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ABSTRACT
We study hedonic coalition formation games in which cooperation
among the players is restricted by a graph structure: a subset of
players can form a coalition if and only if they are connected in the
given graph. We investigate the complexity of finding stable out-
comes in such games, for several notions of stability. In particular,
we provide an efficient algorithm that finds an individually stable
partition for an arbitrary hedonic game on an acyclic graph. We also
introduce a new stability concept—in-neighbor stability—which is
tailored for our setting. We show that the problem of finding an in-
neighbor stable outcome admits a polynomial-time algorithm if the
underlying graph is a path, but is NP-hard for arbitrary trees even
for additively separable hedonic games; for symmetric additively
separable games we obtain a PLS-hardness result.

General Terms
Algorithms, Economics, Theory

Keywords
Hedonic games, coalition formation, communication structure, trees

1. INTRODUCTION
In human and multiagent societies, agents often need to form coali-
tions in order to achieve their goals. The coalition formation pro-
cess is guided by agents’ beliefs about the performance of each po-
tential coalition. Many important aspects of coalition formation can
be studied using the formalism of hedonic games [3, 6]. In these
games, each agent has preferences over all coalitions that she can
be a part of, and an outcome is a partition of agents into coalitions.
An important consideration in this context is coalitional stability:
an outcome should be resistant to individual/group deviations, with
different types of deviations giving rise to different notions of sta-
bility (such as core stability, individual stability, Nash stability, etc.;
see the recent survey of Aziz and Savani [2] for an overview).

The standard model of hedonic games does not impose any re-
strictions on which coalitions may form. However, in reality we
often encounter constraints on coalition formation. Consider, for
instance, an international network of natural gas pipelines. It seems
unlikely that two cities disconnected in the network would be able
to coordinate a trading agreement without any help from interme-
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diaries. Such restrictions on communication structure can be nat-
urally described by undirected graphs, by identifying agents with
nodes, communication links with edges, and feasible coalitions
with connected subgraphs. In the context of cooperative transfer-
able utility games this model was proposed in the seminal paper of
Myerson [19], and has received a considerable amount of attention
since then. In contrast, very little is known about hedonic games
with graph-restricted communication, though some existing results
for general non-transferable utility games have implications for this
setting. In particular, the famous result of Demange [9] concerning
stability in cooperative games on trees extends to non-transferable
utility games, and implies that every hedonic game whose com-
munication structure is acyclic admits a core stable partition (we
discuss this result in more detail in Section 5). However, no at-
tempt has been made to obtain similar results for other hedonic
games solution concepts, or to explore algorithmic implications of
constraints on the communication structure (such as acyclicity or
having a small number of connected subgraphs) for computing the
core and other solutions. The goal of this paper is to make the first
step towards filling this gap.

Our contribution Inspired by Demange’s work, we focus on he-
donic games on acyclic graphs. We consider several well-studied
notions of stability for hedonic games, such as individual stabil-
ity, Nash stability, core stability and strict core stability (see Sec-
tion 2 for definitions), and ask two questions: (1) does acyclicity
of the communication structure guarantee the existence of a stable
outcome? (2) does it lead to an efficient algorithm for comput-
ing a stable outcome, and if not, are there additional constraints
on the communication structure that can be used to obtain such
as algorithm? We remark that, in general, to represent the prefer-
ences of a player in an n-player hedonic game, we need to specify
2n−1(2n−1− 1)/2 values, which may be problematic if we are in-
terested in algorithms whose running time is polynomial in n. We
consider two approaches to circumvent this difficulty: (a) working
in the oracle model, where an algorithm may submit a query of the
form (i,X, Y ) where X and Y are two coalitions that both contain
i, and learn in unit time whether i prefers X to Y , Y to X or is
indifferent between them; (b) considering specific succinct repre-
sentations of hedonic games, such as additively separable hedonic
games [6], which can be described using n(n− 1) numbers.

We observe that Demange’s algorithm for the core runs in time
that is polynomial in the number of connected subtrees of the un-
derlying graph G (in the oracle model), and use similar ideas to ob-
tain an algorithm for finding an outcome that is both core stable and
individually stable as well as an algorithm for finding a Nash stable
outcome (if it exists). The running time of these algorithms can
be bounded in the same way; in particular, they run in polynomial
time when G is a path. However, we show that when G is a star,
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finding a core stable, strictly core stable or Nash stable outcome
is NP-hard, even if we restrict ourselves to very simple subclasses
of additively separable hedonic games. For symmetric additively
separable hedonic games, we show that the PLS-hardness result for
Nash stability [13] holds even if G is a star.

In contrast, acyclicity turns out to be sufficient for individual sta-
bility: we show that every hedonic game on an acyclic graph admits
an individually stable partition, and, moreover, such a partition can
be computed in time polynomial in the number of players (in the
oracle model). We believe that this result is remarkable, since in
the absence of communication constraints finding an individually
stable outcome is hard even for (symmetric) additively separable
hedonic games [22, 13], and finding a Nash stable outcome in such
games remains hard even for games on stars (Section 6).

Another contribution of our paper is a new stability concept that
is tailored specifically to hedonic games on graphs, and captures
the intuition that, to join a group, a player should be approved by
the members of the group who know him. The resulting solution
concept, which we call in-neighbor stability, lies between Nash sta-
bility and individual stability. However, we show that from the al-
gorithmic perspective it behaves similarly to Nash stability; in par-
ticular, finding an in-neighbor stable outcome is NP-hard for addi-
tively separable hedonic games on stars and PLS-hard for symmet-
ric additively separable hedonic games on stars. Our computational
complexity results are summarized in Table 1.

Related work Sung and Dimitrov [22] were the first to consider
complexity issues in additively separable hedonic games (ASHGs);
they prove that it is NP-hard to determine if a game admits a core
stable, strict core stable, individually stable, or Nash sable outcome
(see also [20]). Aziz et al. [1] extend the first two or these re-
sults to symmetric additively separable hedonic games (SASHGs).
While SASHGs always admit a Nash stable or individually sta-
ble partition [6, 7], finding one may still be difficult: Gairing and
Savani [13] prove that finding such partitions is PLS-hard (PLS-
hardness is a complexity class for total search problems, see [21]).
The running time of some of our algorithms is polynomial in the
number of connected coalitions; see the recent work of Elkind [12]
for a characterization of graph families for which this quantity is
polynomial in the number of nodes. Some papers [4, 5] use the
phrase “hedonic game on a tree” to refer to a hedonic game where
each player i has a value vi(j) for every other player j, and pairs
{i, j} such that vi(j) 6= 0 or vj(i) 6= 0 form a tree; the preference
relation of player i is computed based on the values vi(j): the value
of a coalition S, i ∈ S, could be

∑
j∈S\{i} vi(j) (this corresponds

to ASHGs) or 1
|S|

∑
j∈S\{i} vi(j) (such games are known as frac-

tional hedonic games). This framework is different from ours: we
allow preferences that are not derived from values assigned to indi-
vidual players, and in the additively separable case we allow non-
adjacent players to have a non-zero value for each other.
Notes and Comments. An extended version with full proofs is
available on arXiv [16].

2. PRELIMINARIES
We start by introducing basic notation and definitions of hedonic
games and graph theory.

Hedonic games A hedonic game is a pair (N, (�i)i∈N ) where
N is a finite set of players and each �i is a complete and transi-
tive preference relation over the nonempty subsets of N including
player i. The subsets of N are referred to as coalitions. We let
Ni denote the collection of all coalitions containing i. We call a
coalition X ⊆ N individually rational if X �i {i} for all i ∈ X .
Let �i denote the strict preference derived from �i, i.e., X �i Y

if X �i Y , but Y 6�i X . Similarly, let ∼i denote the indifference
relation induced by �i, i.e., X ∼i Y if X �i Y and Y �i X .

An important subclass of hedonic games is additively separa-
ble games. These games model situations where each player has a
specific value for every other player, and ranks coalitions accord-
ing to the total value of their members [6]. Formally, a preference
profile (�i)i∈N is said to be additively separable if there exists a
utility matrix U : N × N → R such that for each i ∈ N and
each X,Y ∈ Ni we have X �i Y if and only if

∑
j∈X U(i, j) ≥∑

j∈Y U(i, j) [6]. Without loss of generality, we will assume that
U(i, i) = 0 for each i ∈ N . An additively separable preference
is said to be symmetric if the utility matrix U : N × N → R
is symmetric, i.e., U(i, j) = U(j, i) for all i, j ∈ N . Dim-
itrov et al. [10] studied a subclass of additively separable prefer-
ences, which they called enemy-oriented preferences. Under these
preferences each player considers every other player to be either a
friend or an enemy, and has strong aversion towards her enemies:
U(i, j) ∈ {1,−|N |} for each i, j ∈ N with i 6= j.

An outcome of a hedonic game is a partition of players into dis-
joint coalitions. Given a partition π of N and a player i ∈ N ,
let π(i) denote the unique coalition in π that contains i. The first
stability concept we will introduce is individual rationality, which
is often considered to be a minimum requirement that solutions
should satisfy. A partition π of N is said to be individually ra-
tional if all players weakly prefer their own coalitions to staying
alone, i.e., π(i) �i {i} for all i ∈ N .

The core is one of the most studied solution concepts in hedonic
games [11, 3, 6]. A coalition X ⊆ N strongly blocks a partition π
of N if X �i π(i) for all i ∈ X; it weakly blocks π if X �i π(i)
for all i ∈ X and X �j π(j) for some j ∈ X . A partition π of
N is said to be core stable (CR) if no coalition X ⊆ N strongly
blocks π; it is said to be strictly core stable (SCR) if no coalition
X ⊆ N weakly blocks π.

We will also consider stability notions that capture resistance to
deviations by individual players. Consider a player i ∈ N and a
pair of coalitions X 6∈ Ni, Y ∈ Ni. A player i wants to deviate
from Y to X if X∪{i} �i Y . A player j ∈ X accepts a deviation
of i to X if X ∪ {i} �j X . A deviation of i from Y to X is
• an NS-deviation if i wants to deviate from Y to X .
• an IS-deviation if it is an NS-deviation and all players in X

accept it.
A partition π is called Nash stable (NS) (respectively, individually
stable (IS)) if no player i ∈ N has an NS-deviation (respectively,
an IS-deviation) from π(i) to another coalition X ∈ π or to ∅.

We have the following containment relations among these classes
of outcomes: SCR⊆CR, SCR⊆ IS, NS⊆ IS. However, a core sta-
ble outcome need not be individually stable, and an individually
stable outcome may fail to be in the core.

Graphs and digraphs An undirected graph, or simply a graph, is
a pair (N,L), where N is a finite set of nodes and L ⊆ N ×N is a
collection of edges between nodes. In this paper, we only consider
graphs without self-loops and parallel edges. Given a set of nodes
X , the subgraph of (N,L) induced by X is the graph (X,LX),
where LX = {{i, j} ∈ L | i, j ∈ X}.

For a graph (N,L), a sequence of distinct nodes (i1, i2, . . . , ik),
k ≥ 2, is called a path in L if {ih, ih+1} ∈ L for h = 1, 2, . . . , k−
1. A path (i1, i2, . . . , ik), k ≥ 3, is said to be a cycle in L if
{ik, i1} ∈ L. A graph (N,L) is said to be a forest if it contains no
cycles. A subset X ⊆ N is said to be connected in (N,L) if for
every pair of distinct nodes i, j ∈ X there is a path between i and
j in LX . The collection of all connected subsets of N in (N,L) is
denoted by FL; also, we write FL(i) = FL ∩ Ni. By convention,
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Acyclic graphs Stars Paths
Arbitrary Additive Additive S-additive S-enemy Arbitrary

SCR - NP-h NP-h NP-h (Th.12) NP-h∗ (Th.11) ?
CR - NP-h∗ NP-h∗ NP-h∗ NP-h∗ (Th.10) P ([9])
NS - NP-c NP-c (Th.16) PLS-c (Th.19) P (Prop.20) P (Th.13)
INS - NP-c NP-c (Th.15) PLS-c (Th.18) P P (Th.13)

IR-INS - NP-c ([16]) P (Prop.17) P P P (Th.13)
IS P (Th.1) P P P P P

Table 1: Complexity of computing stable outcomes for hedonic games on acyclic graphs. The top row corresponds to restrictions on
graphs; the second row from the top indicates restrictions on preference profiles. The positive results for unrestricted preferences
are in the oracle model. To avoid dealing with representation issues, when a problem is NP-hard for additively separable games on
trees, we do not consider its complexity for unrestricted preferences (indicated by ‘-’). The hardness result marked with ∗ holds with
respect to Turing reductions. When no reference is given, the result follows trivially from other results in the table. The results for
paths hold for all trees with n nodes and poly(n) connected subtrees.

we assume that ∅ 6∈ FL. A forest (N,L) is said to be a tree if N
is connected in (N,L). A tree (N,L) is called a star if there exists
a central node s ∈ N such that L = { {s, j} | j ∈ N \ {s} }. A
subset X ⊆ N of a graph (N,L) is said to be a clique if for every
pair of distinct nodes i, j ∈ X we have {i, j} ∈ L.

A directed graph, or a digraph, is a pair (N,A) where N is
a finite set of nodes and A is a family of ordered pairs of nodes
from N . The elements of A are called the arcs. A sequence of
distinct nodes (i1, i2, . . . , ik), k ≥ 2, is called a directed path in
A if (ih, ih+1) ∈ A for h = 1, 2, . . . , k − 1. Given a digraph
(N,A), let L(A) = { {i, j} | (i, j) ∈ A }: the graph (N,L(A))
is the undirected version of (N,A). A digraph (N,A) is said to
be a rooted tree if (N,L(A)) is a tree and each node has at most
one arc entering it. A rooted tree has exactly one node that no arc
enters, called the root, and there exists a unique directed path from
the root to every node of N .

Let (N,A) be a rooted tree. We say that a node j ∈ N is a
parent of i in A if (j, i) ∈ A. We denote by pr(i, A) the unique
parent of i in A. A node j ∈ N is called a successor of i in A if
there exists a directed path from i to j in A. We write

succ(i, A) = {i} ∪ { j ∈ N | j is a successor of i in A }.

A node i ∈ N is called a child of X ⊆ N in A if i 6∈ X and
pr(i, A) ∈ X . We write

ch(X,A) = { i ∈ N | i 6∈ X and pr(i, A) ∈ X }.

The height of a node i ∈ N of (N,A) is defined inductively:
height(i, A) = 0 if succ(i, A) = {i} and height(i, A) = 1 +
max

j∈ch({i},A)
height(j, A) otherwise.

3. OUR MODEL
The goal of this paper is to study hedonic games where agent com-
munication is constrained by a graph.

DEFINITION 1. A hedonic game with graph structure, or a he-
donic graph game, is a triple (N, (�i)i∈N , L) where (N, (�i)i∈N )
is a hedonic game, and L ⊆ {{i, j} | i 6= j, i, j ∈ N } is the set of
communication links between players. A coalition X ⊆ N is said
to be feasible if it is connected in (N,L).

If (N,L) is a clique, a hedonic graph game (N, (�i)i∈N , L) is
equivalent to the ordinary hedonic game (N, (�i)i∈N ).

A partition π of N is said to be feasible if π ⊆ FL. An outcome
of a hedonic graph game is a feasible partition. The standard defini-
tions of stability concepts (see Section 2) can be adapted to hedonic

graph games in a straightforward manner. Specifically, we say that
a coalitional deviation is feasible if the deviating coalition itself is
feasible; an individual deviation where player i joins a coalition X
is feasible if X ∪ {i} is feasible. Now, we modify the definitions
in Section 2 by only requiring stability against feasible deviations.

We use the notation (N,U,L) to denote an additively separable
graph game with utility matrix U : N ×N → R.

EXAMPLE 1. Consider the coalition formation problem in a par-
liament consisting of three parties: left-wing (`), centrist (c), and
right-wing (r). Then ` and r cannot form a coalition without c.
We describe this scenario as an additively separable graph game
(N,U,L) where N = {`, c, r}, L = {{`, c}, {c, r}}, and the util-
ity matrix U is given by

U(`, c) = 1, U(`, r) = −2, U(c, `) = 2,

U(c, r) = 0, U(r, c) = 2, U(r, `) = 0.

The resulting preference profile is as follows:

` : {`, c} �` {`} �` {`, c, r} �` {`, r}
c : {`, c, r} ∼c {`, c} �c {c, r} ∼c {c}
r : {`, c, r} ∼r {c, r} �r {`, r} ∼r {r}

The individually rational feasible partitions of this game are π1 =
{{`, c}, {r}}, π2 = {{`}, {c, r}}, and π3 = {{`}, {c}, {r}}. The
partition π1 is both core stable and individually stable. However,
there is no Nash stable partition in this game: in π1, player r wants
to join {`, c}, while in π2 and π3, player c wants to join {`}.

4. INDIVIDUAL STABILITY
The main contributions of this section are (1) an efficient algorithm
for finding an individually stable feasible partition in a hedonic
graph game whose underlying graph is a forest; (2) a proof that
in the presence of cycles the existence of an IS feasible partition is
not guaranteed.

THEOREM 1. Suppose that we are given oracle access to the
preference relations�i of all players in a hedonic graph game G =
(N, (�i)i∈N , L), where (N,L) is a forest. Then we can find an
individually stable feasible outcome of G in time polynomial in |N |.

PROOF. We first give an informal description of our algorithm,
followed by pseudocode. If the input graph (N,L) is a forest, we
can process each of its connected components separately, so we
can assume that (N,L) is a tree. We choose an arbitrary node r
to be the root; this transforms (N,L) into a rooted tree (N,Ar)
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with root r and determines a hierarchy of players. For each player
i, from the bottom player to the top of the hierarchy, we compute a
tentative partitioning of the subtree rooted at i. To this end, among
all coalitions that i’s children belong to, we identify those whose
members would be willing to let i join them. Then we let i choose
between his most preferred option among all such coalitions and
the singleton {i}. We then check if any of the successors of i who
are adjacent to i’s coalition want to join it; we let them do so if they
are approved by the current coalition members.

For a family of subsets P ⊆ Ni, we set

max
i
P = {X ∈ P | X �i Y for all Y ∈ P }.

Given a pair of nonempty subsets X,Y ⊆ N , we write X
m

�Y
if X ∩ Y 6= ∅ and X �i Y for all i ∈ X ∩ Y .

Algorithm 1 Finding IS partitions
Input: tree (N,L), r ∈ N , oracles for �i, i ∈ N .
Output: π(r).
1: make a rooted tree (N,Ar) with root r by orienting all the

edges in L.
2: initialize B(i)← ∅ and π(i) ← ∅ for each i ∈ N .
3: for t = 0, . . . , height(r,Ar) do
4: for i ∈ N with height(i, Ar) = t do
5: C(i) = { k ∈ ch({i}, Ar) | B(k) ∪ {i}

m

�B(k) }.
6: choose B(i) ∈ max

i
({{i}}∪{B(k)∪{i} | k ∈ C(i) }).

7: while there exists j ∈ ch(B(i), Ar) such that

B(i) ∪ {j} �j B(j) and B(i) ∪ {j}
m

�B(i) do
8: B(i)← B(i) ∪ {j}
9: end while

10: π(i) ← {B(i)} ∪ {π(k) | k ∈ ch(B(i), Ar) }
11: end for
12: end for

We will now argue that Algorithm 1 correctly identifies an indi-
vidually stable partition. Our argument is based on two lemmas.

LEMMA 2. For every i ∈ N and every k ∈ ch({i}, Ar), if

B(k) ∪ {i}
m

�B(k), then B(i) �i B(k) ∪ {i}.

Lemma 2 follows immediately from the choice of B(i) in Line 6
and the stopping criterion of the while loop in lines 7–9.

LEMMA 3. For each i ∈ N , j ∈ succ(i, Ar) and all X ∈
π(i) ∪ {∅} there is no IS feasible deviation of j from π(i)(j) to X .

PROOF. We use induction on height(i, Ar). For height(i, Ar) =
0 our assertion is trivial. Suppose that it holds for all j ∈ N with
height(j, Ar) ≤ t− 1, and consider i ∈ N with height(i, Ar) = t.
Assume towards a contradiction that there exists an IS feasible de-
viation of j ∈ succ(i, Ar) from π(i)(j) to X ∈ π(i) ∪ {∅}, i.e.,
X ∪ {j} is connected, and

X ∪ {j} �j π(i)(j), and (1)

X ∪ {j}
m

�X. (2)

By construction, π(i) is individually rational, so X 6= ∅. If j 6∈
B(i) and X 6= B(i), this would contradict the induction hypothe-
sis. Moreover, by the stopping criteria in Line 7, it cannot be the
case that j 6∈ B(i) and X = B(i). Thus, j ∈ B(i) and X = B(k)
for some k ∈ ch({j}, Ar). If j = i, Lemma 2 and (2) imply that
π(i)(i) = B(i) �i B(k) ∪ {i}, contradicting (1). Thus, j 6= i.

Suppose that player j joins the coalition B(i) when B(i) is ini-
tialized in Line 6. Then, j ∈ B(k∗) for some k∗ ∈ ch({i}, Ar). It
follows that B(k) ∈ π(k∗), since k 6∈ B(k∗) and k ∈ ch({j}, Ar).
Further, the second stopping criterion of the while loop in Line 7
ensures that j’s utility does not decrease during the execution of Al-
gorithm 1. Thus, B(i) �j B(k∗). Combining this with (1) and (2)
yields

B(k) ∪ {j} �j π(i)(j) = B(i) �j B(k∗) = π(k∗)(j),

and B(k)∪{j}
m

�B(k). It follows that π(k∗) admits an IS feasible
deviation of j from π(k∗)(j) to B(k) ∈ π(k∗). This contradicts the
induction hypothesis.

On the other hand, suppose that player j joins B(i) during the
while loop in Lines 7–9. Then at that point player j is made better
off by leaving B(j) and joining B(i). From then on, she vetoes
all candidates whose presence would make her worse off. Hence,
B(i) �j B(j). However, (2) and Lemma 2 imply that B(j) �j

B(k) ∪ {j}. Thus, B(i) �j B(k) ∪ {j}, contradicting (1).

The partition π(r) is feasible by construction, so applying Lemma 3
with i = r implies that π(r) is an individually stable feasible parti-
tion of N .

It remains to analyze the running time of Algorithm 1. Con-
sider the execution of the algorithm for a fixed player i. Let c =
|ch({i}, Ar)|, s = |succ(i, Ar)|. Line 5 requires at most s ora-
cle queries: no successor of i is queried more than once. Line 6
requires c oracle queries. Moreover, at each iteration of the while
loop in lines 7–9 at least one player joins B(i), so there are at most
s iterations, in each iteration we consider at most s candidates, and
for each candidate we perform at most s queries. Summing over all
players, we conclude that the number or oracle queries is bounded
by O(|N |4). This completes the proof of the theorem.

Theorem 1 provides a constructive proof that every hedonic graph
game whose underlying graph (N,L) is a forest admits an indi-
vidually stable feasible partition. In contrast, if (N,L) contains
a cycle, the players’ preferences can always be chosen so that no
individually stable feasible partition exists.

PROPOSITION 4. Suppose that the graph (N,L) contains a cy-
cle C = {i1, i2, . . . , ik} with k ≥ 3, {ih, ih+1} ∈ L for h =
1, 2, . . . , k, where ik+1 := i1. Then, we can choose preference re-
lations (�i)i∈N so that the set of IS feasible partitions of the game
(N, (�i)i∈N , L) is empty.

PROOF. Let d be the smallest natural number that does not di-
vide k. For each ih ∈ C, define

C(ih) = {X ∈ FL(ih) | X ⊆ C, |X| ≤ d }.

Notice that d ≥ 2, and hence {ih}, {ih, ih+1} ∈ C(ih). Define a
graph game (N, (�i)i∈N , L) so that for each ih ∈ C we have

1. X �ih Y for all X,Y ∈ C(ih) such that ih+1 ∈ X \ Y ,

2. X ∼ih Y for all X,Y ∈ C(ih) such that ih+1 ∈ X ∩ Y ,

3. X ∼ih Y for all X,Y ∈ C(ih) such that ih+1 6∈ X ∪ Y ,

4. X �ih Y for all X ∈ C(ih), Y 6∈ C(ih).

Let π be an arbitrary individually rational feasible partition of
N . By individual rationality, π(i) ∈ C(i) for every i ∈ C. Since
d does not divide k, there exists Y ∈ π such that |Y | ≤ d− 1 and
Y ⊆ C. Let Y = {ih+1, ih+2, . . . , im}. Then we have {ih} ∪
Y �ih π(ih), and {ih} ∪ Y ∼ij Y for all ij ∈ Y . Thus, π is not
individually stable.
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We summarize our results for individually stable feasible parti-
tions in the following corollary.

COROLLARY 5. For the class of hedonic graph games, the fol-
lowing statements are equivalent.
(i) (N,L) is a forest.
(ii) For every hedonic graph game (N, (�i)i∈N , L) there exists

an individually stable feasible partition of N .

5. CORE STABILITY
As mentioned in Section 1, classic results by Le Breton et al. [18]
and Demange [8, 9] for non-transferable utility games imply an
analogue of Corollary 5 for core stable partitions.

THEOREM 6 ([18, 8, 9]). For the class of hedonic games with
graph structure, the following statements are equivalent.
(i) (N,L) is a forest.
(ii) For every hedonic graph game (N, (�i)i∈N , L) there exists

a core stable feasible partition of N .

We will now show that these two results can be combined, in the
following sense: if (N,L) is acyclic, then every hedonic game on
(N,L) admits a feasible partition that belongs to the core and is
individually stable; moreover, the converse is also true.

THEOREM 7. For the class of hedonic games with graph struc-
ture, the following statements are equivalent.
(i) (N,L) is a forest.
(ii) For every hedonic graph game (N, (�i)i∈N , L), there ex-

ists a feasible partition of N that belongs to the core and is
individually stable.

PROOF. The direction (ii) ⇒ (i) immediately follows from
Theorem 6. We will prove (i) ⇒ (ii). Recall that a preference
relation �1 on a set X is a refinement of a preference relation �2

on X if for every a, b ∈ X it holds that a �2 b implies a �1 b.
Suppose that (N,L) is a forest. For each i ∈ N , let >i be a

refinement of �i that satisfies X >i Y whenever X ∼i Y and
Y ( X . By Theorem 6, the game (N, (>i)i∈N , L) admits a core
stable feasible partition π. By construction, π is core stable in the
original game (N, (�i)i∈N , L) as well. We will now argue that
it is also individually stable. Assume towards a contradiction that
there exists an IS feasible deviation of some player i ∈ N from
π(i) to X ∈ π ∪ {∅}. That is, X ∪ {i} ∈ FL, X ∪ {i} �i π(i),
and X ∪ {i} �j X for each j ∈ X . By construction of (>i)i∈N ,
this implies that X ∪ {i} >i π(i) and X ∪ {i} >j X for each
j ∈ X . This contradicts the fact that π is a core stable partition of
the game (N, (>i)i∈N , L).

5.1 Computational complexity of CR
Demange’s proof that every hedonic graph game on an acyclic graph
admits a core stable outcome is constructive: her paper [9] provides
an algorithm to find a core stable partition. This algorithm is sim-
ilar in flavor to Algorithm 1: it processes the players starting from
the leaves and moving towards the root, calculates the “guarantee
level” of each player, and then partitions the players into disjoint
groups in such a way that the final outcome satisfies their “guaran-
tee levels”; this is shown to ensure core stability. While Demange
does not analyze the running time of her algorithm, it can be ver-
ified that it runs in time polynomial in the number of connected
subsets of the underlying graph. Thus, in particular, Demange’s
algorithm runs in polynomial time if this graph is a path.

THEOREM 8 (IMPLICIT IN [9]). Suppose that we are given
oracle access to the preference relations �i of all players in a he-
donic graph game G = (N, (�i)i∈N , L), where (N,L) is a forest.
Then we can find a core stable feasible outcome of G in time poly-
nomial in the number of connected subsets of (N,L).

Combining Demange’s algorithm with the construction in the
proof of Theorem 7, we obtain an algorithm that has the same
worst-case running time as Demange’s algorithm and outputs a fea-
sible partition that belongs to the core and is individually stable.

COROLLARY 9. Suppose that we are given oracle access to the
preference relations�i of all players in a hedonic graph game G =
(N, (�i)i∈N , L), where (N,L) is a forest. Then we can find a
feasible outcome of G that belongs to the core and is individually
stable in time polynomial in the number of connected subsets of
(N,L).

However, if the number of connected subsets of (N,L) is super-
polynomial in |N |, so is the running time of Demange’s algorithm,
because for each player i this algorithm considers all feasible coali-
tions containing i. Now, for many n-node trees the number of
connected subtrees is superpolynomial in n: for instance, this is
the case for every tree with ω(logn) leaves, simply because we
can delete any subset of leaves and still obtain a connected graph.
Therefore, it is natural to ask if checking all feasible coalitions is
indeed necessary. Note that when the goal is to find an individ-
ually stable partition, the answer to this question is “no”: Algo-
rithm 1 only considers some of the feasible coalitions, yet is ca-
pable of finding an individually stable feasible outcome. In con-
trast, for the core it seems unlikely that one can obtain a substantial
improvement over the running time of Demange’s algorithm: our
next theorem shows that finding a core stable feasible partition of
an additively separable hedonic graph game is NP-hard even if the
underlying graph is a star and even if the input game is a symmetric
enemy-oriented game.

THEOREM 10. If one can find a core stable feasible partition in
a symmetric enemy-oriented graph game whose underlying graph
is a star in time polynomial in the number of players then P = NP.

PROOF. We provide a reduction from the NP-complete CLIQUE
problem [15]. An instance of CLIQUE is a pair (G, t), where G is
an undirected graph and t is a positive integer. It is a “yes”-instance
if G contains a clique of size at least t and a “no”-instance oth-
erwise. We will show how a polynomial-time algorithm for our
problem can be used to decide CLIQUE in polynomial time.

Given an instance (G, t) of CLIQUE, where G = (V,E), we
construct a symmetric enemy-oriented graph game as follows. We
let N = V ∪ {s} and L = { {s, v} | v ∈ V }. We will now
describe the (symmetric) matrix U . Briefly, player s likes all other
players and two players in V like each other if and only if they are
connected by an edge of G. Formally, we set U(s, v) = 1 for each
v ∈ V and for each u, v ∈ V we set U(u, v) = 1 if {u, v} ∈ E
and U(u, v) = −|V | − 1 otherwise.

Let π be an individually rational feasible partition of this game.
Note that all players in N \π(s) form singleton coalitions in π, and
π(s) \ {s} is a clique in G. We will now argue that π is core stable
if and only if π(s) \ {s} is a maximum-size clique in G.

Indeed, if C is a maximum-size clique in G and |π(s) \ {s}| <
|C|, every player in C ∪ {s} strictly prefers C ∪ {s} to its current
coalition. Conversely, suppose that π(s) \ {s} is a maximum-size
clique, yet coalition X strictly blocks π. Then it has to be the case
that s ∈ X , and hence |X| > |π(s)|; but this means that X \ {s}

246



is not a clique, and therefore players in X \ {s} prefer π to X , a
contradiction.

It follows that, by looking at a core stable feasible outcome π,
we can decide whether G contains a clique of size at least t.

Dimitrov et al. [10] show that finding a core outcome in symmetric
enemy-oriented games is NP-hard; however, in their model there is
no constraint on communication among the players, i.e., their result
is for the case where (N,L) is a clique, whereas our result holds
even if (N,L) is a star.

5.2 Computational complexity of SCR
Unlike core stable outcomes, strictly core stable outcomes need not
exist even in symmetric enemy-oriented games on stars. Consider,
for instance, a variant of our parliamentary coalition formation ex-
ample (Example 1) where the centrist party (c) is equally happy
to collaborate with the left-wing party (`) or the right-wing party
(r), but the left-wing party and the right-wing party hate each other.
This setting can be captured by a symmetric enemy-oriented graph
game whose underlying graph is a path, and whose core stable fea-
sible partitions are π1 = {{`, c}, {r}} and π2 = {{`}, {c, r}}.
However, neither π1 nor π2 is in the strict core: π1 is weakly
blocked by {c, r} and π2 is weakly blocked by {`, c}.

Our next theorem shows that checking whether a given symmet-
ric enemy-oriented hedonic graph game admits a feasible outcome
in the strict core is NP-hard with respect to Turing reductions, even
if the underlying graph is a star.

THEOREM 11. If there exists a polynomial-time algorithm that,
given a symmetric enemy-oriented graph game whose underlying
graph is a star, decides whether this game has a strictly core stable
feasible partition then P = NP.

PROOF SKETCH. We define UNIQUE CLIQUE as the decision
problem of determining whether a graph has a unique maximum-
size clique. That is, let s be the size of a maximum clique in G;
G is a “yes”-instance of UNIQUE CLIQUE if it contains exactly
one clique of size s and a “no”-instance otherwise. CLIQUE ad-
mits a Turing reduction to UNIQUE CLIQUE. Specifically, given an
instance (G, t) of CLIQUE where G = (V,E), we construct |V | in-
stances of UNIQUE CLIQUE as follows. For each s = 1, . . . , |V |,
let Cs be a set of size s with V ∩ Cs = ∅, and let Hs = (V ∪
Cs, Es), where {u, v} ∈ Es if and only if u, v ∈ Cs, or u, v ∈ V
and {u, v} ∈ E. Note that the maximum clique size in G is r if
and only if Hr is a “no”-instance of UNIQUE CLIQUE, but Hs is a
“yes”-instance of UNIQUE CLIQUE for r = s+1, . . . , |V |. Hence,
a polynomial-time algorithm for UNIQUE CLIQUE can be used to
decide CLIQUE in polynomial time.

We will now argue that UNIQUE CLIQUE can be reduced to our
problem. Given an undirected graph G = (V,E), we construct the
same symmetric enemy-oriented graph game (N,U,L) as in the
proof of Theorem 10. Then, one can readily see that the G is a
“yes”-instance of UNIQUE CLIQUE if and only if (N,U,L) has a
feasible outcome that is strictly core stable.

For the broader class of symmetric additively separable hedo-
nic graph games on stars, we obtain an NP-hardness result under
the more standard notion of a many-one reduction (for games on
cliques, this follows from the results of Aziz et al. [1]).

THEOREM 12. Given a symmetric additively separable hedo-
nic graph game whose underlying graph is a star, it is NP-hard to
determine whether it has a strictly core stable feasible partition.

PROOF SKETCH. Again, we provide a reduction from CLIQUE.
Given an undirected graph G = (V,E) and a positive integer
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Figure 1: Graph used in the proof of Theorem 12. Thick black
lines represent communication links between players, whereas
gray lines stand for edges of the given instance G. Values on
dashed lines are utilities of players.

t ≥ 2, we construct a symmetric additively separable graph game
(N,U,L) where N = {a, b, c} ∪ V , L = {{a, b}, {b, c}} ∪
{ {b, v} | v ∈ V }. Let M = |N | + 1. The utility matrix
U : N ×N → R is given as follows (see Figure 1):

U(a, b) = U(c, b) = t− 1, U(a, c) = −M,

U(a, v) = U(c, v) = −M,U(b, v) = 1 for each v ∈ V,

U(u, v) = −1/(t− 1) if {u, v} ∈ E

and U(u, v) = −M otherwise, for all u, v ∈ V .

Suppose that G contains a clique C of size t. Then, the partition
π = {{a}, {c}, C ∪ {b}} ∪ { {v} | v ∈ V \ C } can be shown
to be strictly core stable. Conversely, if there exists a strictly core
stable feasible partition π of N , π(b) \ {b} forms a clique of size
at least t in G.

6. IN-NEIGHBOR STABILITY
In many real-life situations, when people move from one group to
another, they need approvals from their contacts in the new group.
Suppose, for instance, that Alice is an early-career researcher ap-
plying for academic positions in universities: her application is
unlikely to be accepted if it is rejected by her prospective men-
tors (even if Alice expects to collaborate with several other faculty
members as well).

Motivated by these considerations, we will now describe a new
notion of stability, which is specific to hedonic graph games.

DEFINITION 2. Given a hedonic graph game (N, (�i)i∈N , L),
we say that j is a neighbor of i if {i, j} ∈ L. A feasible deviation
of a player i to X 6∈ Ni is called
• in-neighbor feasible if it is NS feasible and accepted by all of

i’s neighbors in X .
• IR-in-neighbor feasible if it is in-neighbor feasible and for

all j ∈ X it holds that X ∪ {i} �j {j}.
A feasible partition π is called in-neighbor stable (INS) (respec-
tively, IR in-neighbor stable (IR-INS)) if no player i has an in-
neighbor feasible deviation (respectively, an IR-in-neighbor feasi-
ble deviation) from π(i) to a coalition X ∈ π ∪ {∅}.

Note that every INS partition is IR-INS, and each IR-INS parti-
tion is individually stable. However, the converse may not be true:
partition π1 in Example 1 is individually stable, but admits an in-
neighbor feasible deviation. Indeed, all IR partitions in that exam-
ple are not in-neighbor stable, so the existence of in-neighbor stable
outcomes is not guaranteed, even in additively separable games on
paths. Note however, that π1 is IR-in-neighbor stable.
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6.1 Computational complexity of INS
We will now present an algorithm to determine the existence of NS,
INS and IR-INS outcomes for games on arbitrary acyclic graphs.

THEOREM 13. Suppose that we are given oracle access to the
preference relations �i of all players in a hedonic graph game
G = (N, (�i)i∈N , L), where (N,L) is a forest. Then we can
decide whether G admits a Nash stable, in-neighbor stable or IR-
in-neighbor stable feasible outcome (and find one if it exists) in
time polynomial in the number of connected subsets of (N,L).

PROOF. Our algorithm is similar to Demange’s algorithm for
the core [9]. Again, we assume that (N,L) is a tree. Given a hedo-
nic graph game (N, (�i)i∈N , L), we make a rooted tree (N,Ar)
by orienting edges in L. Then, for each player i ∈ N and each
X ⊆ succ(i, Ar) with X ∈ FL(i), we determine whether there
exists a stable partition π of succ(i, Ar) with X ∈ π. We set
f(X) = 1 if such a partition exists, and set f(X) = 0 other-
wise. To this end, for each j ∈ ch(X,Ar) we try to find a coali-
tion Xj ∈ FL(j), Xj ⊆ succ(j, Ar) such that no player wants
to move across the “border” between X and ch(X,Ar) under the
given stability requirement. A stable solution exists if and only if
f(X) = 1 for some coalition X ∈ FL(r). Algorithm 2 describes
in detail how f(X) is computed.

Algorithm 2 Determining the existence of α feasible partitions,
where α ∈ {NS, INS, IR-INS}
Input: tree (N,L), r ∈ N , oracles for �i, i ∈ N .
Output: f : FL → {0, 1}.
1: make a rooted tree (N,Ar) with root r by orienting all the

edges in L.
2: initialize f(X)← 1 for X ∈ FL.
3: for t = 0, . . . , height(r,Ar) do
4: for i ∈ N with height(i, Ar) = t do
5: for X ∈ FL(i) such that X ⊆ succ(i, Ar) do
6: if X is not individually rational then
7: f(X)← 0
8: else
9: for j ∈ ch(X,Ar) do

10: if for each Xj ∈ FL(j) such that Xj ⊆
succ(j, Ar) and f(Xj) = 1 the deviation of j
from Xj to X or the deviation of pr(j, Ar) from
X to Xj is α feasible then

11: f(X)← 0
12: end if
13: end for
14: end if
15: end for
16: end for
17: end for

LEMMA 14. For each α ∈ {NS, INS, IR-INS}, each i ∈ N and
each X ∈ FL(i) such that X ⊆ succ(i, Ar) we have f(X) = 1
if and only if there exists an α feasible partition π of succ(i, Ar)
such that X ∈ π.

PROOF. The proof is by induction on height(i, Ar). The claim
is immediate when height(i, Ar) = 0. Suppose that it holds for all
j ∈ N with height(j, Ar) ≤ t − 1, and consider a player i with
height(i, Ar) = t. Consider an arbitrary X ∈ FL(i) such that
X ⊆ succ(i, Ar).

Suppose first that f(X) = 1. Line 6 ensures that X is individu-
ally rational. Hence, if X = succ(i, Ar), then X is an α feasible

partition of succ(i, Ar). Now, suppose that X 6= succ(i, Ar), i.e.,
ch(X,Ar) 6= ∅. Since f(X) = 1, Line 10 ensures that for each
j ∈ ch(X,Ar) there exists a coalition Xj ∈ FL(j) such that
Xj ⊆ succ(j, Ar), f(Xj) = 1 and neither the deviation of j from
Xj to X nor the deviation of pr(j, Ar) from X to Xj is α feasi-
ble. By the induction hypothesis, for each j ∈ ch(X,Ar) there
exists an α feasible partition of succ(j, Ar) that contains Xj ; com-
bining these partitions with X , we obtain an α feasible partition of
succ(i, Ar) that contains X .

Conversely, if f(X) = 0, then X is not individually rational,
or the condition of the if statement in Line 10 is satisfied. In ei-
ther case, there is no α feasible partition of succ(i, Ar) contain-
ing X .

Lemma 14 immediately implies that the input game admits an α
feasible partition for α ∈ {NS, INS, IR-INS} if and only if f(X) =
1 for some X ∈ FL(r). If this is the case, an α feasible partition
can be found using standard dynamic programming techniques.

It remains to analyze the running time of our algorithm. Let
n = |N |, s = |FL|. Algorithm 2 considers each coalition X ∈ FL

exactly once. To check that it is individually rational, it makes at
most n oracle calls. Further, X has at most n children. For each
child j, the algorithm considers at most s candidate coalitions Xj .
To check the conditions in Line 10 for a given Xj , we need at most
two oracle calls in case of Nash stability and in-neighbor stability
and at most n calls in case of IR-in-neighbor stability. We conclude
that our algorithm performs at most O(n2s2) oracle calls.

The following result shows that we should not hope to obtain
a polynomial-time algorithm for finding in-neighbor stable out-
comes, even for additively separable hedonic graph games on stars.

THEOREM 15. Given an additively separable hedonic graph
game whose underlying graph is a star, it is NP-complete to de-
termine whether it has an in-neighbor stable feasible partition.

PROOF SKETCH. In-neighbor stability can be verified in poly-
nomial time, so our problem is is NP. To prove NP-hardness, we
reduce from CLIQUE. Given an undirected graph G = (V,E) and
a positive integer t, we construct an additively separable hedonic
graph game (N,U,L) as follows. We set N = V ∪ {a, b, c}, and
use the same graph (N,L) as in the proof of Theorem 12 (see Fig-
ure 1).

Let M = |N |+1. We define the utility matrix U : N ×N → R
as follows.

U(a, b) = 1, U(a, c) = −2, U(b, a) = t,

U(b, c) = 0, U(c, a) = 0, U(c, b) = 2,

U(a, v) = U(c, v) = U(v, a) = U(v, c) = −M for each v ∈ V,

U(b, v) = 1, U(v, b) = 0 for each v ∈ V,

U(u, v) = 0 if {u, v} ∈ E

and U(u, v) = −M otherwise, for all u, v ∈ V .

As in the proof of Theorem 12, one can verify that G contains a
clique of size t if and only if the game admits an in-neighbor stable
feasible partition. We omit the details due to space constraints.

A similar reduction shows that it is hard to find a Nash stable
outcome.

THEOREM 16. Given an additively separable hedonic graph
game whose underlying graph is a star, it is NP-complete to de-
termine whether it has a Nash stable feasible partition.

In contrast, for any hedonic game on a star, we can construct an
IR-in-neighbor stable partition efficiently.
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PROPOSITION 17. Every hedonic graph game (N, (�i)i∈N , L)
where (N,L) is a star has an IR-in-neighbor stable partition, and
given oracle access to the players’ preference relations, such a par-
tition can be found using O(|N |3) oracle calls.

PROOF. If the central node strictly prefers being on her own,
rather than being in any coalition of size two, a partition with all
singletons is IR-in-neighbor stable. Otherwise, choose a favorite
two-player coalition of the center, and keep adding players to this
coalition one by one if this deviation is IR-in-neighbor feasible.
When no player can be added, the resulting partition is IR-in-neigh-
bor stable, since the utility of the central node does not decrease
during the execution, and there is no player who can IR-in-neighbor
deviate to the coalition of the center. The bound on the running time
is immediate.

6.2 Computational complexity of INS:
Symmetric additively separable games

The proof of Theorem 16 is based on the the construction in the
proof of Theorem 15, which uses an additively separable hedo-
nic game that is not symmetric. Indeed, Bogomolnaia and Jackson
[6] observe that in symmetric additively separable hedonic games,
any NS deviation strictly increases the sum of all players’ utilities∑

i∈N

∑
j∈π(i) U(i, j). This implies that for this class of games

a sequence of NS deviations converges to a Nash stable outcome.
Thereby, the set of Nash stable outcomes (and hence also INS, IR-
INS, and IS outcomes) is always non-empty. However, the number
of deviations needed to reach a Nash stable outcome may be ex-
ponential in the number of players, so it remains unclear if a Nash
stable outcome can be computed efficiently.

The complexity class that appears to be useful for capturing the
complexity of this problem is PLS (Polynomial Local Search) [17].
A problem in PLS consists of a finite set of candidate solutions,
each of which has associated neighborhood and cost. It is specified
by three polynomial-time algorithms. The first algorithm computes
an initial candidate solution (e.g. the all-singleton partition). The
second algorithm returns the cost of each candidate solution (e.g.
the social welfare of a partition). Finally, the third algorithm tests
whether a given candidate solution is optimal in its neighborhood,
and if not, finds a solution with better cost (e.g. an improved par-
tition after a profitable deviation). Given two PLS problems A and
B, we say that A is PLS-reducible to B if there exist polynomial
time computable functions f and g such that f maps instances of
A to B and g maps the local optima of B to local optima of A.

Gairing and Savani show that search problems related to NS and
IS for symmetric additively separable games are PLS-complete [13,
14]. However, if one were to interpret the hedonic game in their
reduction as a graph game, the underlying graph would necessar-
ily contain cycles. In what follows, we will show that comput-
ing in-neighbor stable outcomes for symmetric additively separable
games is PLS-complete even when the graph (N,L) is a star.

THEOREM 18. Given a symmetric additively separable hedo-
nic graph game whose underlying graph is a star, it is PLS-complete
to find an in-neighbor stable feasible partition.

PROOF SKETCH. With symmetric additively separable prefer-
ences, we are able to test local optimality of a partition and, if it is
not optimal, find an improving move in polynomial time. Hence,
our problem is clearly in PLS. To prove PLS-hardness, we provide
a reduction from LOCAL MAX-CUT, which is known to be PLS-
complete [21]. Recall that an instance of LOCAL MAX-CUT is
given by a weighted graph G = (V,E,w), where w : V ×V → N
is the weight function with the convention that w(u, v) = 0 for

each {u, v} 6∈ E. A cut is a partition of V into two parts S and
V \S; its weight is given by

∑
u∈S,v∈V \S w(u, v). The neighbor-

hood of a cut (S, V \ S) is defined as the set of all cuts that can be
obtained by moving one node from S to V \ S or vice versa; the
goal is to find a cut that has the maximum weight in its neighbor-
hood.

Given an instance (V,E,w) of LOCAL MAX-CUT, we set N =
V ∪ {s}, L = { {s, v} | v ∈ V } and construct a symmetric addi-
tively separable graph game (N,U,L) with the utility matrix U :
N×N → R defined as follows. We set U(u, s) =

∑
v∈V w(u, v)

for each u ∈ V . For every pair of distinct nodes u, v ∈ V , we
define U(u, v) = −2w(u, v) if {u, v} ∈ E and U(u, v) = 0 oth-
erwise. Note that every u ∈ V will be in a coalition with s or on
her own in any feasible partition. Moreover, player s will accept
all in-neighbor feasible deviations since her utility for every other
player is non-negative.

Let π be an in-neighbor stable feasible partition of N . Let V1 =
{u ∈ V | u ∈ π(s) } and V2 = V \ V1. Each player u ∈ V1

has non-negative utility U(u, s) +
∑

v∈V1
U(u, v) by individual

rationality. Hence,
∑

v∈V1
w(u, v) ≤

∑
v∈V2

w(u, v) for every
u ∈ V1. On the other hand, no player u ∈ V2 wants to deviate to
π(s): by a similar calculation,

∑
v∈V1

w(u, v) ≥
∑

v∈V2
w(u, v)

for every u ∈ V2. Thus, (V1, V2) is a local max-cut of G.

The construction in the proof of Theorem 18 can also be used to
show PLS-completeness of finding a Nash stable partition in this
class of games.

THEOREM 19. Given a symmetric additively separable hedo-
nic graph game whose underlying graph is a star, it is PLS-complete
to find a Nash stable feasible partition.

However, we cannot extend Theorem 19 to enemy-oriented games.

PROPOSITION 20. A Nash stable feasible outcome of a sym-
metric enemy-oriented game on a star can be computed in polyno-
mial time.

PROOF. We initialize coalition X to the center of the star; as
long as there is a player that likes (and is liked by) all current mem-
bers of X , we add him to X . Eventually, no player can be added
to X . At this point, {X} ∪ {{i} | i ∈ N \ X} is a Nash stable
feasible partition: no player outside of X wants to deviate to X ,
and no player in X wants to leave.

7. CONCLUSIONS AND FUTURE WORK
We have explored the existence and computational complexity of
stable partitions in hedonic games on acyclic graphs. We obtained
a number of algorithmic results in the general oracle-based frame-
work, thereby showing that acyclicity of the communication net-
work has important implications for stability. It remains unknown
whether a strictly core stable partition for a hedonic game on a
tree can be computed in time polynomial in the number of con-
nected coalitions; we leave this problem as a direction for future
work. It would also be interesting to see if our algorithms can be
extended to graphs that are “almost” acyclic, and, more broadly,
if there are constraints on the communication structure other than
acyclicity that lead to existence/tractability results for common he-
donic games stability concepts.

Acknowledgements
We would like to thank the reviewers for their very useful com-
ments. The first author acknowledges financial support from Funai
Foundation for Information Technology.

249



REFERENCES
[1] H. Aziz, F. Brandt, and H. G. Seedig. Computing desirable

partitions in additively separable hedonic games. Artificial
Intelligence, 195:316–334, feb 2013.

[2] H. Aziz and R. Savani. Hedonic games. In F. Brandt,
V. Conitzer, U. Endriss, J. Lang, and A. Procaccia, editors,
Handbook of Computational Social Choice. Cambridge
University Press, 2015.

[3] S. Banerjee, H. Konishi, and T. Sönmez. Core in a simple
coalition formation game. Social Choice and Welfare,
18(1):135–153, 2001.

[4] V. Bilò, A. Fanelli, M. Flammini, G. Monaco, and
L. Moscardelli. Nash stability in fractional hedonic games. In
WINE’14, pages 486–491, 2014.

[5] V. Bilò, A. Fanelli, M. Flammini, G. Monaco, and
L. Moscardelli. On the price of stability of fractional hedonic
games. In AAMAS’15, pages 1239–1247, 2015.

[6] A. Bogomolnaia and M. O. Jackson. The stability of hedonic
coalition structures. Games and Economic Behavior,
38(2):201–230, 2002.

[7] N. Burani and W. Zwicker. Coalition formation games with
separable preferences. Mathematical Social Sciences,
45(1):27–52, 2003.

[8] G. Demange. Intermediate preferences and stable coalition
structures. Journal of Mathematical Economics,
23(1):45–58, 1994.

[9] G. Demange. On group stability in hierarchies and networks.
Journal of Political Economy, 112(4):754–778, 2004.

[10] D. Dimitrov, P. Borm, R. Hendrickx, and S. C. Sung. Simple
priorities and core stability in hedonic games. Social Choice
and Welfare, 26(2):421–433, 2006.

[11] J. H. Drèze and J. Greenberg. Hedonic Coalitions:
Optimality and Stability. Econometrica, 48(4):987–1003,
1980.

[12] E. Elkind. Coalitional games on sparse social networks. In
T. Liu, Q. Qi, and Y. Ye, editors, WINE’14, volume 8877 of
Lecture Notes in Computer Science, pages 308–321.
Springer, 2014.

[13] M. Gairing and R. Savani. Computing stable outcomes in
hedonic games. In S. Kontogiannis, E. Koutsoupias, and
P. Spirakis, editors, SAGT’10, volume 6386 of Lecture Notes
in Computer Science, pages 174–185. Springer Berlin
Heidelberg, 2010.

[14] M. Gairing and R. Savani. Computing stable outcomes in
hedonic games with voting-based deviations. In AAMAS’11,
pages 559–566, 2011.

[15] M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman
and Company, 1979.

[16] A. Igarashi and E. Elkind. Hedonic games with
graph-restricted communication. arxiv:1602.05342 [cs.GT],
2016.

[17] D. S. Johnson and C. H. Papadimitriou. How easy is local
search? Journal of Computer and System Sciences,
37:79–100, 1988.

[18] M. Le Breton, G. Owen, and S. Weber. Strongly balanced
cooperative games. International Journal of Game Theory,
20(4):419–427, 1992.

[19] R. B. Myerson. Graphs and cooperation in games.
Mathematics of Operations Research, 2(3):225–229, 1977.

[20] D. Peters and E. Elkind. Simple causes of complexity in
hedonic games. In IJCAI’15, pages 617–623, 2015.

[21] A. A. Schäffer and M. Yannakakis. Simple local search
problems that are hard to solve. SIAM Journal on
Computing, 20(1):56–87, 1991.

[22] S.-C. Sung and D. Dimitrov. Computational complexity in
additive hedonic games. European Journal of Operational
Research, 203(3):635–639, jun 2010.

250




