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ABSTRACT
Perkins’ Monte Carlo exploring starts for partially observable Markov
decision processes (MCES-P) integrates Monte Carlo exploring
starts into a local search of policy space to offer a template for
reinforcement learning that operates under partial observability of
the state. In this paper, we generalize the reinforcement learning
under partial observability to the self-interested multiagent setting.
We present a new template, MCES-IP, which extends MCES-P
by maintaining predictions of the other agent’s actions based on
dynamic beliefs over models. MCES-IP is instantiated to be ap-
proximately locally optimal with some probability by deriving a
theoretical bound on the sample size that in part depends on the
allowed error from the sampling; we refer to this algorithm as
MCESIP+PAC. Our experiments demonstrate that MCESIP+PAC
learns policies whose values are comparable or better than those
from MCESP+PAC in multiagent domains while utilizing much
less samples for each transformation.

1. INTRODUCTION
Action-value based reinforcement learning (RL) algorithms such

as Sarsa(λ) [1] and Q-learning [2] represent some of the best per-
forming RL methods in single-agent settings. If the state is partially
observable, the agent may simply use its previous observation as
the state of a Markov decision process but the learning may not
converge [3]. More preferably, the agent conditions its learning
on the recent history of observations [4]. Diverging from the tra-
ditional action-value that is computed for a state or observation
history, Perkins [5] utilizes action-value to evaluate a policy. A T -
step (deterministic) policy is a mapping from observation histories
of length up to T to an action. This less explored avenue has the
strong benefit of directly searching a discrete space of policies and
does not require the convergence of action-values for each state
before the policy is obtained.

Perkins’ Monte Carlo exploring starts for POMDP (MCES-P) [5]
obtains action-value for a policy from sampled trajectories, and uses
it to determine whether a transformed policy in the local neighbor-
hood of the current policy is better. Sutton and Barto [1] introduced
a refinement to Monte Carlo Q-learning allowing the agent to start
with a random state-action pair, and called it exploring starts. Here,
MCES-P transforms the policy using a random pair of observation
sequence and action to obtain a locally transformed policy. When
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instantiated with a probably approximately correct (PAC) style of
learning [5], MCES-P guarantees ε-local optimality with specified
probability if all transformations are explored until the resulting
policy stops improving.

The simplicity and theoretical guarantees of MCES-P motivate
its generalization to partially observable multiagent settings. We
generalize to an individual self-interested agent learning its policy in
a setting shared with other agents whose actions cannot be perfectly
observed. The generalization is suited to both cooperation and
noncooperation between agents. In this regard, this paper makes the
following contributions:
1. We introduce a novel RL template for partially observable multi-

agent settings: MCES-IP that aims to learn a policy for an agent
acting and planning in a setting shared with other agents.

2. We comprehensively show that MCESIP+PAC which addition-
ally maintains a prediction of likely actions that others performed
based on models converges to policies whose values are compa-
rable or better than the baseline MCES-P in stationary and non-
stationary environments with significantly less samples needed
per transformation.

3. Instantiations MCESP+PAC and MCES-IP both exhibit the
PAC guarantee that the policy on termination is ε-locally optimal
with a probability that depends on ε.

4. We present an observation history pruning method which elim-
inates transforming over rare experiences, trading some of the
PAC guarantees for significant decrease in run time.
We now discuss the minimum epistemological requirements for

the learning in MCES-IP. Without loss of generality, we assume
that the learning agent’s observation is decomposed into public and
private signals. While the public signal is common to all agents in
the environment, the private signal may differ between agents and is
perceived by the corresponding agent only. Of course, both public
and private signals may influence each agent’s action. A partial
observation function that gives the distribution over the joint private
signals conditioned on the joint actions is known to all agents in the
setting; the transition and reward functions of agents are not known.
Subsequently, the RL in MCES-IP is not completely model free.

While convergence to a local optimum is a less desirable guaran-
tee, nevertheless we may combine it with a method such as random
restarts to almost surely reach the global optimum. However, any
theoretical bounds on sample complexity may no longer hold.

2. RELATED WORK
Several approaches exist for optimizing behavior in uncertain

environments with or without the presence of other agents. In
the single-agent context, partially observable Markov decision pro-
cesses (POMDP) [6] consider optimal outcomes to strategies given
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an explicit model of the environment. In multiagent settings, de-
centralized POMDPs (DEC-POMDP) [7] and interactive POMDPs
(I-POMDP) [8] tackle cooperative and self-interested settings, re-
spectively, by considering the effect of other agents and their actions
on the state of the game. Solution methods have so far predomi-
nantly relied on explicit models of the mechanics of the environment
and the opponent.

Early model-free approaches for multiagent problems have been
explored in both cooperative and non-cooperative settings. Monte
Carlo Q-Alternating (MCQ-Alt) [9] approximates the dynamics of
an environment in the presence of another cooperating agent fol-
lowing a fixed policy. After arriving at a locally optimal policy, the
agent fixes its own policy and the other agent then learns. Other
Q-learning techniques are available for cooperative multiagent set-
tings where communication is not possible [10], and thus the joint
action-observation history is unknown. These approaches learn
action values based on local observations in the context of agents
that are learning concurrently or alternating in action. However, the
approach often converges to policies that are considerably subopti-
mal compared to exact solutions, while better performing heuristics
require providing hidden state information prior to learning.

Factored-value partially observable Monte Carlo planning [11]
produces policies for agents acting in cooperative multiagent con-
texts by exploiting actions whose sampled rewards dominate neigh-
boring actions via Q-learning. The approach scales well with the
number of agents, observations and states, depending on the method
used but requires noise-free, instant communication between agents
and does not apply to non-cooperative settings.

A Bayes-Adaptive I-POMDP (BA-IPOMDP) [12] maintains a
vector of latent models of environment mechanics and updates its
belief over these models online. In contrast to learning policies for
all agents, MCES-IP focuses on learning the policy of an individual
self-interested agent that shares its environment with cooperative
or noncooperative agents. It does not require explicit models of
the environment, which are potentially infinite in the case of BA-
IPOMDPs. Effectively, BA-IPOMDP casts model-free learning as
planning over an infinite space. Along similar lines, Hoang and
Low [13] show how a flat Dirichlet Multinomial distribution may be
utilized to represent the posterior in interactive Bayes-optimal RL
by an agent interacting with other self-interested agents. Differing
from our context, the state is assumed to be perfectly observable.

3. BACKGROUND
Perkins’ Monte Carlo Exploring Starts for POMDPs (MCES-

P) [5] offers a template for online model-free RL in a way that
differs substantially from traditional model-free methods such as Q-
learning. At its core, it hill climbs the space of neighboring policies,
which draws comparisons to policy iteration rather than the value
iteration of Q-learning. A random observation sequence, ~o, and
corresponding action are picked and the latter replaces the previous
action at ~o thereby transforming the policy. 1 This is analogous
to Sutton’s Monte Carlo exploring starts scheme [1] that picked a
random state to begin explorations.

To decide whether the transformed policy should be retained
instead of the original policy, each policy is simulated to obtain a
trajectory of actions, observations and rewards for T time steps:
τ = {a0, r0, o1, a1, r1, o2, a2, r2, . . . , oT−1, aT−1, rT−1}. Let

1Perkins’ MCES-P curbs the policies to actions contingent on a single
observation, ie., memory-less policies. Therefore, it initially picks a single
observation and action only. We extend the algorithm here to consider a
sequence of observations for better performance.

R(τ) =
T−1∑
t=0

γt rt be the discounted sum of rewards gathered in

trajectory τ where γ ∈ (0, 1) is the discount factor. Let Rpre−~o(τ)
and Rpost−~o(τ) be the sum of portions of R(τ) gathered before
and after the appearance of ~o in the trajectory, respectively. Notice
that the value of a policy may be written as,

Qπ u Eτ∼π[R(τ)]

= Eτ∼π[Rpre−~o(τ) +Rpost−~o(τ)]

= Eτ∼π[Rpre−~o(τ)] + Eτ∼π[Rpost−~o(τ)]

Comparing between a policy and its transformation at ~o is facilitated
by this decomposition: it allows focus on the difference in the value
of the second term obtained for the two policies as the value of
the first term remains unchanged because the changed action on
observing ~o cannot impact Rpre−~o(τ).

Subsequently, MCES-P proceeds by randomly picking an ob-
servation sequence at which to transform a policy, sufficiently sim-
ulating the original and transformed policies and updating their
Q-values with new information for comparison. The transformed
policy is adopted if its Q-value exceeds that of the original by ε both
updated across k samples. The algorithm terminates in the absence
of policy transformations for some time.

MCESP+PAC Perkins notes a particular instantiation of MCES-P
that utilizes Hoeffding’s inequality to ensure that a sufficient number
k of samples are taken so that a difference of given ε is observed
with probability 1 − δ or more. This instantiation theoretically
founded on Greiner’s probably approximately locally optimal learn-
ing system [14] derives the following value difference threshold
between the Q-values of the two policies based on the number of
samples, km and probability, δm at stage m:

ε(m, p, q) =


2T (Rmax −Rmin)

√
1
2p

ln
2(km−1)N

δm
if p = q < km

ε
2

if p = q ≥ km
+∞ otherwise

Here, p and q are the number of sampled trajectories simulated
from the original and transformed policies, respectively; these must
be equal for a comparison. Sample complexity km is derived as:

km ←
⌈

2
(2T (Rmax −Rmin))2

ε2
ln

2N

δm

⌉
and

δm ←
6δ

m2π2

where N is the size of the neighborhood of a policy; Rmax =
maxs,aR(s, a) and Rmin = mins,aR(s, a). If we allow the
policy to change by a single action only, then the size of N is
O(|A| |Ω|

T−1
|Ω|−1

), which is much less than the entire space of policies

O(|A|
|Ω|T−1
|Ω|−1 ); notice that the former is no longer exponential in

number of observations. The algorithm terminates if the current
policy remains better after km samples are reached for both the
current and transformed policies or if no neighboring policy exceeds

it by more than ε − 2T (Rmax − Rmin)
√

1
2p

ln 2(km−1)N
δm

when
the number of samples p is less than km. We note that the method
requires prior knowledge of the maximum and minimum rewards
across all states and actions, Rmax and Rmin, respectively.

An appealing property of MCESP+PAC is that the policy on
termination is guaranteed to be ε-locally optimal. In other words,
no neighboring policy exists that exceeds the current policy in value
greater than ε.
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4. RL IN MULTIAGENT SETTINGS
In our review of related work as outlined in Section 2, we did not

find any algorithm for truly model-free RL in partially observable
multiagent settings (technically our setting is a partially observable
stochastic game). 2 Subsequently, MCES-P offers an appealing
template for generalizing to multiagent settings with the potential
to fill this wide gap. While we focus on learning by self-interested
agents situated in a multiagent setting in this paper, MCES-P is
sufficiently generic for extension to learning the joint policies of
multiple agents in cooperative settings as well – an investigation
that we defer to future work.

Observe that the MCES-P template briefly discussed in Section 3
may be utilized almost as is in a multiagent setting. Therefore,
we begin by exploring this approach followed by presenting a new
generalization of MCES-P that improves on it significantly.

4.1 MCESP+PAC in Multiagent Settings
As we mentioned previously, the template offered by MCES-P

continues to remain viable for a learning agent i when we generalize
from single- to multi-agent settings. Toward this end, we reproduce
Perkins’ algorithm below in Algorithm 1. Let πi be the initial seed
policy and πi ← (~oi, ai) be this policy but transformed to perform
action ai on observing ~oi; the latter denotes a neighboring policy.

Algorithm 1 MCES-P
Require: Q-value table initialized; initial policy πi that is greedy w.r.t.

Q-values; learning rate schedule α; horizon T ; and error ε
1: c~oi,ai ← 0 for all ~oi and ai
2: m← 0
3: repeat
4: Pick some observation history ~oi and action ai
5: Modify πi to πi ← (~oi, ai)
6: Generate trajectory τ of length T according to πi ← (~oi, ai) (this

involves simulating the implicit policies of other agents as well)
7: Qπi←~oi,ai ← (1 − α(m, c~oi,ai )) Qπi←~oi,ai +

α(m, c~oi,ai ) Rpost−~oi (τ)
8: c~oi,ai ← c~oi,ai + 1
9: if maxa′i

Qπi←~oi,a′i
−Qπi > ε(m, c~oi,ai , c~oi,πi(~oi)

) then
10: πi(~oi)← a′i where a′i ∈ arg maxQπi←~oi,a′i
11: m← m+ 1
12: for all ~oi, ai do
13: c~oi,a ← 0
14: until termination

In instantiating the above template for PAC bounds, we assume
that the other agent is guided by a fixed policy or a fixed distribution
over policies (i.e., mixed strategy). This ensures that the sampling
distribution is fixed and Hoeffding’s inequality continues to apply.
We point out that this assumption differentiates our problem from
the traditional multiagent RL [15] where all agents are learning
simultaneously and therefore the learning problem is not stationary.

Given the above, MCESP+PAC in multiagent settings may face
the same four types of errors due to sampling as those faced in
single agent settings (see proof of Theorem 1 in Appendix). How-
ever, the error due to sampling and the sample complexity differ
because of the presence of other agents although the size of the
policy neighborhood remains the same. Let Λ(πi, π

′
i) be the upper

bound on the range of the difference between the action-values of
πi and some other policy π′i. For simplicity of presentation, we
consider one other agent j in the environment. Let Ri,max now be
defined as, Ri,max , maxs,ai,aj Ri(s, ai, aj) and analogously for
Ri,min , mins,ai,aj Ri(s, ai, aj). Then, we get,
2Note that MCQ-Alt [9] learns an estimate of the model from samples as an
intermediate step and is therefore quasi model based.

Λ(πi, π
′
i) , max

τ
(Qπi −Qπ′i)−min

τ
(Qπi −Qπ′i)

≤
T−1∑
t=0

{(Ri,max −Ri,min)− (Ri,min −Ri,max)}

=

T−1∑
t=0

2(Ri,max −Ri,min) = 2T (Ri,max −Ri,min)

(1)

Consequently, the threshold for comparison at stage m becomes:

ε(m, p, q) =


Λ(πi, π

′
i)
√

1
2p

ln
2(km−1)N

δm
if p = q < km

ε
2

if p = q ≥ km
+∞ otherwise

and the sample complexity is:

km =

⌈
2

(Λ(πi, π
′
i))

2

ε2
ln

2N

δm

⌉
while the probability δm remains the same as in Section 3. No-
tice that in so called “neutral settings” where agent i’s reward does
not depend on j’s action (although the state is still impacted by
j’s action) Ri,max and Ri,min collapse into Rmax and Rmin, re-
spectively causing no change in the PAC bounds from Section 3.
However, in competitive settingsRi,max is often greater thanRmax
whereasRi,min tends to be smaller than its counterpart due to which
the sample complexity is higher or the error is greater for the same
number of samples.

MCESP+PAC terminates if there has been no policy change
when km samples are reached or if no neighboring policy exceeds
the current policy in action value by more than ε − Λ(πi, π

′
i) ·√

1
2p

ln 2(km−1)N
δm

for lesser samples.
Theorem 1 shows that MCESP+PAC in partially observable mul-

tiagent settings will terminate and converge to an ε-locally optimal
policy.

THEOREM 1 (LOCAL OPTIMALITY OF MCESP+PAC).
Instantiation MCESP+PAC incrementally produces a series of
policies π1

i , π2
i , . . . , πmi , such that each πn+1

i is a local neighbor
of πni and with probability at least 1− δ:

1. Each policy πn+1
i has an expected value strictly greater than

its predecessor, πni where 1 ≤ n ≤ m− 1;

2. Final policy πmi returned by MCESP+PAC is ε-locally opti-
mal such that there is no neighbor of πmi given our transfor-
mation procedure whose expected value exceeds that of πmi
by more than ε.

Moreover, MCESP+PAC will terminate with probability 1 if N
is finite.

The full proof of this theorem is given in the Appendix. It presents
four types of errors that are possible due to sampling. As part
of the proof, the expressions for ε(m, p, q), km and δm are also
established.

4.2 MCES-IP Template for RL
While Theorem 1 is appealing, a limitation of MCESP+PAC

is that the required sample size is very large. For example, for an
ε of 0.05 and probability δ = 0.1 the required sample size km is
320,200 for the small two-agent competitive Tiger problem. Can we
significantly reduce this alarming sample complexity and if so what
is the trade off?
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A key insight may allow us to mitigate the sample complexity:
If we can predict the other agent’s actions, then we may simply
optimize in that specific context. Toward this, we partially relax the
model-free characteristic of the RL to obtain savings in samples.
We may divide agent i’s observations into those that are public and
those that are private. The former type are public signals that are
shared between agents while the latter are signals privately observed
by an agent. This division is without loss of generality because
the set of public observations may be empty if agents have private
observations only and the set of private observations is empty if only
public observations are obtained.

Next, let the private monitoring at time t convey information to
the agent about the other agent’s action at t− 1 albeit noisily while
the public signal provides information about the common state of
the system. We argue that this specificity is often seen in multiagent
problems. For example, agents in the multiagent Tiger problem hear
growls that inform about the location of the tiger and each agent
may also hear a creak from the left or right, or do not hear a creak
indicating the door, if any, that was opened by the other agent.

As a final step, we depart from the completely model-free setting
of MCES-P and let a joint private observation function that models
the information content of private observations only be common
knowledge. The agents are not aware of any other model parameters.

Given the setup above, agents in the MCES for interactive POMDP
(MCES-IP) template start with a prior distribution over possible
models of the other agent and update the prior as they receive private
observations. As the agent acts and observes, a sequence of beliefs
are obtained and the agent utilizes both sequences: observation
sequence and belief sequence to decide on an action. We show the
MCES-IP template in Algorithm 2.

Algorithm 2 MCES-IP
Require: Q-value table initialized; initial policy, πi, that is greedy w.r.t.

Q-values; prior on set of models Mj ; learning rate schedule α; horizon
T ; and error ε

1: c~aj
~oi,ai

← 0

2: m← 0
3: repeat
4: Pick some observation history, ~oi, and ai
5: Modify πi to πi ← (~oi, ai)
6: Generate trajectory τ of length T according to πi ← (~oi, ai)

7: Generate belief sequence~bi based on τ
8: Obtain most probable action sequence ~aj from~bi
9: Q

~aj
πi←~oi,ai

← (1−α(m, c
~aj
~oi,ai

)) ·Q~aj
πi←~oi,ai

+α(m, c
~aj
~oi,ai

) ·
Rpost−~oi (τ)

10: c
~aj
~oi,ai

← c
~aj
~oi,ai

+ 1

11: if maxa′i
Q
~aj
πi←~oi,a′i

−Q~ajπi
> ε~aj (m, c

~aj
~oi,ai

, c
~aj
~oi,πi(~oi)

) then

12: πi(~oi)← a′i where a′i ∈ arg maxa′i
Q
~aj
πi←~oi,a′i

13: m← m+ 1
14: for all ~oi, ai,~aj do
15: c

~aj
~oi,ai

← 0

16: until termination

MCES-IP generally follows the procedure of MCES-P. It builds
on the latter by additionally generating a belief sequence~bi using
the actions and observations in a trajectory (line 7); each belief is
a distribution over a pre-defined set of models of the other agent.
As the space of possible belief sequences is continuous, MCES-IP
picks the most-probable model from each belief and the correspond-
ing predicted action, to obtain a corresponding action sequence ~aj
(line 8). Q-values and update counts are now indexed using this
action sequence (lines 9-10). In this way, action values of polices

are specific to predicted actions of the other agent, which allow a
more informed probabilistic hill climbing in multiagent settings.

Belief sequence, ~bi, is generated as follows. A trajectory τi is
{a0
i , r

0
i , 〈o1, ω1

i 〉, a1
i , r

1
i , 〈o2, ω2

i 〉, a2
i , r

2
i , . . . , 〈oT−1, ωT−1

i 〉, aT−1
i ,

rT−1
i }. Notice that each observation in the trajectory is composed of

public and private signals; denote ~oi , 〈~o, ~ωi〉. LetM t
j be a discrete

set of j’s models at time step t, where mt
j ∈M t

j is: mt
j , 〈htj , πj〉,

htj is j’s action-observation history of length t which when given as
input to j’s policy πj produces the predicted action at time t. Agent
i’s belief bi is a distribution over Mj updated based on i’s action
and observation as given below:

b′i(m
t+1
j |a

t
i, o

t+1, ωt+1
i , bi) =

∑
mt

j∈M
t
j

bi(m
t
j)
∑
atj∈Aj

Pr(atj |mt
j)

×Oi(ωt+1
i |ati, atj) δK(ht+1

j ,APPEND(htj , a
t
j , o

t+1)) (2)

As a part of updating its belief, i must first update its models of j
and in particular, the action-observation history contained in each
model using the predicted action atj and public observation ot+1;
this is performed by APPEND. Kronecker delta function, δK , is 1 if
an updated model matches the one in mt+1

j otherwise it is 0. Private
observation function Oi is the marginal of the joint, and it allows
using the private signal to weight predicted actions and by backward
inference the models that generated the actions. This likelihood
is then propagated forward to the updated model, mt+1

j . As such,
Eq. 2 is a sophisticated Bayesian belief update.

A sequence of beliefs~bi is then generated by updating the uniform
prior with the action-observation pairs in a trajectory using Eq. 2;
thus the length of this sequence is T . We may pick the most probable
model from each belief in the sequence, arg maxmj bi(mj), and
get the model-predicted action, arg maxaj Pr(aj |mj), to obtain
the action sequence ~aj .

MCESIP+PAC We instantiate Algorithm 2 to obtain MCES-IP
with PAC bounds, which we denote as MCESIP+PAC. For this,
we assume that the error is due to sampling trajectories only and
that the monitoring is perfect, ie., private signals perfectly reveal j’s
action. We discuss the effect on the bounds due to observation noise
later in this section. For a given error ε and probability δ let,

ε~aj (m, p, q) =


Λ~aj (πi, π

′
i)
√

1
2p

ln
2(km−1)N

δm
if p = q < km

ε
2

if p = q ≥ km
+∞ otherwise

where

km =

⌈
2

(Λ~aj (πi, π
′
i))

2

ε2
ln

2N

δm

⌉
and

δm =
6δ

m2π2

Here, Λ~aj (πi, π
′
i) is an upper bound on the range of the difference

in action-values between two policies given j’s action sequence
is ~aj . Let Raji,max = maxs,ai Ri(s, ai, aj) and analogously for
R
aj
i,min; these specific values are assumed to be known. Then, we

get:

Λ~aj (πi, π
′
i) = max

τ

(
Q
~aj
πi −Q

~aj
π′i

)
−min

τ

(
Q
~aj
πi −Q

~aj
π′i

)
≤
∑
t∈T

(
R
atj
i,max −R

atj
i,min

)
−
(
R
atj
i,min −R

atj
i,max

)
=
∑
t∈T

2

(
R
atj
i,max −R

atj
i,min

)
(3)
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We note the following key proposition that indicates the benefit
of predicting the other agent’s actions on sample complexity albeit
at the expense of the belief update run time.

PROPOSITION 2 (REDUCED SAMPLE COMPLEXITY). For any pre-
dicted action sequence, ~aj ,

Λ~aj (πi, π
′
i) ≤ Λ(πi, π

′
i)

where Eqs. 1 and 3 define Λ(πi, π
′
i) and Λ~aj (πi, π

′
i), respec-

tively. The proof of this proposition is straightforward and is given
in the Appendix. Subsequently, Proposition 2 entails that the sample
size bound km for MCESIP+PAC is also less than or equal to the
corresponding sample size bound for MCESP+PAC. The effect is
significant because km grows quadratically with Λ. On the other
hand, the Q-values table expands significantly with up to |Ω|

T−1
|Ω|−1

values for each i’s policy or its transformation. As such, the re-
duced sample bound of MCESIP+PAC must be less by a factor
of |Ω|

T−1
|Ω|−1

in the worst case to be effective. This is often the case
as we demonstrate for the two-agent Tiger problem where km for
MCESIP+PAC is as low as 106,822 that is almost three times less
than that for MCESP+PAC.

If private signals provide perfect information about j’s actions,
then MCESIP+PAC terminates when,

Q
~aj
πi←~oi,a′i

< Q
~aj
πi + ε− ε~aj (m, c

~aj
~oi,ai

, c
~aj
~oi,πi(~oi)

)

for all ~oi, a′i 6= πi(~oi), and we have encountered at most |Ω|
T−1
|Ω|−1

many distinct ~aj in the trajectories for each ~oi, a′i pair. Under the
same assumption of perfect monitoring, for the comparison thresh-
old, sample bound and probability as defined above, the following
theorem obtains for MCESIP+PAC.

THEOREM 3 (LOCAL OPTIMALITY UNDER PERFECT MONITOR-
ING). Template MCESIP+PAC under perfect monitoring incremen-
tally produces a series of policies π1

i , π2
i , . . . , πmi , such that each

πq+1
i is a local neighbor of πqi and with probability at least 1− δ:

1. Each policy πq+1
i has an expected value strictly greater than

its predecessor, πqi where 1 ≤ q ≤ m− 1;

2. Final policy, πmi returned by MCESIP+PAC is ε-locally
optimal such that there is no neighbor of πmi given our trans-
formation procedure whose expected value exceeds that of
πmi by more than ε.

Moreover, MCESIP+PAC terminates with probability 1 if N is
finite.

The proof of this theorem proceeds analogously to the proof for
Theorem 1, with Λ replaced with Λ~aj .

We can generalize the above results on MCESIP+PAC for the
case of imperfect monitoring – when the probability of error in
estimating ~aj is known, say δe. In this case, the agent may place Q-
samples in the wrong Q~aj bins (see line 9 of Algorithm 2), leading
to non-identically distributed samples in a bin. Fortunately, given
δe we may generalize Theorem 3 to the case of independent but
non-identically distributed samples using a more general form of
Hoeffding’s inequality. Analogously to Eq. 3, let Λ̄~aj be an upper
bound on the range of differences in action-values for all j’s action
sequences that are different from ~aj . Then for the case of p = q <

km, we redefine ε~aj (m, p, q) as,

ε~aj (m, p, q) =

√
(1− δe)(Λ~aj )2 + δe(Λ̄

~aj )2

√
1

2p
ln

2(km − 1)N

δm

where km is redefined as

km =

⌈
2((1− δe)(Λ~aj )2 + δe(Λ̄

~aj )2)

ε2
ln

2N

δm

⌉
Algorithm 2 requires a slight modification for this case. For

convenience, let ζ~aj = maxa′i Q
~aj
πi←~oi,a′i

−Q~ajπi . Then, line 11 of
Algorithm 2 changes to the following:

(1− δe)ζ~aj + δeζ̄
~a′j > (1− δe)ε~aj + δeε̄

~a′j

The implicit assumption above is that whenQ~aj receives a wrong
sample meant for bin ~a′j , the action sequence is equally likely to be
any ~a′j 6= ~aj . Therefore, ζ̄~a

′
j is the mean of ζ~a

′
j for all ~a′j 6= ~aj seen

so far, and analogously ε̄~a
′
j is also the mean. Notice that insisting on

the test of line 11 for every ~aj before the current policy is changed,
would be a stronger form of this test, and hence also sufficient.
Finally, we note that when δe = 0, we recover MCESIP+PAC for
perfect monitoring as a special case of this setting.

5. PRUNING POLICY SEARCH SPACE
Theorems 1 and 3 require exploring all local transformations of

a policy for establishing local optimality. However, some of these
transformations prescribe differing actions in response to observa-
tion sequences that are not likely to occur. Yet, we are required
to obtain km samples of trajectories involving such observation
sequences or establish a significant difference in action-values for
less numbers of such samples. This contributes significantly to long
run times of the algorithms as we noticed in our experiments. Sub-
sequently, we seek ways to remove such rare observation sequences
from consideration thereby pruning the policy search space. As
these sequences are relatively much less likely they also contribute
less to the expected value of a policy, but not considering them
nonetheless introduces regret that we seek to compute.

Ignoring a different action at some observation sequence ~oi is
regrettable because we are foregoing the possibility of improving
the expected value of i’s policy. Of course, a less likely observation
sequence may not add much to the expected value of the current
policy. Nevertheless, let φ be a user-defined bound on allowable
regret. By avoiding transforming on ~oi, we are foregoing at most the
largest post-~oi rewards; specifically this regret is upper bounded by
maxτ Rpost−~oi(τ) − minτ Rpost−~oi(τ). Regret on the expected
value of the policy is bounded by

regret~oi ≤ Pr(~oi;πi, πj)
(

max
τ

Rpost−~oi(τ)−min
τ
Rpost−~oi(τ)

)
= Pr(~oi;πi, πj) (T − len(~oi)) (Ri,max −Ri,min)

(4)

Here, Pr(~oi;πi, πj) is the likelihood of the observation sequence
~oi whose computation depends on the actions prescribed by both
agents’ policies, state transition and observation functions; rewards
Ri,max and Ri,min are as defined previously. We may normalize
the regret to obtain a proportion between 0 and 1 as, ¯regret~oi =

regret~oi
T (Ri,max−Ri,min)

.
Of course, not knowing πj and the model parameters implies that

we cannot compute Pr(~oi;πi, πj) exactly. Hence, as a first step in
this paper, we settle for a crude approximation where Pr(~oi;πi, πj)
is estimated by the fraction of times ~oi occurs in the km or more
samples generated so far. This requires keeping a count of each
observation sequence encountered in the trajectories.

Let P be the set of i’s observation sequences that will be avoided.
If a bound φ on the regret is given by the user, we may obtain P in a
straightforward way: Sort the set of all observation sequences of all
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Algorithm 3 MCES-IP_Prune
Require: Q-value table initialized; initial policy, πi, that is greedy w.r.t.

Q-values; prior on set of models Mj ; learning rate schedule α; horizon
T ; error ε; and regret bound φ

1: c~aj
~oi,ai

← 0, c~oi ← 0 for all ~oi, ai, and aj
2: m← 0
3: P ← ∅
4: repeat
5: Pick some observation history ~oi and action ai
6: c~oi ← c~oi + 1
7: if ~oi /∈ P then
8: Modify πi to πi ← (~oi, ai)
9: else

10: Go to line 5
11: Generate trajectory τ of length T according to πi ← (~oi, ai)

12: Generate belief sequence~bi based on τ
13: Obtain most probable action sequence ~aj from~bi
14: Q

~aj
πi←~oi,ai

← (1−α(m, c
~aj
~oi,ai

)) ·Q~aj
πi←~oi,ai

+α(m, c
~aj
~oi,ai

) ·
Rpost−~oi (τ)

15: c
~aj
~oi,ai

← c
~aj
~oi,ai

+ 1

16: if maxa′i
Q
~aj
πi←~oi,a′i

≥ Q~ajπi
+ ε~aj (m, c

~aj
~oi,ai

, c
~aj
~oi,πi(~oi)

) then

17: πi(~oi)← a′i
18: m← m+ 1
19: for all ~oi, ai,~aj do
20: c

~aj
~oi,ai

← 0

21: if
∑

~oi∈P∪~oi

¯regret~oi ≤ φ+ ρ(
∑
~oi
c~oi ) then

22: P ← P ∪ ~oi
23: until termination

lengths by their frequency of occurrence in ascending order. Then,
add a sequence into P beginning with the least frequent and moving
up the ordering such that,

∑
~oi∈P

¯regret~oi ≤ φ. Consequently, a

bound that is more loose would allow disregarding more observation
sequences to meet it and thereby prune a larger portion of the search
space. Alternately, the sorting is not necessary and we may simply
pick an observation sequence at random and check if adding it to P
would cause the cumulative normalized regret to exceed φ.

The pruning mechanism described previously may be incorpo-
rated into both the MCES-P and MCES-IP templates. Algorithm 3
outlines how it may be utilized with MCES-IP. Two additions can
be observed. Lines 7-10 make a determination if the current ~oi is in
the set P of sequences that will not be considered (initialized to the
empty set), and if not policy πi is locally transformed at ~oi. Lines
21-22 add the observation sequence ~oi into set P if the cumulative
normalized regret due to all observation sequences in P including ~oi
remains less than or equal to given bound φ+ ρ(

∑
~oi
c~oi), where

ρ(i) =

{
0 i ≥ k
+∞ otherwise

Thus, P remains empty unless a reasonable number of samples are
obtained. In the case of MCESIP+PAC instantiation of the template,
k could be simply set to the derived sample bound km

2
.

6. EXPERIMENTS
We implement MCESP+PAC and MCESIP+PAC to obtain con-

verged policies for two strategic and noncooperative multiagent do-
mains. We first experiment with a competitive, multiagent version
of the Tiger problem [8]. Our second domain is a 3×2 autonomous
unmanned aerial vehicle (AUAV) reconnaissance domain [16]. We
set up the AUAV domain by beginning every round with the AUAV
in the bottom-left sector and the fugitive in the top-right of a 3×2
grid, and all sectors in the leftmost column are considered safe. Each

agent has 3 actions: the AUAV may move left, right, or up, and
the fugitive may move left, right, or down. Both agents receive 1
of 4 noisy public observations, representing whether both agents
are East or West of each other, North or South of each other, in
the same sector, or none of these. The subject agent, which is the
AUAV, additionally receives 1 of 3 noisy private observations each
correlated with an action the opponent takes. A third domain is the
money laundering (ML) problem [17] where a blue team seeks to
confiscate illicit money that the opponent red team is laundering.
The red team can move money from the initial state to a series of
placement states (banks and insurance), to layering states (offshore
accounts and shell companies), to integration states (casinos and
real estate), and to the safe clean pot. The blue team may place a
sensor at each of these locations or confiscate the illicit funds. Each
agent receives a noisy public observation indicating whether the
money and sensor are in the same location, in the same laundering
state, or if neither are the case. The blue team also receives a noisy
observation of the last action of the red team.

Table 1 summarizes the domain statistics and parameter settings.
For all domains and both methods, each agent has a 15% chance of
receiving a noisy public and private observation. The opponent in
both games follows a single policy (stationary environment) or fixed
distribution over multiple policies (nonstationary environment).

Domain Specifications

Multiagent Tiger
ε = 0.05, δ = 0.1, φ = 0.15, T = 3,
|Ω| = 2, |Ai| = 3, |Aj | = 3, |Πj | = 14

3×2 AUAV
ε = 0.1, δ = 0.1, φ = 0.2, T = 3,
|Ω| = 4, |Ai| = 3, |Aj | = 3, |Πj | = 4

Money Laundering
ε = 0.1, δ = 0.15, φ = 0.2, T = 3,
|Ω| = 4, |Ai| = 4, |Aj | = 5, |Πj | = 8

Table 1: Parameter configurations for the three problem domains.

We simulate i’s policies with opponent j following either a single
policy or a mixture of two policies. These policies are picked from
a predefined set Πj . As per the policy space specified in Table 1,
105 games of the multiagent Tiger problem, 9 of the 3×2 AUAV
problem, and 13 of ML comprise the data set.

First, we show that MCESP+PAC and MCESIP+PAC demon-
strates the PAC guarantee of monotonically increasing successive
transformations. Figure 1 illustrates three example runs and the
values for MCESP+PAC and MCESIP+PAC given the same op-
ponent. Different runs undergo varying number of transformations
with some policies not transforming at all because they are ε-locally
optimal initially itself. As shown in Fig. 1, each successive trans-
formation results in a higher value and in no case is the final policy
lower in value than the initial policy as we should expect. In ev-
ery case, MCESP+PAC requires more samples to transform than
MCESIP+PAC.

Second, Table 2 lists the mean of the theoretical sample bound
km across the different stages m over all runs and the mean of
the effective number of samples over all runs that were utilized by
both methods. In validation of our theoretical result, MCESIP+PAC
requires remarkably fewer samples to transform per action sequence,
around half in multiagent Tiger, about a quarter in 3×2 AUAV, and
nearly a tenth in Money Laundering. Additionally, the bound on km
is also significantly less compared to the bound for MCESP+PAC.
Due to stochasticity in the simulations and finite sampling bounds,
MCESP+PAC and MCESIP+PAC may deviate in transformation
paths. However, in over 80% of the runs, both result in the same
converged policy with MCESIP+PAC converging on average under
half the number of samples taken by MCESP+PAC.

Finally, observation sequence pruning plays a crucial role in
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Figure 1: Example policy transformation paths with intermediate values for 3 different opponents in the multiagent Tiger problem. The right most
transformation paths are for an opponent with mixed strategy.

Domain Method Policy
Mean # of samples

per transform
Mean

bound on km

Tiger
MCESP+PAC Single 156,328 ± 21,012 265,948 ± 7,909

Mixed 219,057 ± 9,521 263,565 ± 6,101

MCESIP+PAC Single 72,740 ± 5,963 117,590 ± 3,309
Mixed 117,504 ± 6,678 119,313 ± 1,089

3×2 AUAV
MCESP+PAC Single 32,397 ± 2,816 91,443 ± 637

Mixed 42,126 ± 1,689 96,328 ± 118

MCESIP+PAC Single 6,437 ± 68 20,397 ± 206
Mixed 19,499 ± 1,304 22,763 ± 169

ML
MCESP+PAC Single 20,717 ± 2,418 34,726 ± 617

Mixed 20,247 ± 4,974 35,612 ± 490

MCESIP+PAC Single 1,947 ± 330 24,172 ± 448
Mixed 3,174 ± 536 24,347 ± 482

Table 2: Mean effective sample size and theoretical bound across
the stages for the three problem domains, stratified over method and
whether the opponent follows a single policy or a mixed set of policies.

Pruning Metric Multiagent Tiger 3×2 AUAV ML

Without Neighborhood 128 470 636
Total km 15,893,387 3,704,396 18,911,460

With Neighborhood 26 32 76
Total km 2,093,328 624,057 2,259,860

Table 3: Neighborhood size and total km values for all the domains
using their respective parameters in Table 1, with and without pruning
for both MCESP+PAC and MCESIP+PAC. Note that the total bound
on samples reduces by almost an order of magnitude.

improving the scalability of MCESP+PAC and MCESIP+PAC,
dramatically reducing the search space and run time while minimiz-
ing the impact on incurred regret. We list the mean of the required
total km values across all observation sequences for both problem
domains in Table 3, both with and without pruning. As the policy
search space for both methods is the same, the regret due to pruning
the search space does not depend on the method used. Observation
sequence pruning benefits both methods equally in reducing the
policy search space as we demonstrate in Table 3.

Each neighborhood is calculated with a horizon of 3. For the mul-
tiagent Tiger problem, the size of the observation sequence space per
round is 6 (2 public× 3 private observations) with 3 possible actions,
resulting in a maximum neighborhood of 128. Given a regret bound
of 0.15, 34 of 43 distinct observation sequences are eliminated on
average, resulting in a neighborhood of 26. For 3×2 AUAV, the
observation space is 12 (4 public × 3 private observations) with 3
actions, resulting in a neighborhood of 470. On average, 146 of 157
observation sequences are pruned for a regret bound of 0.2, leaving
32 neighbors. ML’s observation space is 9 (3 public × 3 private
observations) with 7 actions, resulting in a neighborhood of 636.
With a regret bound of 0.2, 80 of 91 sequences are pruned leaving
76 neighbors.

7. CONCLUDING REMARKS
MCES-P offers a template for model-free RL in partially observ-

able settings that differs from traditional Q-learning. It’s appealing
because it may be instantiated in different ways, resulting in al-
gorithms with differing behavior. In this paper, we generalized
MCES-P with PAC bounds to self-interested multiagent settings
presenting a model-free RL technique. We exploited the insight that
modeling the other agent should catalyze learning leading to a new
algorithm, MCESIP+PAC.

MCESIP+PAC dramatically reduces the sample complexity of
MCESP+PAC with reductions on sample bounds and empirical
sample counts ranging between 50% to 75% less than MCESP+PAC.
In nearly every case, MCESIP+PAC is able to achieve the same
optima as MCESP+PAC despite the fraction of samples taken. We
additionally introduced observation sequence pruning, a method-
ology that significantly improves run time by reducing the policy
search space with bounded regret. We observed over 80% reduction
in sample requirement for our domains while introducing a regret
between 0.15 and 0.2. Our future work involves extending MCES-
P to learning the joint policies in a cooperative setting and analyzing
its theoretical properties.
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APPENDIX
Proof of Theorem 1 MCESP+PAC in the multiagent setting allows
for a PAC-style guarantee of ε-local optimality. To show that the
total error for MCESP+PAC is bounded by the user-defined ε with
probability 1− δ, we must first define the types of errors that can
occur in selecting dominating neighboring policies and terminating
when none is found after sampling. In this respect, our proof follows
that of Greiner [14].

We defineN (π) as the set of neighboring policies of π. A policy
is considered a neighbor if it differs from π by only one action for
all observation sequences.
1. After seeing p samples (where p < k), MCESP+PAC selects

some π′ ∈ N (π), as π′ appears higher value than π, but it is not

2. After seeing p samples (where p < k), MCESP+PAC cannot
find a π′ ∈ N (π) where π′ appears higher value than π, but
there is one

3. After seeing all km samples, MCESP+PAC selects some π′ ∈
N (π), as π′ appears higher value than π, but it is not

4. After seeing all km samples, MCESP+PAC cannot find a π′ ∈
N (π) where π′ appears higher value than π, but there is one
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Recall ε and km for MCESP+PAC are as follows.

ε∗(m, p, q) = Λ(πi, π
′
i)

√
1

2p
ln

2(km − 1)N

δm

km =

⌈
2

(Λ(πi, π
′
i))

2

ε2
ln

2N

δm

⌉
Also, let E[π] be the reward of the policy π, in the context of

other agents and the environment, which the Q-value approximates.

anm =Pr
[
∃π′i ∈ N (πmi ) : (Qπ

′
i −Qπ

m
i ) ≥ ε(m, cπ

′
i
i , c

πm
i
i )

and E[π′i] < E[πmi ]
]

bnm =Pr
[
∃π′i ∈ N (πmi ) : (Qπ

′
i −Qπ

m
i ) < ε− ε(m, cπ

′
i
i , c

πm
i
i )

and E[π′i] > E[πmi ] + ε
]

cm =Pr
[
∃π′i ∈ N (πmi ) : (Qπ

′
i −Qπ

m
i ) ≥ ε

2

and E[π′i] < E[πmi ]
]

dm =Pr
[
∃π′i ∈ N (πmi ) : (Qπ

′
i −Qπ

m
i ) <

ε

2

and E[π′i] > E[πmi ] + ε
]

We represent each of the probabilities above as disjoint sets over
neighbors and the agents’ policies. For example,N<

i (πmi ) = {πi ∈
N (πm)|E[π′i] < E[πmi ]}.

anm = Pr
[ ∨
π′i∈N

<
i (πm

i )

(Qπ
′
i −Qπ

m
i ) ≥ ε(m, cπ

′
i
i , c

πm
i
i )

]
bnm = Pr

[ ∨
π′i∈N

>
i (πm

i )

(Qπ
′
i −Qπ

m
i ) < ε− ε(m, cπ

′
i
i , c

πm
i
i )

]
cm = Pr

[ ∨
π′i∈N

<
i (πm

i )

(Qπ
′
i −Qπ

m
i ) ≥ ε

2

]
dm = Pr

[ ∨
π′i∈N

>
i (πm

i )

(Qπ
′
i −Qπ

m
i ) <

ε

2

]
Considering every possible π′ in πm’s neighborhood leads to the

following summation.

anm≤
∑

π′i∈N
<
i (πm

i )

Pr[(Qπ
′
i −Qπ

m
i ) ≥ ε(m, cπ

′
i
i , c

πm

i , km)]

≤
∑

π′i∈N
<
i (πm

i )

Pr[(Qπ
′
i −Qπ

m
i ) ≥ (E[π′i]− E[πmi ]) + ε(m, c

π′i
i , c

πm

i )]

≤
∑

π′i∈N
<
i (πm

i )

exp

−2p

(
ε(m, c

π′i
i , c

πm
i
i )

Λ(π′i, π
m
i , πj)

)2
 (5)

=
|N<

i (πmi )|δm
2(km − 1)|N (πmi )|

Equation 5 follows from Hoeffding’s Inequality, where (Qπ
′
i −

Qπ
m
i ) is the sample average of E[π′i] − E[πmi ]. We reduce 5 by

utilizing ε when p = q < km. bnm follows,

bnm ≤
∑

π′i∈N
>
i (πm

i )

Pr
[
(Qπ

′
i −Qπ

m
i ) < ε− ε(m, c

π′i
i , c

πm

i , km)
]

≤ |N>
i (πmi )|δm

2(km − 1)|N (πmi )|

The other two error types, where p = km, follow similarly but
substitute km for n.

cm ≤
∑

π′i∈N
<
i (πm

i )

Pr
[
(Qπ

′
i −Qπ

m
i ) ≥ ε

2

]
(6)

≤
∑

π′i∈N
<
i (πm

i )

exp

{
−2km

(
ε/2

Λ(π′i, π
m
i , πj)

)2
}

=
|N<

i (πmi )|δm
2|N (πmi )|

(7)

where Eq. 7 is obtained by substituting km with its derived value in
the previous expression and reducing.

dm,πj ≤
∑

π′i∈N
>
i (πm

i )

Pr
[
(Qπ

′
i −Qπ

m
i ) <

ε

2

]
≤ |N

>
i (πmi )|δm

2|N (πmi )|

The sum total of the error is as follows.
km−1∑
n=1

[anm + bnm] + cm + dm

=

km−1∑
n=1

[
|N<

i (πmi ) + |N>
i (πmi )|

|N (πmi )|
δm

2(km − 1)

]

+
|N<

i (πmi )|+ |N>
i (πmi )|

N (πmi )|
δm
2

= δm

Over all possible transformations, the total error is bounded by δ.
∞∑
m=1

δm =

∞∑
m=1

6δ

m2π2
=

6δ

π2

∞∑
m=1

1

m2
=

6δ

π2

π2

6
= δ

Proof of Proposition 2 Consider the following expanded definition
of Prop. 2.

T∑
t=0

[max
s
{R(atπ′i , a

t
j , s)−R(atπk

i
, atj , s)}−

min
s
{R(atπ′i , a

t
j , s)−R(atπk

i
, atj , s)}] ≤

T∑
t=0

[max
s,aj
{R(atπ′i , aj , s)−R(atπk

i
, aj , s)}−

min
s,aj
{R(atπ′i , aj , s)−R(atπk

i
, aj , s)}]

• Assume mins = mins,aj for all t ∈ T , resulting in the expression∑T
t=0 maxs{R(atπ′i

, atj , s)−R(at
πk
i
, atj , s)} ≤∑T

t=0 maxs,aj{R(atπ′i
, aj , s) − R(at

πk
i
, aj , s)}. It must be the

case that the LHS must be at most equivalent to the RHS, as, if
the aj selected in the LHS is the maximal value, the maxs,aj will
select it. If the aj selected on the LHS is not the maximal value
for a given ai and s, the RHS must then be greater.

• Assume maxs = maxs,aj for all t ∈ T , resulting in the expres-
sion

∑T
t=0 mins{R(atπ′i

, atj , s)−R(at
πk
i
, atj , s)} ≥∑T

t=0[mins,aj{R(atπ′i
, aj , s) − R(at

πk
i
, aj , s)}]. Analogously

to point 1, if the aj on the LHS is the minimal value, then the
mins,aj on the RHS must select it. If it is not, the RHS must be
less.

• Following point 1 and 2, since each component of the LHS must
be bounded by the equivalent component on the RHS, the LHS
must be a smaller range than the RHS. Therefore, Λ ~aj (π′i, π

m
i ) ≤

Λ(π′i, π
m
i )
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