

|I+|+
∑
i∈I− Ei

E
=
∑
i∈I+

Ei +
∑
i∈I−

Ei.

Now, write the last equation as a + b = c + d, it is easy to
see that a ≥ c and b ≥ d. Hence, it holds a = c and b = d,
which implies (3).

Conversely, assume that (3) holds. We have that E = |I+|
n

and hence

γ =

∑
i∈I+(1− E) +

∑
i∈I− E

2n(E − E2
)

=
|I+| − |I+| · E + |I−| · E

2n(E − E2
)

=
|I+| − |I+| · |I

+|
n

+ (n− |I+|) · |I
+|
n

2n( |I
+|
n
− |I+|2

n2 )

=
2|I+| − 2 |I

+|2
n

2|I+| − 2 |I
+|2
n

= 1.

Proposition 2. Measure η satisfies Axioms 0, 1, 2, 3,
and 4’.

Proof. Axiom 1 is an immediate consequence of Prop. 1
whereas Axiom 2 follows from the definition of η. Ax-
iom 3 can be verified by simple calculations. As for Ax-
iom 4’, let G0, G

1
1, G

2
1, . . . , G

k
1 be games such that η(G0) =

0 and η(Gi1) = 1 for all i = 1, . . . , k. We prove
that η

(
Ak(G0, G

1
1, . . . , G

k
1)
)
> η

(
Ak−1(G0, G

1
1, . . . , G

k−1
1 )

)
.

By Prop. 1, all strategies in Gk1 have expected value
0 or 1. Hence, it is sufficient to prove that for all
E1, . . . , En ∈ [0, 1], (i) η(E1, . . . , En, 0) > η(E1, . . . , En)
and (ii) η(E1, . . . , En, 1) > η(E1, . . . , En). The thesis then
follows by an induction on the number of strategies in the
sub-game Gk1 .

We develop the proof for (i), as the one for (ii) is similar.
For technical convenience, we prove the result for η2, as the
thesis for η follows as a consequence. Let E (resp., S) be
the arithmetic average (resp., the sum) of (E1, . . . , En) and

let E
′

be the arithmetic average of (E1, . . . , En, 0).

η2(E1, . . . , En, 0)− η2(E1, . . . , En) =∑
iE

2
i − (n+ 1)E

′2

(n+ 1)E
′
(1− E′)

−
∑
iE

2
i − nE

2

nE(1− E)
=

(1− E)(
∑
iE

2
i − S2

n+1
)− (1− E′)(

∑
iE

2
i − S2

n
)

S(1− E′)(1− E)
.

Since the denominator is clearly non-negative, we can focus
on the sign of the numerator.

(1− E)(
∑
iE

2
i −

S2

n+ 1
)− (1− E′)(

∑
iE

2
i −

S2

n
) =

∑
iE

2
i −

S2

n+ 1
− E

∑
iE

2
i +

S3

n(n+ 1)

−
∑
iE

2
i +

S2

n
+ E

′∑
iE

2
i −

S3

n(n+ 1)
=

S2
( 1

n
− 1

n+ 1

)
− S

∑
iE

2
i

( 1

n
− 1

n+ 1

)
=

S(S −
∑
iE

2
i )
( 1

n
− 1

n+ 1

)
.

Under the assumptions of Axiom 4’, all three terms of the
last expression are strictly positive, which proves our the-
sis.

Proposition 3. Measure γ satisfies Axioms 0, 1, 2, 3,
and 4.

Proof. Axiom 1 is an immediate consequence of Prop. 1
whereas Axiom 2 follows from the definition of γ. Axioms 3
and 4 can be verified by simple calculations. In particu-
lar, γ

(
Ak(Rand ,Ctrl , . . . ,Ctrl)

)
= 2k

k+1
, which is strictly in-

creasing in k, for k ≥ 1.

Proposition 4. Measures η and γ violate Axiom 3’.

Proof. Consider the game Gε = B1/2(Hε,Ctrl), where
Hε is a skill-less game whose only strategy has expected
value ε ∈ [0, 1]. Axiom 3’ prescribes the measure of G to be
1
2
, for all ε ∈ [0, 1]. On the other hand, simple calculations

show that η(Gε) = (3 + 4ε− 4ε2)−
1
2 and γ(Gε) = ( 3

2
+ 2ε−

2ε2)−1, which are both different from 1
2

when ε 6= 1
2
.
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Since our measures span a conventional range from 0 to 1,
we are not primarily interested in the actual value assigned
to a given game, but rather in the weak order induced on
games by the measure. A measure m induces the order ≤m
in the following way: G1 ≤m G2 iff m(G1) ≤ m(G2). Such
order is weak because there may be games with the same
measure, that end up being equivalent for the correspond-
ing order. Two measures are called co-monotonic if they
induce the same order. A simple example shows that the
two measures we are considering are not co-monotonic.

Proposition 5. Measures η and γ are not co-monotonic.

Proof. Consider two games G1, G2, with 3 strategies
each. The expected values of the strategies and the approx-
imate value of all measures are reported in the following
table.

game Ea Eb Ec η γ
G1 0 0.2 0.4 0.41 0.417
G2 0 0.31 0.31 0.36 0.420

Moving from G1 to G2, γ increases while η decreases, thus
proving the thesis.

The next section contains more extreme examples of non-
co-monotonicity, such as those arising in the analysis of the
game Minesweeper.

7. EXPERIMENTAL EVALUATION
To develop an intuitive understanding of our measures, we

set up a game simulation framework and implemented vari-
ous well-known games in it. The main results are presented
in Figure 2.

η γ
0.001

0.01

0.1

1 TTT-5 TTT-5

TTT-{3,4} TTT-{3,4}

TTT-2
TTT-2TTT-1
TTT-1

MS-2

MS-2

MS-4

MS-4

MS-{6,8}

MS-6
MS-8

VP-(15,25) VP-(15,25)

VP-(10,25)

VP-(10,25)

BJ-2 BJ-2

BJ-3
BJ-3

Archery
Archery

Figure 2: The amount of controllability in games
Tic-tac-toe (TTT), Black Jack (BJ), Video Poker
(VP), Minesweeper (MS), and an instance of
archery, according to measures η and γ. See Sec-
tion 7 for details.

Estimating the measures. The measures we consider are
all based on the expected values of all possible deterministic
memoryless strategies in the game. Since the state space of
most of the games we consider in this section is extremely
large, two levels of sampling were necessary: first, it is not
possible to evaluate all strategies; second, it is not even pos-
sible to evaluate all possible paths of a single strategy. Both
levels were adressed by uniform random sampling. As a rule
of thumb, we chose the sizes of the samples in such a way
that approximately one hour of computation is devoted to
each game, on an Intel Core i5, 3.3Ghz and with a sequential
implementation.

The game Tic-tac-toe is an exception, as it allows less than
a thousand different strategies and 400 paths for each strat-
egy. Hence, it was possible to analyze it exhaustively. For
the other games, the sampling introduces estimation errors
whose precise characterization goes beyond the scope of this
paper. Indeed, our purpose is to explore and compare dif-
ferent notions of controllability, and the accuracy achieved
by the experiments is sufficient to clearly distinguish how
different measures evaluate different games.

We now briefly present the games that we have evaluated
and discuss the corresponding experimental results. Since
our framework is tailored to solitaire games with a Boolean
outcome, most games have been modified to fit these con-
straints.

Tic-tac-toe. Tic-tac-toe is a well-known children game,
played on a 3x3 board by two players. We derive 5 dif-
ferent solitaire versions of this game, by fixing the strategy
of Player 2 in one of the following ways:

1. Put the token uniformly at random (in one of the avail-
able cells).

2. If there is a move that leads to immediate victory of
Player 2, play that move, otherwise play uniformly at
random.

3. If there is a move that prevents immediate victory of
Player 1, play that move, otherwise play uniformly at
random.

4. Avoid an immediate loss, or else try to obtain an imme-
diate victory, or else play uniformly at random.

5. Put the token in the first available cell (deterministic
strategy).

Moreover, a tie is considered a victory for Player 2. In Fig-
ure 2, we refer to Tic-tac-toe with strategy i (for i = 1, . . . , 5)
as “TTT-i”.

Video Poker. Video poker is a very common solitaire casino
game, similar to a slot machine, but based on the basic rules
of poker. In our version, at each round the player pays a
fixed bet of 1 dollar and is dealt 5 cards from a shuffled deck
of 52 cards. Then, he can choose which cards to keep and
which to change. Once the discarded cards have been redealt
from the same deck, a payoff table associates payments to
combinations of cards. If the player has a positive balance,
another round is played with a newly shuffled deck of cards.
To obtain a Boolean game, we fix two parameters: n is the
initial balance in dollars, and k is the number of rounds. The
player starts with an initial balance of n dollars and wins if
he keeps a positive balance for k rounds. In Figure 2, we
refer to the parameterized game as “VP-(n, k)”.
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Black Jack. Black Jack is a game usually played by several
players against a dealer, with no direct interaction between
players (except for card counting purposes). The rules of the
game can easily be found online. In our simplified version,
the player initially pays a fixed bet of 2 dollars and wins back
the bet if he scores higher than the dealer (but less than 21)
and 3 dollars if he wins with Black Jack (21). Then, if
the player has a positive balance, another round is played
using the same stack of cards. Hence, contrary to video
poker, in the rounds after the first one the player can use
a card counting strategy to improve his odds. The player
wins if she keeps a positive balance for k rounds, where k is
a parameter. In Figure 2, we refer to this game as “BJ-k”.

Minesweeper. Our version of Minesweeper is played on a
5x5 grid, on which n mines are randomly positioned at the
beginning of each play. The player, who begins with no
information on the position of the mines, in each round se-
lects a cell and is told how many mines are located in the
8 adjacent cells. The game continues until either the player
chooses a cell containing a mine or all empty cells have been
uncovered. In Figure 2, we refer to the game with n mines
as “MS-n”.

It is intuitively clear that it is very hard to win at
Minesweeper by playing at random. Hence, random strate-
gies have very small expected values, while comparatively
few strategies have significant chances to win 2.

Archery. We include in the comparison an individual (i.e.,
solitaire) sport, as an example of human activity that is
unanimously considered skill-driven. Archery fits well this
role, also because its outcomes are precisely quantifiable
with a fine grain, if one is able to measure the distance of
each single shot from the center of the target. This is pre-
cisely what was done in a recent paper by Kolayiş et al. [15],
whose purpose was to statistically characterize the typical
spatial distribution of arrows. To this aim, 18 athletes were
asked to throw up to 12 arrows each, and the position of
each arrow from the target center was measured using dig-
ital videography. For evaluating this “game”, we consider
each athlete as a strategy and the distance of each arrow
from the target center as an outcome of that strategy. To
turn outcomes into Boolean values, we consider each shot
a “win” if it is closer to the center of the target than the
average shot. We can then apply our measures to the data
because they depend only on the expected values of each
strategy.

7.1 Discussion
Figure 2 displays a selection of our experimental results,

on the same logarithmic scale. But for a few exceptions,
both measures agree on the order in which different games
should be put according to player controllability.

In the case of Tic-tac-toe, both measures confirm the in-
tuition that the 5 variants exhibit a decreasing amount of
randomness, with variant 1 being the most random. In par-
ticular, both measures assign value 1 to version 5 of the
game, which is entirely deterministic. All Tic-tac-toe vari-
ants are significantly more controllable than the two card
games we examine.

2 Becerra [1] reports an optimal expected value of at least
0.91 for a board of 9x9 with 10 mines.

In particular, a short game of Black Jack achieves approx-
imately 1% controllability according to both measures, while
Video Poker scores even lower.

In analyzing Minesweeper, the measures exhibit a rather
extreme case of non-co-monotonicity. Indeed, when increas-
ing the number of mines, η approaches a positive value
around 7 · 10−3, whereas γ approaches 1. We conjecture
that this contrast is tied to the extremely low average prob-
ability of winning in this game (with 6 mines, the probability
of winning by playing at random is about 1.6 · 10−5).

As expected, archery sits near the top of our ranking,
achieving measures η = 0.47 and γ = 0.38. With respect to
the “preponderance test” mentioned in Section 4, we observe
that setting the threshold between games of skill and games
of chance at 1

2
would put even archery in the first class,

albeit by a thin margin 3.

8. CONCLUSIONS
The balance between skill and luck in games is a topic

of interest for players, game designers, lawmakers, and en-
trepreneurs in the gambling business. In this paper, we put
forward a formal framework to evaluate such balance on 1-
player games, general enough to embrace a wide variety of
games, both existing and yet-to-come. As a consequence, it
is the first time, to the best of our knowledge, that common
games ranging from Tic-tac-toe to Black Jack have been
compared automatically and on equal footing.

The theoretical and experimental results also show the
limits of this preliminary investigation. Both Proposition 5
and the experiments suggest that the proposed axioms are
compatible with widely differing weak orders. Hence, it may
be desirable to strengthen them to approach a full axiomatic
characterization of a single notion of controllability. For in-
stance, all our axioms and measures are symmetrical w.r.t.
winning and losing. Breaking this symmetry may lead to
measures that are closer in spirit to the common understand-
ing of what constitutes “control” in a game.

Finally, a natural development would be to extend the
present investigation to multi-player games. However, that
setting poses radically different challenges, starting from the
fact that different players may have different control capa-
bilities on the game, as the game needs not be symmetric
w.r.t. the players.
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[15] I. Kolayiş, M. Çilli, H. Ertan, and J. Knicker.
Assessment of target performance in archery. Procedia
- Social and Behavioral Sciences, 152:451 – 456, 2014.
ERPA International Congress on Education, Istanbul,
Turkey.

[16] S. Levitt and T. Miles. The role of skill versus luck in
poker evidence from the world series of poker. Journal
of Sports Economics, 15(1):31–44, 2014.

[17] J. McCrory. Video poker and the skill versus chance
debate. Gaming Law Review, 6(3):223–227, 2002.

[18] S. Olejnik and J. Algina. Measures of effect size for
comparative studies: Applications, interpretations,
and limitations. Contemporary Educational
Psychology, 25(3):241 – 286, 2000.

[19] M. Osborne and A. Rubinstein. A Course in Game
Theory. MIT Press, 1994.

[20] R. Potter van Loon, M. van den Assem, and D. van
Dolder. Beyond chance? The persistence of
performance in online poker. PLoS ONE,
10(3):e0115479, 2015.

[21] B. Ratitch and D. Precup. Characterizing Markov
decision processes. In Proceedings of the 13th European
Conference on Machine Learning, ECML ’02, pages
391–404, London, UK, UK, 2002. Springer-Verlag.

[22] A. Wyner. Can the skill level of a game of chance be
measured? Chance, 25(3):50–53, 2012.

231


	Introduction
	Definitions
	Desired Qualities of a Measure
	Previous Approaches
	Effect-size Measures
	Controllability Measures
	Experimental Evaluation
	Discussion

	Conclusions



