
Resource Abstraction for Reinforcement Learning
in Multiagent Congestion Problems

Kleanthis Malialis
∗

Dept. of Computer Science
University College London, UK

k.malialis@ucl.ac.uk

Sam Devlin
Dept. of Computer Science

University of York, UK
sam.devlin@york.ac.uk

Daniel Kudenko
Dept. of Computer Science

University of York, UK
daniel.kudenko@york.ac.uk

ABSTRACT
Real-world congestion problems (e.g. traffic congestion) are
typically very complex and large-scale. Multiagent rein-
forcement learning (MARL) is a promising candidate for
dealing with this emerging complexity by providing an au-
tonomous and distributed solution to these problems. How-
ever, there are three limiting factors that affect the deploy-
ability of MARL approaches to congestion problems. These
are learning time, scalability and decentralised coordination
i.e. no communication between the learning agents. In this
paper we introduce Resource Abstraction, an approach that
addresses these challenges by allocating the available re-
sources into abstract groups. This abstraction creates new
reward functions that provide a more informative signal to
the learning agents and aid the coordination amongst them.
Experimental work is conducted on two benchmark domains
from the literature, an abstract congestion problem and a re-
alistic traffic congestion problem. The current state-of-the-
art for solving multiagent congestion problems is a form of
reward shaping called difference rewards. We show that the
system using Resource Abstraction significantly improves
the learning speed and scalability, and achieves the highest
possible or near-highest joint performance/social welfare for
both congestion problems in large-scale scenarios involving
up to 1000 reinforcement learning agents.

CCS Concepts
•Computing methodologies → Multi-agent systems;
Multi-agent reinforcement learning;

Keywords
Multiagent learning; Resource abstraction; Congestion prob-
lems

1. INTRODUCTION
There has been in recent years an explosion of interest in

multiagent systems (MAS) where multiple interacting agents

∗Most of this work was carried out when the author was at
the University of York, UK.

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

are situated in a common environment. A larger set of prob-
lem domains can be practically modelled using MAS for ex-
ample by taking advantage of the geographic distribution
and sharing experiences for faster and better learning [8].
MAS often need to be very complex, and MARL is a promis-
ing candidate for dealing with this emerging complexity [7].
MARL approaches provide adaptive and autonomous agents
that can improve from experience.

Congestion problems have been formulated in the past as
MARL problems [10, 11, 6, 3]. Congestion problems are typ-
ically very complex and large-scale. Real-life examples in-
clude traffic congestion, air traffic management and network
routing. Despite the benefits offered by MARL approaches
there are three limiting factors that affect their deployability
to real-world congestion problems; these are, learning time,
scalability and decentralised coordination i.e. no communi-
cation between learning agents.

Firstly, learning time is of particular importance to offline
learning and critical to online learning. If a MARL system
is slow it may be practically useless even if it eventually
achieves a great performance. Furthermore, in real-life com-
plex congestion problems, learning time is typically limited.

Secondly, the curse of dimensionality [9] refers to the ex-
ponential growth of the search space, in terms of the number
of states and actions. If a MARL solution is not scalable, it
will never be considered, let alone adopted, for deployment
by a company or organisation.

Lastly, while sharing experiences may be beneficial and
even necessary in specific applications, allowing communica-
tion between the learning agents is not always desirable or
even possible. This is because agents may have been devel-
oped by different designers or controlled by different owners.
Even if this is not the case, communication messages can be
costly, noisy, corrupted, dropped or received out of order [5].

In this paper we introduce Resource Abstraction, an ap-
proach that addresses the aforementioned challenges. Ex-
periments are conducted on two benchmark domains from
the literature; an abstract congestion problem and a realis-
tic traffic congestion problem where agents or cars“compete”
for traffic lanes. Our contributions are the following.

We propose the novel Resource Abstraction approach where
its main idea is to allocate the available resources into groups
called abstract groups. This grouping provides an abstract
(A) reward function that is more informative and aids the
coordination among the learning agents to significantly im-
prove the learning speed, scalability and agents’ final joint
performance or social welfare.

512



We compare our approach against systems which learn
from local (L), global (G) and difference (D) rewards. The
first two are the common approaches while the third is a
form of reward shaping that constitutes the state-of-the-art
for solving multiagent congestion problems.

Like D, the system using A provides decentralised coor-
dination. It is further shown that the system using A re-
quires significantly fewer time steps per learning episode to
achieve the highest system performance or social welfare in
large-scale scenarios. The proposed approach scales to a
large number of agents and is successfully demonstrated in
experiments involving up to 1000 learning agents.

The organisation of this paper is as follows. Section 2
describes the background material necessary to understand
the contributions made by this work. Section 3 presents a
formal definition of congestion problems as multiagent learn-
ing and coordination problems. Section 4 introduces in de-
tail our proposed Resource Abstraction approach. Section 5
and Section 6 provide the experimental work and results for
the abstract and traffic congestion problems respectively. A
discussion and conclusion is presented in Section 7.

2. BACKGROUND

2.1 Reinforcement Learning
Reinforcement learning is a paradigm in which an active

decision-making agent interacts with its environment and
learns from reinforcement, that is, a numeric feedback in
the form of reward or punishment [9]. The feedback re-
ceived is used to improve the agent’s actions. The problem
of solving a reinforcement learning task is to find a policy
(i.e. a mapping from states to actions) which maximises the
accumulated reward.

The concept of an iterative approach constitutes the back-
bone of the majority of reinforcement learning algorithms.
These algorithms apply so called temporal-difference up-
dates to propagate information about values of states, V (s),
or state-action, Q(s, a), pairs. These updates are based on
the difference of the two temporally different estimates of
a particular state or state-action value. The Q-learning al-
gorithm is such a method [12]. After each real transition,
(s, a) → (s′, r), in the environment, it updates state-action
values by the formula:

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)] (1)

where α is the rate of learning and γ is the discount factor.
The exploration-exploitation trade-off constitutes a crit-

ical issue in the design of a reinforcement learning agent.
It aims to offer a balance between the exploitation of the
agent’s knowledge and the exploration through which the
agent’s knowledge is enriched. A common method of doing
so is ε-greedy, where the agent behaves greedily most of the
time, but with a probability ε it selects an action randomly.
To get the best of both exploration and exploitation, it is
advised to reduce ε over time [9].

Applications of MARL typically take one of two approaches;
multiple individual learners (ILs) or joint action learners
(JALs) [1]. Multiple ILs assume any other agents to be
part of the environment and so, as the others simultaneously
learn, the environment appears to be dynamic as the prob-
ability of transition when taking action a in state s changes
over time. To overcome the appearance of a dynamic envi-

ronment, JALs were developed that extend their value func-
tion to consider for each state the value of each possible
combination of actions by all agents. The consideration of
the joint action causes an exponential increase in the num-
ber of values that must be calculated with each additional
agent added to the system. Therefore, as we are interested
in scalability and decentralised coordination (i.e. no com-
munication between agents), this work focuses on multiple
individual learners and not joint action learners.

In MARL the typical approach provides agents with one
of two types of reward. A local reward (L) is unique
to each agent and often promotes “selfish” behaviours since
each agent attempts to increase its own reward, potentially
at the cost of the system performance. The global reward
(G) is in fact the system performance used as a learning
signal1. This allows each agent to act in the system’s interest
and typically, the learnt behaviour is better compared to the
case where agents are learning using L.
G, however, includes a substantial amount of noise due to

other agents acting in the system. This is because an agent
may be rewarded for taking a bad action (if the other agents
executed a good action), or punished for taking a good ac-
tion (if the others performed a bad action). This is known
as the multiagent credit assignment problem. The reward
signal should reward an agent depending on its individual
contribution to the system objective. Difference rewards
[13], a form of reward shaping, address this issue and are
discussed in the next section.

2.2 Difference Rewards
Difference rewards [13] were introduced to address the

multiagent credit assignment problem encountered in re-
inforcement learning. The difference rewards (Di) is a
shaped reward signal that helps an agent i to learn the con-
sequences of its actions on the system objective by removing
a large amount of the noise created by the actions of other
agents active in the system. It is defined as:

Di(z) = G(z)−G(z−i) (2)

where z is a general term representative of either states or
state-action pairs depending on the application, G(z) is the
global reward used, and G(z−i) is G(z) for a theoretical
system without the contribution of agent i.

Difference rewards exhibit the following two properties.
Firstly, any action taken that increases Di simultaneously
increases G. Secondly, since difference rewards only depend
on the actions of agent i, Di provides a cleaner signal with
reduced noise. These properties allow for the difference re-
wards to significantly boost learning performance in a MAS.

The challenge for deriving the difference rewards signal is
obviously how to calculate the second term of the equation
G(z−i) which is called the counterfactual. In particular do-
mains, the counterfactual G(z−i) is possible to be directly
calculated [11, 3]. Alternatively, in cases where this is not
possible, it has been demonstrated that difference rewards
can be estimated [10, 6].

Difference rewards have been successfully applied in dif-
ferent domains such as congestion problems [10, 11, 6, 3],
network security [4] and distributed sensor networks [2].

1The terms global reward, system performance and social
welfare are used interchangeably.

513



3. CONGESTION PROBLEMS AS MULTI-
AGENT LEARNING PROBLEMS

This section provides a formal definition of congestion
problems as multiagent learning problems. A congestion
problem occurs when multiple entities are competing for a
limited amount of available resources. Different congestion
problems (traffic congestion, air traffic management, Beach
problem, El Farol Bar problem) have been formulated in the
past as multiagent learning problems [10, 11, 6, 3].

Formally, there exists a set S of n resources S =
{s1, s2, ..., sn}. Each resource s is a 3-tuple s =< ws, ψs, xs,t >
where ws ≥ 0 is the weighting or importance of resource s,
ψs > 0 is the capacity of resource s, and xs,t ≥ 0 is the
consumption of resource s at time t. A resource s at time t
is said to be congested if its consumption is higher than its
capacity i.e. xs,t > ψs.

The local reward (L) of an entity located in resource s
at time t depends on the resource’s weighting, capacity and
consumption as shown in Equation 3:

L(s, t) = f(ws, ψs, xs,t) (3)

The global reward (G) is defined as the summation over
all local rewards and is given by Equation 4.

G(t) =
∑
s∈S

L(s, t) (4)

Recall from Section 2.2 that the difference rewards sig-
nal is calculated by subtracting the counterfactual from the
global reward. Therefore, the difference rewards (D) for
agent i located in section s at time t can be calculated using
Equation 5.

Di(t) = G(t)−G−i(t)

= L(s, t)− L−i(s, t) (5)

The straightforward approach is to consider the entities
which compete for the resources as the learning agents. For
instance, in a traffic congestion domain [11] where the enti-
ties are cars which compete for traffic lanes, we can install a
learning agent on each car. In such domains, there is no need
to estimate the counterfactual as it can simply be calculated
by decreasing the resource’s consumption or attendance by
1 as shown in Equation 6

Di(t) = L(s, t)− L−i(s, t)

= f(ws, ψs, xs,t)− f(ws, ψs, xs,t − 1) (6)

Alternatively, there exist congestion problems where learn-
ing agents are not installed on the entities competing for the
resources and in such cases the counterfactual needs to be
estimated [10]. Although estimating Di has been success-
fully demonstrated in a number of applications this topic is
under ongoing research [6].

4. RESOURCE ABSTRACTION
The idea behind our approach is to allocate the available

resources into groups called abstract groups which provide
a more informative signal to the learning agents.

Formally, there exists a set B of p abstract groups: B =
{b1, b2, ..., bp}. Each abstract group b is a 4-tuple:
b =< Mb,Wb,Ψb, Xb,t >.

The set Mb = {m1,m2, ...,mk} is the member set of ab-
stract group b that consists of k resources. A resource m

can belong only to one abstract group, that is, m ∈Mi and
m ∈ Mj only if i = j. The number of abstract groups (and
their members) depends on the application domain.

The weightWb of abstract group b is defined as the average
weight of its members as shown in Equation 7.

Wb =
1

k

∑
m∈Mb

wm (7)

The capacity Ψb of abstract group b is the total capacity
of its members. Similarly, the consumption Xb,t of abstract
group b at time t is the total consumption of its members.
These are calculated using Equations 8 and 9.

Ψb =
∑

m∈Mb

ψm (8)

Xb,t =
∑

m∈Mb

xm,t (9)

As discussed, the straightforward approach is to consider
the entities which compete for the resources as the learning
agents. However, depending on the application, this may
not necessarily be the case, and our proposed approach does
not impose any limitations on the agent selection.

Let us now introduce the proposed reward functions. We
start by extending the local reward L(s, t), and define the
signal H(b, t) for an abstract group b at time t. It is cal-
culated by taking into account the abstract group’s weight,
capacity and consumption as shown in Equation 10. It is
important to note that the function f(·) is the same which
is used to calculate the local reward L (see Equation 3).

H(b, t) = −f(Wb,Ψb, Xb,t) (10)

The abstract reward (A) is defined as follows. When re-
source s which belongs to abstract group b is not congested,
we provide a reward from L(s, t). Alternatively, we provide a
reward from the abstraction configuration i.e. from H(b, t).
This is shown in Equation 11.

A(b, s, t) =

{
L(s, t) if xs,t ≤ ψs

H(b, t) if xs,t > ψs

(11)

where s ∈Mb.
The intuition behind this reward function is to facilitate

the coordination among the learning agents by providing
them with a more informative signal. Assuming a “good”
abstraction configuration (as mentioned, this is application
domain-specific), the abstract reward (A) will provide a big-
ger (than L) punishment to the agents to encourage them
to keep resources decongested. Furthermore, as we will later
demonstrate, in domains where the number of entities com-
peting for the resources is greater than the number of avail-
able resources, the desired solution is to congest only a min-
imal amount of them (e.g. only one) and leave the rest
decongested. The approach will encourage some agents to
consume a congested resource. In such cases the agents al-
ready receive a punishment, but they will be provided with
a bigger punishment if the agents attempt to switch to a
decongested abstract group and congest it.

514



5. BEACH PROBLEM DOMAIN (BPD)

5.1 Domain Description
The Beach Problem Domain (BPD) [3] is an abstract con-

gestion problem that relates to many real-life congestion
problems and allows us to perform a thorough analysis of
our proposed approach. In this domain, each tourist (learn-
ing agent) gets to choose the beach section it will visit. At
each time step each agent knows which beach section it is
currently on and must choose to either stay still or move to
an adjacent beach section (i.e. left or right).

When all the agents have performed their actions, they
receive a reward. The highest reward for a beach section
is received when the attendance of agents is equal to the
capacity of the beach section. If a beach section gets con-
gested or overcrowded it is undesirable. Beach sections with
low attendance are also undesirable. This constitutes a con-
gestion problem when the number of agents is much greater
than the total capacity of the beach sections.

In this abstract congestion problem it is assumed that all
beach sections have an equal weighting of 1 and they all have
the same capacity ψ. The local reward function (L) is given
by Equation 12:

L(s, t) = xs,te
−xs,t
ψ (12)

where s is the beach section and xs,t is the attendance of
beach section s at time step t.

The global reward (G) is a summation over all local re-
wards and is given by Equation 13.

G(t) =
∑
s∈S

xs,te
−xs,t
ψ (13)

The difference rewards (D) signal is calculated by apply-
ing Equation 6 to Equation 12. This results in Equation 14.

Di(t) = xs,te
−xs,t
ψ − xs,te

−(xs,t−1)

ψ (14)

Similarly to the local reward function, we define the cor-
responding reward function for an abstraction configuration
B (defined as described in Section 4). Therefore, the appli-
cation of Equation 10 to Equation 12 results in Equation 15:

H(b, t) = −Xb,te
−Xb,t

Ψb (15)

where b is the abstract group, Xb,t is the attendance at time
step t, and Ψb is the capacity of abstract group b.

Lastly, the abstract reward (A) is calculated by applying
Equation 11 and is shown in Equation 16.

A(b, s, t) =

xs,te
−xs,t
ψ if xs,t ≤ ψ

−Xb,te
−Xb,t

Ψb if xs,t > ψ
(16)

where s ∈Mb.
Algorithm 1 presents what has been described thus far.

Before describing the experimental work, we should note
that the best solution for this problem is to overcrowd one
(any) beach section, and leave ψ number of agents in the
rest of the sections. This will give the highest possible sys-
tem performance or global reward.

Algorithm 1 Beach Problem with Resource Abstraction

1: define abstraction configuration B
2: initialise Q-values: ∀s, a|Q(s, a) = −1
3: set agents to initial locations
4: for episode = 1 : num episodes do
5: for timestep = 1 : num timesteps do
6: for agent = 1 : num agents do
7: perceive current beach section s ∈ S
8: choose action a = {−1, 0,+1} using ε-greedy
9: move to section s′ = {s− 1, 0, s+ 1}

10: if s′ /∈ S then
11: move to nearest section s′ ∈ S
12: end if
13: end for
14: for section = 1 : num sections do
15: calculate A reward (Equation 16)
16: end for
17: for agent = 1 : num agents do
18: update Q(s,a) using A (Equation 1)
19: end for
20: reduce α using alpha decay rate
21: reduce ε using epsilon decay rate
22: end for
23: reset agents to initial locations
24: end for

5.2 Experimental Setup
Our experimental setup is as follows. The learning rate is

set to α = 0.1 and alpha decay rate = 0.9999. The explo-
ration parameter is set to ε = 0.05 and epsilon decay rate =
0.9999. The discount factor is set to γ = 1.0 and the num-
ber of episodes is set to num episodes = 10000. Initially,
the agents are uniformly distributed (i.e. it is assumed that
there exist hotels for the tourists in each beach section). The
rest of the parameters are given later for each experiment.
In all experiments, we plot the system performance/global
reward G at the last time step of each episode. The values
are averaged over 30 statistical runs and error bars showing
the standard error around the mean are plotted. In some
plots the error bars are very small and hardly visible, but
they are present on all plots.

5.3 Experimental Results
We have set num agents = 100, num sections = 6, ca-

pacity ψ = 6 and num timesteps = 5. The highest social
welfare or global reward is 11.04 and occurs when one (any)
of the six sections is overcrowded with 70 agents, while each
of the remaining five sections have six agents; this is shown
with a black dashed line in all figures.

The first experimental study investigates how different ab-
straction (A) configurations affect the performance, and how
they compare to the approaches which use the local (L),
global (G) and difference (D) rewards. Figure 1 demon-
strates this with abstraction configurations of two and three
abstract groups. For example, the plot with label “A-4+2”
means that the first four beach sections are grouped into
one abstract group, while the remaining two beach sections
are grouped into another abstract group. There are four
important outcomes from this study:

• Abstraction selection does affect the system perfor-
mance.

515



Figure 1: Abstraction configurations

• However, all the abstractions outperform the system
that uses the difference (D) rewards (third plot from
the bottom).

• The abstraction “A-2+1+3” achieves the highest per-
formance while three other achieve a near-highest per-
formance. The system usingD never achieves the high-
est social welfare.

• All the abstractions outperform the systems that use
the local (L) and global (G) rewards (bottom two plots).

The second experimental study examines how the episode
length i.e. number of time steps per episode affects the
system performance. Recall that at the start of each new
episode, that is, after the last time step of the previous
episode (Algorithm 1/Line 23) the agents return to their
initial location. It is important to note that changing the
length of the episode produces a different and independent
version of the problem.

In Figure 2 we apply D in different versions of the BPD,
where we vary the time (episode length) agents are allowed
to settle to a beach section within an episode. Note that with
five or more time steps per episode, an agent located at the
far left (or right) beach section can, in principle, move to the
far right (or left) section at the end of an episode. However,
D achieves the highest performance only in BPD versions
with episode length of 15 time steps or more.

We now run the same experiment for the proposed Re-
source Abstraction approach. Based on previous findings
(Figure 1) we proceed with abstraction“A-2+1+3”. Figure 3
depicts the performance of A in different BPD versions. It
is observed that the highest social welfare is achieved in all
BPD versions except when a single time step is used. Also, A
learns faster and achieves a significantly higher final perfor-
mance than D in all BPD versions except from versions with
episode length of 15 steps or more, where both have a sim-
ilar performance. These are important results for potential
real-world applications as they show that A is more robust
to changes in the problem domain (i.e. episode length) than
the current state-of-the-art approach D.

The third experimental study of BPD aims at investigat-
ing the scalability of the proposed approach. The setup for
this study involves num agents = 1000, num sections =

Figure 2: Impact of episode length on D

Figure 3: Impact of episode length on A

20, capacity ψ = 18 and num timesteps = 5. The highest
social welfare is 125.82 and is shown with a black dashed
line in all figures.

Like before, we have investigated a range of abstraction
configurations and many of them are shown in Figure 4. We
observe the following. All the abstractions except one (third
plot from the bottom) outperform the system that uses the
difference (D) rewards (fourth plot from the bottom). All
the abstractions outperform the systems that use the lo-
cal (L) and global (G) rewards (bottom two plots). Note
that no approach manages to achieve the best performance
in just five time steps per episode. However, taking into
consideration the scale of the scenario (1000 agents, 20 sec-
tions), some of the abstractions (see upper plots in Figure 4)
perform extremely well.

We proceed with abstraction “A-8+1+11” and repeat the
same experiment with ten and 20 time steps per episode;
results are shown in Figures 5 and 6 respectively. In both
figures, the system using A achieves a near-highest perfor-
mance. The system using D performs orders of magnitude
better than the local (L) and global (G) rewards, but still
it is significantly outperformed by the proposed A approach.

516



Figure 4: BPD with 1000 agents, 5 time steps

Figure 5: BPD with 1000 agents, 10 time steps

6. TRAFFIC LANE DOMAIN (TLD)

6.1 Domain Description
Despite the BPD being an abstract congestion problem, it

is very important as it relates to many real-world congestion
problems. One such complex problem is the Traffic Lane
Domain (TLD) [11] which is defined as follows.

In this domain each car (learning agent) gets to choose
which traffic lane to follow. Each agent knows at each time
step which lane it currently follows. At each time step, each
agent can either stay in the same lane, or move to an ad-
jacent lane (i.e. left or right). Once all the agents have
executed their actions, they receive a reward.

To simulate real-life characteristics there are three major
differences with the BPD: 1. traffic lanes have a different
weighting (represents the different preference of drivers) 2.
lanes have different capacities (represents the fact that lanes
are of different sizes, or that there exist restrictions due to
construction works, tolls, carpools etc.) and 3. it has a
different reward function as it doesn’t matter how many cars
are on a lane as long as the lane is not congested (as opposed
to a beach section which is desirable to have more people as
long as it is not overcrowded).

Figure 6: BPD with 1000 agents, 20 time steps

The local reward (L) function is given in Equation 17:

L(s, t) =

{
wse−1 if xs,t ≤ ψs

wse
−xs,t
ψs if xs,t > ψs

(17)

where s is the traffic lane, ws is the weighting, xs,t is the
attendance at time step t and ψs is the capacity.

The global (G) and difference (D) rewards are calculated
using Equations 4 and 6 respectively.

The application of Equation 10 to Equation 17 is shown
in Equation 18:

H(b, t) =

{
−Wbe

−1 if Xb,t ≤ Ψb

−Wbe
−Xb,t

Ψb if Xb,t > Ψb

(18)

where b is the abstract group, Wb is the weighting, Xb,t is
the attendance at time step t, and Ψb is the capacity. Lastly,
the abstract reward (A) is calculated using Equation 11.

6.2 Experimental Setup
We have set α = 0.1, alpha decay rate = 0.9999, ε =

0.05, epsilon decay rate = 0.9999, γ = 1.0 and num episodes =
10000. Initially, the agents are uniformly distributed. The
rest of the parameters are given below. In all experiments,
we plot the system performance/global reward G at the last
time step of each episode (except where otherwise is stated).
The values are averaged over 30 statistical runs and error
bars showing the standard error around the mean are plot-
ted. In some plots the error bars are very small and hardly
visible, but they are present on all plots.

6.3 Experimental Results
For the first experimental study in the TLD we adopt the

same traffic scenario as in [11]. In this scenario, there are 500
cars or learning agents and 9 traffic lanes each with capacity
167, 83, 33, 17, 9, 17, 33, 83, 167 (i.e. a total of 609).
The weightings for each lane are 1, 5, 10, 1, 5, 10, 1, 5, 10.
The highest possible system performance or global reward
is 17.66 and is achieved when all the lanes are decongested;
this is shown with a black dashed line in all figures.

The fact that there are different weightings for each re-
source or traffic lane gives us the opportunity to try non-
contiguous abstractions i.e. abstract groups with non-adjacent

517



Figure 7: TLD with 500 cars, 5 time steps

Figure 8: TLD with 500 cars, 10 time steps

members. The obvious configuration is to have three ab-
stract groups each with three member lanes. The first, sec-
ond and third abstract groups include lanes with weight-
ing 1, 5, and 10 respectively. We will refer to this abstrac-
tion configuration as “A (non-contig)”. Moreover, like in the
BPD, we have experimented with many abstraction configu-
rations and found out that the best performance is obtained
with “A-1+8”, which we will refer to as “A (contig)”.

Figure 7 shows the performance for all approaches for five
time steps per episode. The system using abstract rewards
(A) achieves the highest performance while both A and D
completely outperform L and G. The same experiment with
ten time steps per episode is repeated in Figure 8 where
very similar results are obtained. Note that with ten time
steps, an agent located at the far left (or right) lane has, in
principle, adequate time to reach the far right (or left) end.
Despite the increase in the number of time steps, the system
performance using D is only slightly improved.

An important question is how will the system perform if
the lane weightings and capacities change in due course e.g.
because of an accident? Consequently, a crucial question
that certainly has deployment implications is will a new ab-
straction configuration be needed each time the lane weight-
ings and capacities change?

Figure 9: TLD with accidents

The second experimental study in the TLD provides an-
swers to these questions. To simulate such a behaviour we
assume that two accidents occurred in lanes 3 and 9 at
episode 2000. As a result, their capacity is reduced to half.
Also, each of the two lanes has swapped weighting (pref-
erence) with one of its adjacent lanes. Therefore, the new
capacities are 167, 83, 17, 17, 9, 17, 33, 83, 83 (i.e. a total of
509) and the new weightings are 1, 10, 5, 1, 5, 10, 1, 10, 5.
We keep the same number of cars i.e. 500 and at the time
of the accidents the agents’ exploration parameter is reset
to the initial. The number of time steps per episode is five.

Figure 9 shows the results for the scenario with the ac-
cidents. The system using L is affected the most and does
not manage to recover i.e. to reach the performance it had
achieved before the occurrence of the accidents. Interest-
ingly the system using G is not affected at all, but its per-
formance is poor. The system using A is affected but man-
ages to completely recover and achieve the highest possible
welfare as it used to be the case without the occurrence of
the accidents. The system using D is also affected but only
slightly (it is not visible in the graph as it is out-shaded by
the decline of the A plots), however, the only system that
achieves the best performance is the one using A. The out-
come of this study suggests that a system using the proposed
approach is robust and does not need to refine the abstrac-
tion configuration if something is altered in due course such
as the traffic lane capacities and weightings.

It has been assumed so far that all learning agents or cars
are participating in the learning scheme. The third exper-
imental study for the TLD examines the behaviour of the
approaches when this assumption is violated. In practise,
100% compliance by drivers is unlikely to be achieved [11].
This is because some drivers may not be convinced to par-
ticipate or even if they are all willing to participate, some of
them may come across different problems such as informa-
tion and sensing limitations.

Figure 10 depicts the system performance (num agents =
500, num timesteps = 5) in the presence of 25% non-compliant
drivers. Non-compliant drivers are simulated as agents stick-
ing to their initial choice/location. It is observed that the
performance of L and G is not affected at all, but it is very
poor. The performance of D and A is not affected much
and, as a result, the system using A still outperforms the

518



Figure 10: TLD with 25% non-compliant drivers

Figure 11: TLD with 4 delivery phases

system that uses D. The results suggest that the proposed
system works well under non-compliant drivers.

The fourth experimental study further investigates the po-
tential deployment of such a learning scheme. In practise, it
is expected that such a system will be rolled out in phases
[11]. For instance, consider a scenario of four delivery phases
where the participation is 25%, 50%, 75% and 100% of the
drivers. To simulate this situation we vary the rate of non-
compliant drivers, for example, the first phase with 25%
participation corresponds to 75% non-compliant drivers.

Figure 11 shows the converged performance (num agents =
500, num timesteps = 5) for the scenario with four delivery
phases where the superiority of the proposed approach is
clearly demonstrated, suggesting that the proposed system
can be introduced to the public in different stages.

In the last study we repeat the experiment with 1000 cars.
The highest performance is 17.33 and occurs when the first
lane (capacity 167, weighting 1) is overcrowded with 558
agents while the remaining eight lines have full capacity. We
repeat the case under accident conditions (as in Figure 9),
where the highest performance is 17.31 and occurs when the
first lane is overcrowded with 658 agents. Figure 12 shows
the results (num timesteps = 5) where the superiority and
the ability of the proposed approaches to recover is shown.

Figure 12: TLD (1000 cars) with accidents

7. DISCUSSION AND CONCLUSION
We have introduced Resource Abstraction for multiagent

coordination problems. Our approach allocates available re-
sources into abstract groups to provide a more informative
signal to learning agents, significantly improving both learn-
ing speed and social welfare.

Experimental work was conducted on two benchmark do-
mains, an abstract congestion problem and a realistic traffic
congestion problem. The state-of-the-art solution to solve
multiagent congestion problems is a form of reward shaping
called difference rewards. We have shown that our novel
approach of resource abstraction requires significantly fewer
time steps per learning episode to achieve the highest social
welfare. This is important for real-world applications where
the availability of learning time is limited.

Furthermore, it has been empirically demonstrated in both
experimental domains that the proposed approach not only
performs better than the two baseline and the difference re-
wards approaches, but it achieves the highest possible or
near-highest system performance even in experiments in-
volving 1000 learning agents. Scalability is another strong
aspect of the proposed approach. It has been shown that
the proposed approach is robust against changes (e.g. car
accidents in the traffic congestion domain) and capable of
operating without 100% agent compliance.

It has been shown that when the number of learning steps
is limited, then in almost every case Resource Abstraction
outperforms the state-of-the-art irrespective of the abstrac-
tion grouping (Figures 1 and 4). When the number of learn-
ing steps is not limited, we suggest some guidelines that help
us define the abstraction grouping. Some experimentation is
still necessary but the following heuristics simplify this pro-
cess: a. three abstract groups typically suffice as this allows
more resources to be included in an abstract group, hence,
a larger penalty can be provided if the group becomes con-
gested b. group resources with similar characteristics e.g.
the same weightings; the effectiveness of this heuristic is
shown by A (non-contig) in Figures 7 - 12.

Moreover, it has been shown that if something unexpected
occurs (e.g. accidents in the traffic lane domain) it is highly
likely that there will be no need to refine the abstraction
grouping, as, given some additional exploration time, the
system can recover and still achieve the highest performance.

519



REFERENCES
[1] C. Claus and C. Boutilier. The dynamics of

reinforcement learning in cooperative multiagent
systems. In Proceedings of the AAAI Conference on
Artificial Intelligence, 1998.

[2] M. Colby and K. Tumer. Multiagent reinforcement
learning in a distributed sensor network with indirect
feedback. In Proceedings of the 2013 international
conference on Autonomous agents and multi-agent
systems, pages 941–948, 2013.

[3] S. Devlin, L. Yliniemi, K. Tumer, and D. Kudenko.
Potential-based difference rewards for multiagent
reinforcement learning. In Proceedings of the 13th
International Conference on Autonomous Agents and
Multiagent Systems, 2014.

[4] K. Malialis, S. Devlin, and D. Kudenko. Distributed
reinforcement learning for adaptive and robust
network intrusion response. Connection Science,
27(3):234–252, 2015.

[5] M. J. Matarić. Using communication to reduce locality
in distributed multi-agent learning. Journal of
Experimental and Theoretical Artificial Intelligence,
special issue on Learning in DAI Systems, Gerhard
Weiss, ed., 10(3):357–369, 1998.

[6] S. Proper and K. Tumer. Multiagent learning with a
noisy global reward signal. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2013.

[7] P. Stone. Learning and multiagent reasoning for
autonomous agents. In Proceedings of the
International Joint Conference on Artificial
Intelligence (IJCAI), pages 12–30, 2007.

[8] P. Stone and M. Veloso. Multiagent systems: A survey
from a machine learning perspective. Autonomous
Robots, 8(3):345–383, 2000.

[9] R. S. Sutton and A. G. Barto. Introduction to
Reinforcement Learning. MIT Press Cambridge, MA,
USA, 1998.

[10] K. Tumer and A. Agogino. Distributed agent-based air
traffic flow management. In Proceedings of the 6th
International Joint Conference on Autonomous Agents
and Multiagent Systems, 2007.

[11] K. Tumer, Z. Welch, and A. K. Agogino. Traffic
congestion management as a learning agent
coordination problem. In A. Bazzan and F. Kluegl,
editors, Multiagent Architectures for Traffic and
Transportation Engineering, pages 261–279. Lecture
notes in AI, Springer, 2009.

[12] C. J. Watkins and P. Dayan. Q-learning. Machine
learning, 8(3-4):279–292, 1992.

[13] K. R. W. Wolpert, David H. and K. Tumer. Collective
intelligence for control of distributed dynamical
systems. Europhysics Letters, 49(6), 2000.

520




