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ABSTRACT
Both the Chamberlin–Courant and Monroe rules are vot-
ing rules solving the problem of so-called fully proportional
representation: they select committees whose members rep-
resent the voters so that voters’ satisfaction with their as-
signed representatives is maximized. These rules suffer from
a common disadvantage, being that it is computationally
intractable to compute the winning committee exactly. As
both of these rules, explicitly or implicitly, partition voters,
they can be seen as clustering the voters so that the voters
in each group share the same representative. This suggests
studying approximation algorithms for these voting rules by
means of cluster analysis, which is the subject of this paper.
We develop several algorithms based on clustering the voters
and analyze their performance experimentally.

General Terms
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1. INTRODUCTION
We study the problem of winner determination under

the Chamberlin–Courant [4] and Monroe [13] multiwinner
rules. These remarkable rules achieve two goals simulta-
neously: they select a representative committee, thus solv-
ing the problem of proportional representation of voters in
an indirect democracy, and also assign a representative to
each voter, securing the accountability of elected represen-
tatives to the electorate. These two rules are among the
very few known rules that achieve both these goals1 but,

∗Main work was done while affiliated with TU Berlin.
1A common practice of splitting the electorate into electoral
districts and using a single-winner voting rule in each dis-
trict can solve the second problem but not the first. Single
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unfortunately, computing the winners for both Chamberlin–
Courant and Monroe rules is NP-hard [2, 9, 15]. A number
of algorithms for this problem has been developed. Some
of them are exact, computing winners in polynomial time
in restricted domains [2, 19, 22], some are fixed-parameter
tractable [2] and hence computing winners efficiently when
certain parameters are small, and some are fast approxima-
tion algorithms that work on the universal domain [2, 9,
18, 14, 16]. Here we focus on the approximation approach
and show that by using randomization and some ideas from
cluster analysis, we can design algorithms that perform no-
ticeably better than some of the algorithms known from the
literature. We evaluate our algorithms experimentally.

The Chamberlin–Courant and Monroe rules operate as
follows. We are given a set C of candidates, a set V of
voters, and a number k, which is the size of the committee to
be elected. Each voter ranks the candidates from the most
to the least desirable one, and the goal is to pick a size-
k committee of candidates that, in some sense, represents
the voters in the best possible way. A convenient way of
thinking about the setting is that we must elect a parliament
of predetermined size k to act on behalf of the voters.

To measure the quality of the assignment, there is a uni-
versal satisfaction function γ, such that for each number i,
γ(i) quantifies the satisfaction of a voter from being rep-
resented by a candidate that this voter ranks as its ith
best.2 The Monroe and Chamberlin–Courant rules match
each voter to her3 representative so that: (a) There are at
most k candidates that represent the voters (these are the
winners of the election; that is, the parliament members),
and (b) the sum of the satisfactions of the voters from their
representatives is as high as possible. Under the Monroe
rule, we additionally require that every selected candidate
represents the same number of voters (plus or minus one, due
to divisibility issues). Under Chamberlin-Courant the ‘one
man, one vote’ principle is solved differently: in the elected

transferable vote, STV, can be seen as another example of
a rule that achieves proportional representation but not ac-
countability.
2The most typical satisfaction function, used in the origi-
nal definitions of Monroe and Chamberlin–Courant, is the
Borda score, which for m alternatives is γBorda(i) = m− i.
3For clarity, we refer to the voters as females and to the
candidates as males.
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assembly a representative is given a weight proportional to
the number of voters he represents.

The Monroe and Chamberlin–Courant rules have a num-
ber of applications beyond selecting representative bodies in
indirect democracies (such as parliaments, university sen-
ates, etc.), that include various business planning tasks and
public decision making problems [6, 9, 10, 17]. For exam-
ple, one can imagine a company that needs to pick k prod-
ucts that it would offer to its customers (e.g., because it is
too expensive to manufacture more than k different types of
products). The company could perform market analysis to
find out how customers rank possible products, and then use
the Chamberlin–Courant rule to compute which k of them
would ensure the customers’ highest satisfaction (under the
assumption that each customer buys only one product, the
one that he or she likes best).

Due to the NP-hardness of computing the winners under
the Monroe and the Chamberlin–Courant rules, it is usually
difficult to use these rules directly. Thus, using approxima-
tion algorithms in many circumstances is inevitable. There
are two main ways of doing so:

Direct approach. In this case, we use an approxima-
tion algorithm for either the Monroe or Chamberlin–
Courant rule as a replacement for the rule itself. This
is approach is suitable for business-related settings and
recommendation systems. In these settings the input
data is, typically, already distorted and the additional
distortion introduced by using an approximation al-
gorithm is inconsequential. On the other hand, this
approach is more controversial in the case of political
elections. If one were to use an approximation algo-
rithm as a voting rule, one would have to, for example,
argue that it has desirable axiomatic properties (inter-
estingly, Elkind et al. [6] have shown that this is the
case for one of the approximation algorithms for the
Monroe rule; earlier, Caragiannis et al [3] have shown
an approximation algorithm for Dodgson’s rule that
has better axiomatic properties than the rule itself).

Indirect approach. This approach is suitable in the politi-
cal elections setting. The election organizers announce
that the election is to be held using, say, Monroe’s
rule with a given satisfaction function. Afterwards,
they collect the votes, and make the raw election data
available to the society. In a given amount of time, ev-
eryone is allowed to submit an election outcome (that
is, an assignment of the representatives to the vot-
ers). The electoral committee also makes its own cal-
culation. The assignment that leads to the highest
total satisfaction is implemented. This approach can
be taken in high-stake elections, e.g., in parliamentary
elections, where one can expect the interested parties
to invest significant effort into obtaining the best—the
highest scoring—assignment (naturally, one should ex-
pect different parties to try to obtain the highest num-
ber of seats for themselves, but since at least two par-
ties would be competing, the result should be fair).

Whatever the approach, it is important to have efficient
approximation algorithms for our rules. Luckily, in both
cases it is perfectly natural for the algorithms to be ran-
domized. Randomization is noncontroversial in the direct
approach due to the fact that, typically, the input data

is distorted anyway (e.g, is based on the market analysis,
which itself is noisy), and in the indirect approach it does
not matter how one obtains the committee as long as its
total satisfaction is good.

Our contribution. Currently, the best approximation al-
gorithms for the Monroe and Chamberlin–Courant rules (in
terms of the guaranteed approximation ratio) are due to
Skowron et al. [18]. Another, very practical, approximation
algorithm (for the Chamberlin–Courant rule only) is due
to Lu and Boutilier [9]. In this paper we provide heuristic
means of improving the outcomes of these algorithms and we
show, through appropriate experiments, that our techniques
indeed lead to substantial improvements.

Our main idea is to treat the problem of computing the
winning committee as a clustering problem. Consider a sit-
uation where we are given a specific committee of size k. For
both the Monroe and the Chamberlin–Courant rules, it is
possible to compute the optimal assignment of the voters to
the candidates in this committee efficiently [2]. This assign-
ment partitions the voters into natural clusters (each cluster
contains the voters represented by the same candidate).

On the other hand, given a partition, the optimal way to
select a committee of representatives would be to assign to
voters of each part the Borda winner of the subelection con-
ducted in that part. We can now put both considerations
together in the following algorithm. Starting from a certain
initial partition and initial assignment, we can reassign rep-
resentatives optimally, then calculate the Borda winners in
each part of the new partition and form the committee and
the assignment for the next iteration. Each step increases
the total satisfaction of the voters and we repeat this pro-
cess until we reach a fixed-point, where the representative
of each cluster is its local winner. It is easy to see that this
procedure is an incarnation of the standard iterative cluster-
ing algorithm [5, 8] (in a certain way, our idea also resembles
cluster sampling; see, e.g., the textbook of Thompson [20]).

It is quite intuitive that the quality of the committee out-
put by the above procedure depends strongly on the qual-
ity of the initial committee, and there are several ways in
which to choose it. One can, for example, select the can-
didates at random, or use the output of an approximation
algorithm, e.g., that of Lu and Boutilier [9] or Skowron et
al. [18]. Neither of these approaches appears to be perfect,
though, since both quickly lead to finding local optima that
the algorithm cannot escape (in the former case, this is due
to starting from a random committee that, possibly, cannot
be improved well in our iterative fashion; in the latter case,
because the starting committee is too good). Yet, we find
that combining both these strategies gives very good results.

We evaluate our clustering algorithm on a number of
elections that we obtain using the Polya-Eggenberger urn
model [1]. It turns out that the results of our best algorithm,
on the average, are noticeably better than those obtained
using approximation algorithms known from the literature.

2. PRELIMINARIES
An election E is a pair (C, V ), where C = {c1, . . . , cm} is

a set of candidates and V = (v1, . . . , vn) is the collection of
voters. Each voter vi has a total order �vi over C, referred
to as her preference order. We write rankv(c) to denote the
position of candidate c in v’s preference order (e.g., if v ranks
c on the top position, then rankv(c) = 1).
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A multiwinner voting rule R is a function that, given an
election E = (C, V ) and an integer k, k ≤ |C|, returns a
set R(E, k) of size-k winning committees; each committee
in the set ties as a winner of the election. Below we describe
the Monroe [13] and Chamberlin–Couarant rules [4].

Assignment functions. Consider an election E = (C, V )
with V = (v1, . . . , vn), and let k be the size of the committee
to be elected. A k-CC-assignment function for this election
is a function Φ: V → C such that |Φ(V )| = |{Φ(vi) | vi ∈
V }| ≤ k. Intuitively, we say that the candidate Φ(vi) is the
representative of voter vi, and we say that candidate c repre-
sents voters from the set Φ−1(c) = {vi ∈ V | Φ(vi) = c}. A
k-Monroe-assignment function is a k-CC-assignment func-
tion that additionally satisfies the following condition: For
each candidate c that represents a nonempty set of voters,
it holds that bn

k
c ≤ |Φ−1(c)| ≤ dn

k
e.

Satisfaction function. Consider an election E = (C, V )
with the candidate set C = {c1, . . . , cm}. We say that the
function γ : {1, . . . ,m} → N is a satisfaction function if it is
nonincreasing. Intuitively, γ(i) is the measure of satisfaction
that a voter gets from being represented by the candidate
that she ranks as her i’th best. The classical versions of
the Chamberlin-Courant and Monroe rules use the Borda
satisfaction function γBorda(i) = m− i.
Monroe and Chamberlin–Courant rules. Consider
an election E = (C, V ), the size of the committee k, and
a satisfaction function γ. Let Φ be a k-CC-assignment func-
tion for E. We define the total satisfaction of the voters
with Φ to be:

Γ(Φ) =
∑

v∈V γ(rankv(Φ(v))).

The Chamberlin–Courant rule for γ, denoted γ-CC, out-
puts all size-k committees W for which there exists a k-CC-
assignment function Φ such that: (a) Γ(Φ) has maximum
value, and (b) Φ(V ) ⊆W .4 The Monroe rule for γ, denoted
γ-Monroe, is defined in the same way, but with the exception
that we consider k-Monroe-assignment functions only.

It is well-known that computing even a single winning
committee under either Monroe or Chamberlin–Courant
rules is NP-hard [9, 15] and hard in the parameterized
sense [2]. Nonetheless, given a set of k candidates, it is
possible to efficiently compute an optimal k-CC-assignment
function and an optimal k-Monroe-assignment function that
uses these candidates as representatives. For the case of γ-
CC, this is obvious (by simply picking, for each voter, the
candidate from the given set of k candidates which she pre-
fer the best) and for Monroe there is a network-flow-based
algorithm which is due to Betzler et al. [2]; later, we will
refer to this algorithm as the BSU-algorithm.

We use variants of these algorithms that also work for par-
tial committees, that is, for sets of up to k candidates. In
the case of γ-CC rules, this is trivial (for each k′ ≤ k, every
k′-CC-assignment function is also a k-CC-assignment func-
tion). For the case of γ-Monroe rules, the situation is a bit
more complicated because each candidate can represent at
most dn

k
e voters. So, when we consider partial committees

for γ-Monroe, we also consider partial k-Monroe-assignment
functions. A partial k-Monroe-assignment function is a reg-

4This last condition, if a bit weird at first sight, takes into
account the possibility that while the committee is required
to contain k candidates, there can be fewer than k candidates
that represent any voters.

ular k-Monroe-assignment functions that can assign the null
candidate ⊥ to some voters. There is no constraint on the
number of voters to whom the null candidate is assigned, and
we assume that for each voter v we have γ(rankv(⊥)) = 0.

Approximation algorithms. Let γ be a satisfaction
function and let R be either the Monroe or Chamberlin–
Courant rule for γ. We consider an election E = (C, V )
and committee size k. For β ∈ [0, 1], we say that a k-R-
assignment function Φ is a β-approximation of R(E, k), if it
holds that Γ(Φ) ≥ β ·OPT, where OPT is the highest pos-
sible total voter satisfaction under R in the election E. We
also speak of committees as β-approximations: We say that
a committee W is β-approximate for a given election, if the
optimal assignment function computed for this committee
is β-approximate. A β-approximation algorithm for R is an
algorithm that always outputs a β-approximate committee.

There are several approximation algorithms for Monroe
and Chamberlin–Courant rules [9, 16, 14, 18]. We will dis-
cuss the two most relevant ones to our work in Section 3.2,
where we describe the initialization step of our heuristics.

3. ALGORITHMS
In this section we describe our algorithms. We first de-

scribe two of their most important components, the cluster-
ing heuristic and the initialization heuristics (which, in fact,
can be used on its own, without the clustering step), and
then, based on these, we suggest six algorithms.

3.1 Clustering Heuristic
Let R be either Monroe or CC. We are given an election

E = (C, V ), a committee size k, and a satisfaction function
γ. The goal is to compute a β-approximate solution for R,
for as high a value of β as possible.

Our algorithms are inspired by the heuristic algorithms
that are commonly employed for k-means clustering [8] and
proceed according to the following steps:

1. Obtain an initial committee W1 (e.g., by random
choice, but we will describe more involved scenarios
later). Then, using the BSU-algorithm, compute the
initial assignment function Φ1 that uses the candidates
from W1.

2. Keep generating assignment functions Φi, for i =
2, 3, . . ., using the following steps, until you generate a
function Φi that is equal to Φi−1:

(a) For each candidate c ∈ Wi−1, compute the set of
voters Vc = Φ−1

i−1(c).

(b) For each Vc computed in the previous step, find a
candidate c′ such that

∑
v∈Vc

γ(rankv(c′)) is max-
imal.

(c) Let Wi be the set of candidates c′ computed in
the previous step. If |Wi| ≤ k, add to it k − |Wi|
randomly chosen candidates.

(d) Using the BSU-algorithm, compute the assign-
ment function Φi for committee Wi.

3. When the procedure stops for some value i = t, output
the committee Wt and the assignment function Φt.

To get some feeling for how the procedure works, let us
consider an example.
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Example 1. Consider an election with the set of can-
didates {a, b, c} and the following voters: v1 : a � b � c,
v2 : c � b � a, v3 : c � b � a. We use a satisfaction function
γ such that γ(1) = 4, γ(2) = 3, and γ(3) = 0. We set the
committee size to be k = 2. The optimal solution is {a, c}
and irrespective of which committee our clustering heuristic
starts with, after a single iteration it outputs the optimal so-
lution. For example, if it starts with W1 = {b, c}, then we
have Φ1 such that Φ−1(b) = {v1} and Φ−1(c) = {v2, v3}.
The algorithm computes W2 = {a, c} and terminates.

Let us now discuss some details of the procedure. First,
we note that it always terminates. This is so, because in
every iteration within Step 2, if we obtain Φi 6= Φi−1, then
it must be the case that Γ(Φi) > Γ(Φi−1).5 In fact, if the
satisfaction function is polynomially bounded, then the clus-
tering procedure terminates in polynomial time (in essence,
because there are only polynomially many different scores a
committee may have, and the score of a committee improves
in every step).

Proposition 1. If the satisfaction function used by R is
polynomially bounded, then the clustering procedure runs in
polynomial time.

Naturally, the clustering heuristic never outputs a solu-
tion that is worse than the initial assignment. Also, as we
will also see in the experimental evaluation of our heuristics,
the choice of the initial committee W1 is very important and
needs to balance two factors. On the one hand, the commit-
tee W1 should be of a relatively high quality, so that the
algorithm starts near a very good solution. On the other
hand, it should be sufficiently random, to avoid getting stuck
in local maxima.

3.2 Initialization Heuristics
Our algorithms for computing the initial assignment are

based on the greedy approximation algorithms of Lu and
Boutilier [9] and Skowron et al. [18] (specifically, we merge
the ideas of Skowron et al.’s Algorithms C and GM, which
generalizes the algorithm of Lu and Boutilier). We first
present the general skeleton of our initialization algorithm
and then describe how to instantiate it to obtain the partic-
ular algorithms we are interested in (the algorithms of Lu
and Boutilier and Skowron et al. are special cases of these).

We are given an election E = (C, V ), a committee size
k, and a satisfaction function γ. We also have a parameter
d that specifies how many partial committees we keep after
each iteration (the idea of keeping several committees is due
to Skowron et al. [18]). Our algorithm proceeds as follows:

1. We form the initial set D0 of partial committees that
contains only one partial committee, the empty set.

2. We execute k iterations, in each one we extend each
partial committee in D by one candidate. Each itera-
tion is either a greedy iteration or a randomized iter-
ation, depending on a given criterion (to be specified
separately for each of the algorithms which we use).
Let i be the number of the iteration to be executed:

Greedy iteration. For each partial committee W
from Di−1, we form all partial committees that result

5Technically, for this to hold we need to assume that when
computing the candidates c′, we break ties in favor of the
representative c.

from extending W by a single candidate (not yet in
W ). We insert all the partial committees that we ob-
tain into set D′i. For each partial committee in D′i
we compute an optimal assignment Φ (using the BSU-
algorithm) and compute its voter satisfaction Γ(Φ).
We form the set Di by picking up to d partial commit-
tees from D′i that have the highest voter satisfactions.

Randomized iteration. We start by setting Di to
be empty. Then we repeat the following procedure d
times: We choose one of the d committees from Di−1

uniformly at random and extend it by one of the can-
didates not in the committee, who is also chosen uni-
formly at random. We put the resulting partial com-
mittee into Di.

3. Finally, Dk contains up to d committees, each with k
candidates. We output the one with the highest voter
satisfaction (as computed by the BSU-algorithm).

Based on this general skeleton, we form the following algo-
rithms for the initialization step (we set the parameter d to
either be 1—for the simplest settings—or to be 5, since the
results of Skowron et al. [18, Fig. 13] suggest that this is a
sufficiently large value to obtain the benefit of keeping mul-
tiple committees, and, at the same time, is small enough to
not affect the running time too much):

G1. This algorithm uses greedy iterations only and d = 1.
This is exactly the algorithm of Lu and Boutlier [9] for the
Chamberlin–Courant family of rules and the GM algorithm
of Skowron et al. [18] for the case of the Monroe family
of rules. The algorithm guarantees that the committee it
outputs is (1 − 1

e
)-approximate. (For the case of γBorda-

Monroe, the approximation ratio is guaranteed to be 1 −
k−1

2(m−1)
− Hk

k
, where m is the number of candidates and Hk

is the k’th harmonic number [18]).

G5. This is the same algorithm as G1, except that it uses
parameter d = 5. Naturally, it provides the same approxi-
mation guarantees as G1.

D1. This algorithm combines greedy iterations and ran-
domized ones in the following way. We are given two addi-
tional parameters, p and e, such that 0 < p < 1 and e ∈ R+,
and at the i’th iteration we make a randomized step with
probability pi·e and a greedy step with probability 1− pi·e.
(The name of the algorithms stands for decaying probability
of a random iteration.) We set the parameter d = 1.

D5. The same as D1, but with d = 5.

R(1,5). This algorithm combines the two above algo-
rithms. We run D1 five times to obtain five committees.
Then we run D5 five times to obtain another five commit-
tees. Out of these ten committees, we output the one with
the highest voter satisfaction.

While algorithm R(1,5) may appear somewhat ad hoc, the
underlying idea is quite clear. We run algorithms D1 and D5
to explore the space of committees that should be relatively
good, due to the greedy steps, but are not too good, due to
the randomized steps. We use both D1 and D5 to obtain
some more varied committees. Naturally, in practical situa-
tions, one should likely tweak the algorithm in various ways.
Perhaps use only D5 and not D1, perhaps use more or fewer
iterations, etc. Our point here is not necessarily to show the
most effective initialization algorithm, but rather to show
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the power of combining greedy and randomized steps (in-
deed, if one were to use our algorithms to compute the result
of a political election, as in the indirect approach from the
introduction, one would likely try as many various combi-
nations of the parameters of the algorithms as time would
permit).

3.3 Putting the Algorithms Together
Altogether, in our experimental section we consider six

algorithms. The first three are, simply, the initialization al-
gorithms G1, G5, and R(1,5) that we have described above.
The next three, algorithms G1C, G5C, and R(1,5)C, first
use the respective initialization algorithm to find a set of
committees (we let the algorithms output all the commit-
tees they construct, without picking the best one), then we
apply the clustering heuristic to each of them, and finally
output the committee with the highest voter satisfaction.
The algorithms with the clustering step are bound to be
better than those without it. It is interesting—and we eval-
uate it in the next section—how often and to what extent
the clustering step improves the solution.

For algorithms R(1,5) and R(1,5)C, we use the following
parameters. We set p = 0.75 and e = 1 (e.g., in the first
iteration, D1 has 0.75 probability of executing a randomized
step, in the second iteration ≈ 0.56, in the third iteration
≈ 0.42, and so on).

4. EXPERIMENTAL ANALYSIS
We now present our experimental results. We have three

main goals. First, we would like to evaluate how well our al-
gorithms perform (that is, how close are the solutions they
produce to optimal outcomes). Second, we would like to
evaluate how effective is the randomization in algorithms
R(1,5) and R(1,5)C, as compared to the other, fully deter-
ministic, algorithms. Third, we would like to evaluate how
effective the clustering step is.

4.1 Experimental Setup
We have run our algorithms in a number of experiments.

For each experiment we have generated 500 instances of elec-
tions (we used the Polya-Eggenberger urn model; see be-
low), each with m = 100 candidates and n = 100 voters.
For each experiment we used three satisfaction functions:
γBorda, γconvex, and γconcave.

Function γBorda is the Borda satisfaction function, i.e.,
γBorda(i) = m− i, for i ∈ [m]. Functions γconvex and γconcave
are certain convex and concave functions (respectively) and
are depicted in Figure 1. Formally, they are defined as:

γconcave(i) = m
(
−m+i+1

m−1

)7
+m , γconvex(i) = m

(
m−i−1
m−1

)7
.

In most cases we have considered relatively small commit-
tees (k = 3 and k = 5), but we have also considered several
much larger committees (k = 27 and k = 47). For each
experiment, we run our six algorithms, and additionally we
computed the optimal solution using an ILP solver (see the
works of Lu and Boutilier [9] and Skowron et al. [18] for ILP
formulations of the winner determination problems).6

6This is why we chose elections with 100 candidates and
100 voters: They are small enough to compute optimal so-
lutions using ILP, but large enough to have some nontrivial
structure.

Figure 1: Our satisfaction functions: γconvex (red rectangles;
bottom), γBorda (green circles; center), and γconcave (blue
triangles; top).

We generated the elections using the Polya–Eggenberger
urn model (see the works of Skowron et al. [18], Berg and
Lepelley [1], McCabe-Dansted and Slinko [12], Walsh [21],
and Erdelyi et al. [7] for some other examples where this
model was used). This model operates as follows: For a
candidate set C, we create an urn which initially contains
one copy of each of the |C|! possible preference orders over
C. To generate a vote, we draw a preference order ran-
domly from the urn and include it in the election. Then we
return this order back to the urn, together with α · |C|! addi-
tional copies, where α is a parameter of contagion (for α = 0
we would get the impartial culture model, where votes are
drawn uniformly at random).

The sheer number of experiments that we have run is too
large for presenting all the results which we have obtained.
Thus, in the discussion below, we present only some repre-
sentative results (we show results for k = 3, α ∈ {0.05, 0.25},
for both Monroe and CC, for all our satisfaction functions;
we also show three other interesting experiments).

4.2 Discussion of the Results
We present the results of our experiments in Figures 2–

16. For each of the plots we indicate the voting rule
(Chamberlin–Courant or Monroe), the satisfaction function
(γconcave, γBorda, γconvex), the size of the committee (3, 5, 27,
47), and the value of the parameter α for the urn model (0.05
or 0.25). The plots show the distribution of the voter sat-
isfaction achieved by each of our algorithms (averaged over
500 elections generated in each given experiment), scaled
so that the optimal satisfaction is 1. The red line (in the
middle of each rectangle) indicates the median quality of
the obtained solutions. The blue rectangle covers solutions
from the 25th to 75th percentile (i.e., it shows the range
of the satisfaction values of solutions worse than the best
quarter of the obtained solutions, but better than the worst
quarter of the solutions). The top and bottom black lines
indicate 1.5 times the interquartile range, and smaller blue
crosses below and above them indicate outliers.

In each of our plots, each column stands for one of our
six algorithms. The number next to G1C (G5C, R(1,5)C)
is the number of instances for which G1C (G5C, R(1,5)C)
performed better than G1 (G5, R(1,5)). This number shows
how frequently the clustering step provides an improvement.
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How well do our algorithms perform? All our algo-
rithms achieve very good approximation ratios, though there
are noticeable differences in their quality. Typically, G1 per-
forms worst of all (but still, the median result tends to be at
least 0.95 of the voter satisfaction in the optimal solution)
and R(1,5)C tends to perform best.

How effective are the randomization steps? It is
quite evident that introducing the randomization steps has
very positive impact on the quality of the generated solu-
tions. If we compare the results for R(1,5) and R(1,5)C to
the results for G5 and G5C, respectively, then the random-
ized algorithms never perform noticeably worse, and often
achieve slightly better results (but see the next point).

How effective is the clustering step? It turns out that
in most scenarios applying the clustering step improves the
solution by, at least, some amount, and in some scenarios it
improves it greatly. This is most evident when we compare
the results of algorithms R(1,5) and R(1,5)C for the Mon-
roe family of rules. In this case, applying the clustering step
often improves (quite significantly, judging by the improve-
ment of the median satisfaction of the voters) the solution in
many more than half of the instances. On the other hand, if
we compare the results of G1 and G1C, or of G5 and G5C,
then the clustering step does help, but on fewer instances
and to a lesser extent. This confirms that generating an
appropriate initial committee is very important.

Contrasting the figures corresponding to α = 0.05 to the
figures corresponding to α = 0.25, we see that with the
increase of the coefficient of contagion (i.e., the homogeneity
of the population) the clustering step is becoming noticeably
more useful. The reason for this is not exactly clear but,
intuitively, with the increase of contagion the clusters in the
data become more pronounced, hence the clustering step
becomes more useful.

5. SUMMARY
We have considered the problem of computing approx-

imate solutions for the Monroe and Chamberlin–Courant
rules via algorithms combining the existing greedy approx-
imation algorithms, randomized steps, and clustering. We
have shown that putting these ideas together leads to notice-
ably more effective algorithms than previously known from
the literature. In particular, our results have shown that in-
terleaving greedy steps with randomized steps leads to com-
mittees that are very good starting points for the clustering
step. Our algorithms can quite easily be modified to satisfy
soft constraints such as “try to find as good a committee as
possible with as many members of a given party as possible.”

For future work, it would be interesting to perform sim-
ilar experiments as ours on real election data (e.g., from
PrefLib [11]). Second, it would be interesting to find a prin-
cipled way of setting the parameters of our procedures (we
relied on ad hoc settings). Third, we are interested in theo-
retical explanations of why interleaving greedy and random
step gives better outcomes than greedy steps alone.
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Figure 2: Performance of our algorithms for the Monroe
voting rule, committee size = 5, Borda scores, and the urn
model with α = 0.25.

Figure 3: Performance of our algorithms for the Monroe
voting rule, committee size = 27, Borda scores, and the urn
model with α = 0.25.

Figure 4: Performance of our algorithms for the Monroe
voting rule, committee size = 47, Borda scores, and the urn
model with α = 0.25.

301



Figure 5: Performance of our algorithms for the
Chamberlin–Courant voting rule, committee size = 3, Borda
scores, and the urn model with α = 0.05.

Figure 6: Performance of our algorithms for the
Chamberlin–Courant voting rule, committee size = 3, Con-
vex scores, and the urn model with α = 0.05.

Figure 7: Performance of our algorithms for the
Chamberlin–Courant voting rule, committee size = 3, Con-
cave scores, and the urn model with α = 0.05.

Figure 8: Performance of our algorithms for the Monroe
voting rule, committee size = 3, Borda scores, and the urn
model with α = 0.05.

Figure 9: Performance of our algorithms for the Monroe
voting rule, committee size = 3, Convex scores, and the urn
model with α = 0.05.

Figure 10: Performance of our algorithms for the Monroe
voting rule, committee size = 3, Concave scores, and the
urn model with α = 0.05.
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Figure 11: Performance of our algorithms for the
Chamberlin–Courant voting rule, committee size = 3, Borda
scores, and the urn model with α = 0.25.

Figure 12: Performance of our algorithms for the
Chamberlin–Courant voting rule, committee size = 3, Con-
vex scores, and the urn model with α = 0.25.

Figure 13: Performance of our algorithms for the
Chamberlin–Courant voting rule, committee size = 3, Con-
cave scores, and the urn model with α = 0.25.

Figure 14: Performance of our algorithms for the Monroe
voting rule, committee size = 3, Borda scores, and the urn
model with α = 0.25.

Figure 15: Performance of our algorithms for the Monroe
voting rule, committee size = 3, Convex scores, and the urn
model with α = 0.25.

Figure 16: Performance of our algorithms for the Monroe
voting rule, committee size = 3, Concave scores, and the
urn model with α = 0.25.
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