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ABSTRACT
The selection of leaders in leader-follower multi-agent sys-
tems can be naturally formulated as a matroid optimiza-
tion problem. In this paper, we investigate the online and
stochastic version of such a problem, where in each itera-
tion or round, we select a set of leaders and then observe
a random realization of the corresponding reward, i.e., of
the system performance. This problem is referred to as a
stochastic matroid bandit, a variant of combinatorial multi-
armed bandit problems where the underlying combinato-
rial structure is a matroid. We consider semi-bandit feed-
back and Bernoulli rewards, and derive a tight and problem-
dependent lower bound on the regret of any consistent al-
gorithm. We propose KL-OSM, a computationally efficient
algorithm that exploits the matroid structure. We derive a
finite-time upper bound of the regret of KL-OSM that im-
proves the performance guarantees of existing algorithms.
This upper bound actually matches our lower bound, i.e.,
KL-OSM is asymptotically optimal. Numerical experiments
attest that KL-OSM outperforms state-of-the-art algorithms
in practice, and the difference in some cases is significant.

Categories and Subject Descriptors
I.2.6 [Learning]: Parameter learning; I.2.11 [Distributed
Artificial Intelligence]: Multiagent systems

Keywords
Multi-Armed Bandits; Online Learning; Combinatorial Op-
timization; Matroids; Regret Analysis

1. INTRODUCTION
This work is motivated by the design of leader-follower

multi-agent systems where a set of leaders act as external
control inputs and have the ability to impact the dynam-
ics of the entire system and in turn its overall performance.
Of course, the choice of the set of leaders in these systems
critically influences their behaviour. It has been recently
shown [9,24] that the leader selection problem could be nat-
urally formulated as a matroid optimization problem. In
this paper, we investigate the online and stochastic version
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of such a problem, where in each iteration or round, we select
a set of leaders and then observe a random realization of the
corresponding reward, i.e., of the system performance. This
problem, referred to as a stochastic matroid Multi-Armed
Bandit (MAB) problem, can be seen as a particular instance
of combinatorial MAB problems, and is particularly relevant
when one wishes to learn as quickly as possible the optimal
set of leaders, e.g., in scenarios where this optimal set could
evolve over time.

MAB problems [15, 27] constitute the most fundamental
model for sequential decision making problems with an ex-
ploration vs. exploitation trade-off and have found appli-
cations in many fields, including sequential clinical trials,
communication systems, economics; see e.g. [6]. In such
problems, the decision maker repeatedly selects an arm and
observes a realization of the corresponding unknown reward
distribution, where each decision is made based on past de-
cisions and observed rewards. The objective is to maximize
the expected cumulative reward over some time horizon by
balancing exploitation and exploration. Equivalently, the
performance of a decision rule or algorithm can be mea-
sured through its expected regret, defined as the gap be-
tween the expected reward achieved by the algorithm and
that achieved by an oracle algorithm always selecting the
best arm.

We consider matroid bandits in the stochastic setting as
introduced in [19], which are actually a sub-class of combina-
torial MAB problems with linear reward functions, defined
in, e.g., [8, 10, 13], in which the underlying combinatorial
structure is a matroid. Given a set of basic actions E (called
ground set), a matroid is a pair (E, I) with some I ⊂ 2E

such that I is an independence system (i.e., it is closed under
subset operation) and satisfies the so-called augmentation
property (see Definition 1 for a precise definition). Matroid
bandits consider weighted matroids, where each element of
E is assigned a weight (its average reward). Each arm is
then a basis (i.e., an inclusion-wise maximal element of I)
of the matroid. The weight of various basic actions are fixed
and a priori unknown. The decision maker aims at learning
the maximum weight basis by sequentially selecting various
arms. Hence, at each round she faces a linear optimization
problem under a matroid constraint.

Matroid bandits can be applied beyond leader-follower
multi-agent systems. Indeed, matroid structures occur nat-
urally in many problems with practical applications ranging
from bidding in ad exchange [29], product search [1], task
assignment in crowdsourcing [5], and many other engineer-
ing applications. Hence, matroid constraints are quite nat-

548



ural for combinatorial problems. For example, assume that
the elements of ground set E are categorized into L disjoint
categories. A natural requirement for some applications is
to force to choose at most one element from each category.
In the context of product search, each category might be a
specific brand, whereas for news aggregation, each category
may correspond to a news domain. Assume that the decision
maker is interested in finding a subset M ⊂ E while maxi-
mizing the total reward and such that at most one element
from each category belongs to M . Then, she faces a lin-
ear optimization subject to a partition matroid constraint.
Another natural type of constraints is to have cardinality
constraint on the set M , which is related to the notion
of uniform matroid. Another notable instance of matroid
constraints appears in the problem of finding the minimum
spanning tree in a graph, which arises in various engineering
disciplines.

Matroid optimization problems are of special interests in
the area of combinatorial optimization both theoretically
and practically, due to relative tractability of optimization
over matroids. In particular, linear optimization over ma-
troid bases is proven to be greedily solvable. More pre-
cisely, a well-known result in combinatorial optimization
states that an independence system (see later for a formal
definition) is a matroid if and only if the greedy algorithm
leads to a maximum weight basis; see, e.g., [11]. More gen-
eral cases have been addressed in, e.g., [4,25]. Matroid the-
ory brings a two-fold advantage in the corresponding bandit
optimization problems: firstly, it is possible to devise com-
putationally efficient algorithms that, in most cases, select
arms greedily. Secondly, the corresponding regret analysis
is usually more tractable. Despite such advantage, lack of
optimal algorithms for matroid bandits in the literature is
evident. Here we provide a sequential arm selection algo-
rithm, KL-OSM, and show that it is asymptotically opti-
mal. To the best of our knowledge, KL-OSM constitutes
the first optimal algorithm for the online matroid problem
considered.

Contributions
(a) We derive an asymptotic (as the time horizon T grows
large) lower bound on the regret, satisfied by any algo-
rithm (Theorem 2). This lower bound is tight and problem-
dependent and its derivation leverages the theory of optimal
control of Markov chains with unknown transition probabil-
ities. To our knowledge, our proposed lower bound consti-
tutes the first fundamental performance limit for matroid
bandits.

(b) We propose KL-OSM (KL-based Efficient Sampling for
Matroids), which is an index policy that maintains a KL-
UCB index [14] for each basic action and is based on the
greedy algorithm. Hence, it is provably computationally ef-
ficient assuming access to an independence oracle (see Sec-
tion 3 for a precise definition). Through a finite-time anal-
ysis (Theorem 1), we show that KL-OSM attains a regret
(asymptotically) growing as the proposed lower bound in
Theorem 2. Hence, it is asymptotically optimal. To our best
knowledge, this is the first optimal algorithm for this class
of combinatorial MABs. Numerical experiments for some
specific matroid problems show that KL-OSM significantly
outperforms existing algorithms.

The rest of the paper is organized as follows. Section 2
provides an overview of combinatorial MAB problems. Sec-

tion 3 is devoted to description of our model and a precise
statement of the problem. In Section 4, we describe KL-
OSM, our proposed algorithm for matroid bandits, and pro-
vide a finite-time analysis of its regret. In Section 5, we
present a lower bound on the regret of our problem. We
present some numerical experiments in Section 6. Finally,
Section 7 concludes the paper and provides some future work
directions. All proofs are provided in the appendix.

2. RELATED WORK
Combinatorial MAB problems have been an active area

of research in recent years. These problems have been ex-
tensively studied in the adversarial setting; see, e.g., [3, 7]
and references therein. In the stochastic setting, some re-
search contributions investigate generic combinatorial prob-
lems, e.g., [8,10,13,20], whereas others mostly concern prob-
lems where the set of arms exhibits specific structures, such
as fixed-size subsets [2,17], matroid and polymatroid [19,21],
or permutations [12, 23]. The proposed algorithms in these
works are variants of UCB or KL-UCB algorithms.

Matroid bandits were introduced and studied in [18, 19].
The proposed algorithm, called OMM, is a UCB-type policy
relying on the greedy method. Our proposed algorithm is
quite similar to OMM, but uses the KL-UCB index instead.

For a generic combinatorial structure and the stochastic
setting considered in this paper, the state-of-the-art algo-
rithm is ESCB [10], which achieves a regret upper-bounded

by O( d
√

m
Δmin

log(T )) after T rounds. Here, d and m respec-

tively denote the number of basic actions and maximum car-
dinality of arms, and Δmin denotes the smallest gap between
the average rewards of the best arm and of a sub-optimal
arm. For matroid bandits, OMM achieves a regret scaling
at most as O( d−m

Δmin
log(T )). The dependence of this bound

on (d,m) is tight and cannot be improved. The regret up-
per bound of our proposed algorithm, KL-OSM, admits the
same scaling O( d−m

Δmin
log(T )). However, we are able to show

that the constant in O(.) in the case of KL-OSM is strictly
smaller. Moreover, we prove that under KL-OSM, the upper
bound on the regret cannot be improved.

3. MODEL AND OBJECTIVES

3.1 Matroid Structure
We give a formal definition of matroids and state some

useful related results. More details can be found in, e.g.,
[26, 28].

Definition 1. Let E be a finite set and I ⊂ 2E. The pair
G = (E, I) is called a matroid if the following conditions
hold:

(i) ∅ ∈ I,
(ii) if X ∈ I and Y ⊆ X, then Y ∈ I,
(iii) if X,Y ∈ I with |X| > |Y |, then there is some element

� ∈ X \ Y such that Y ∪ {�} ∈ I.
Any system satisfying conditions (i) and (ii) is called an

independence system. Condition (iii) is referred to as the
augmentation property. The set E is usually referred to as
the ground set and the elements of I are called the indepen-
dent sets. Any (inclusion-wise) maximal independent set is
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called a basis for matroid G. In other words, if X ∈ I is a
basis for G, then X ∪ {�} /∈ I for all � ∈ E \X.

Proposition 1 ( [26]). Let G = (E, I) be a matroid.
Then the following hold:

(i) All bases of G have the same cardinality, referred to as
rank of G.

(ii) For all bases X,Y of G, if � ∈ X \ Y then there exists
k ∈ Y \X such that (X \ �) ∪ {k} is a basis for G. 1

(iii) For all bases X,Y of G, if � ∈ X \ Y then there exists
k ∈ Y \X such that (Y \ k) ∪ {�} is a basis for G.

We next provide some examples of matroids. Consider a
ground set E with cardinality d. Uniform matroid of rank
m is (E, I), where I is the collection of subsets of E with
at most m elements. Consider a partition of E given by
{Ei}i∈[�]. For some given parameters k1, . . . , k�, define

I = {X ⊆ E : |X ∩ Ei| ≤ ki, ∀i ∈ [�]}.
Then (E, I) is partition matroid of rank

∑
i∈[�] ki. Given an

undirected graph G = (V,H), define

I = {F ⊆ H : (V, F ) is a forest}.
Then, it can be shown that G(G) = (H, I) is a matroid,
referred to as graphic matroid. Every spanning forest of the
graph G is indeed a basis for matroid G(G).
3.1.1 Weighted Matroids
Now we consider a weighted matroid, where each element

of the ground set is given a non-negative weight. For any
� ∈ E, let w� denote the weight assigned to �. The matroid
optimization problem is to find a basis with maximum total
weight:

max
X∈I

∑
�∈X

w�. (1)

The above problem can be solved efficiently by the Greedy

algorithm, whose pseudo-code is shown in Algorithm 1.

Algorithm 1 Greedy [26]

Sort weights wi, i ∈ E. Denote the new ordering by a bijection
k : E → E:

wk(1) ≥ wk(2) ≥ · · · ≥ wk(d).

X ← ∅
for i = 1, . . . , d do

if X ∪ {k(i)} ∈ I then
X ← X ∪ {k(i)}

end if
end for

Next we determine the complexity of the Greedy algo-
rithm. Clearly, sorting can be carried out in O(d log(d)).
Furthermore, assume that testing whether a given subset
of the ground set E is independent takes O(h(d)) time for
some function h. Then, the time complexity of the Greedy

algorithm is O(d log(d) + dh(d)). In some computational
models, it is assumed that an algorithm has access to an
independence oracle, that is a routine that given X ⊂ E

1For any set X and element �, by a slight abuse of notation,
we write X \ � to imply X \ {�}.

returns whether X ∈ I or not. Under the independence or-
acle model, the Greedy algorithm has a time complexity of
O(d log(d)). Hence, a maximum-weight independent set in
a matroid can be found in strongly polynomial time under
independence oracle model ( [28, Corollary 40.1]).

3.2 MAB Model
Consider a finite set of basic actions E = {1, . . . , d} and a

matroid G = (E, I) of rank m. We consider a combinatorial
MAB problem, where each arm M is a basis of G. We let
M denote the set of arms, i.e., the collection of all bases of
G. Each arm M is identified with a binary column vector
(M1, . . . ,Md)

�, and we have ‖M‖1 = m, ∀M ∈ M since G
is of rank m. Time proceeds in rounds. For i ∈ E, Xi(n)
denotes the random reward of basic action i in round n. For
each i, the sequence (Xi(n))n≥1 is i.i.d. with Bernoulli dis-
tribution of mean θi. The rewards across basic actions may
be arbitrarily correlated. We denote by θ = (θ1, . . . , θd)

� ∈
Θ = [0, 1]d the vector of unknown expected rewards of the
various basic actions.

At the beginning of each round n, an algorithm or policy
π, selects an arm Mπ(n) ∈ M based on the arms chosen in
previous rounds and their observed rewards. The reward of
arm Mπ(n) selected in round n is

XMπ(n)(n) =
∑
i∈E

Mπ
i (n)Xi(n) = Mπ(n)�X(n).

We consider semi-bandit feedback, where under policy π and
at the end of round n, the outcome of actions Xi(n) for all
i ∈ Mπ(n) are revealed to the decision maker.2 The ob-
jective is to identify a policy in Π, the set of all feasible
policies, which maximizes the cumulative expected reward
over a finite time horizon T . Here the expectation is under-
stood with respect to the randomness in the rewards and
the possible randomization in the policy. Equivalently, we
aim at designing a policy that minimizes regret, where the
regret of policy π ∈ Π is defined by:

Rπ(T ) = max
M∈M

E[
T∑

n=1

XM (n)]− E[
T∑

n=1

XMπ(n)(n)].

Finally, we denote by μM (θ) = M�θ the expected reward
of arm M , and let M�(θ) ∈ M be any arm with maximum
expected reward:

M�(θ) ∈ arg max
M∈M

μM (θ).

To simplify the presentation in subsequent analysis, we as-
sume that the elements of the vector θ are distinct, and
hence the optimal arm M�(θ) is unique. We further define:
ΔM = M�(θ)�θ − μM (θ) for all M ∈ M.

In subsequent sections, when clear from the context that θ
is the underlying parameter, we use M� to indicate M�(θ).

4. THE KL-OSM ALGORITHM
In this section, we present KL-OSM which is a natural

extension of the KL-UCB algorithm [14] for the described
matroid bandit problem.

We introduce the following notation: At time n, we define
ti(n) =

∑n
s=1 Mi(s) the number of times basic action i has

2For brevity, in what follows, for any binary vector z, we
write i ∈ z to denote zi = 1.
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Figure 1: An example for the set Ki in the case
of graphic matroids: Edges shown with solid line
correspond to optimal actions. Two sub-optimal ac-
tions are shown in dashed line, where K3 = {1, 2} and
K6 = {1, 2, 5}.

been sampled. In round n, we define the empirical mean
reward of action i as θ̂i(n) = (1/ti(n))

∑n
s=1 Xi(s)Mi(s) if

ti(n) > 0 and θ̂i(n) = 0 otherwise. Our algorithm is an
index policy relying on KL-UCB index [14] maintained for
each basic action. More precisely, the index of basic action
i in round n is denoted by ωi(n) and defined as:

ωi(n) = max
{
q ∈ [θ̂i(n), 1] : ti(n)kl(θ̂i(n), q) ≤ f(n)

}
,

with f(n) = log(n) + 3 log(log(n)).
In each round n ≥ 1, the KL-OSM algorithm simply con-

sists in computing indexes ωi(n) for all i, and then selecting
an arm M(n) by solving

M(n) ∈ arg max
M∈M

∑
i∈M

ωi(n),

using the Greedy algorithm. The pseudo-code of KL-OSM
is given in Algorithm 2.

Algorithm 2 KL-OSM

for n ≥ 1 do
Select M(n) ∈ argmaxM∈M

∑
i∈M ωi(n) using Greedy.

Play M(n), observe the rewards, and update ti(n) and

θ̂i(n),∀i ∈ M(n).
end for

Next we provide a finite-time analysis of the regret of
KL-OSM. To this aim, for any problem instance we intro-
duce mapping σ : E\M� → M� such that for any i ∈ E\M�:

σ(i) = argmin
j∈Ki

θj ,

where

Ki =
{
� ∈ M� : (M� \ �) ∪ {i} ∈ M

}
.

Figure 1 shows an example for the set Ki for the case of
graphic matroids.

It is noted that by Proposition 1, we have that Ki = ∅ for
all i ∈ E \ M�. Moreover, for any i /∈ M�, if � ∈ Ki, then
θ� > θi. We show this claim by contradiction: assume this
does not hold, namely, θ� < θi. ConsiderM

′ = (M�\�)∪{i}.
Then, by Proposition 1, M ′ ∈ M. Moreover,

μM′(θ)− μM�(θ) =
∑

k∈M′
θk −

∑
k∈M�

θk = θi − θ� > 0,

which contradicts the optimality of M�. Hence, θ� > θi for
any � ∈ Ki.

The following theorem gives an upper bound on the regret
of the KL-OSM algorithm.

Theorem 1. For any ε > 0, there exist positive constants
C1, C2(ε), and β(ε) such that the regret under algorithm
π =KL-OSM satisfies:

Rπ(T ) ≤
∑

i∈E\M�

θσ(i) − θi

kl(θi, θσ(i))
(1 + ε) log(T ) + o(log(T )).

Hence,

lim sup
T→∞

Rπ(T )

log(T )
≤

∑
i∈E\M�

θσ(i) − θi

kl(θi, θσ(i))
.

Remark 1. When the underlying matroid is a uniform
matroid, the problem reduces to MAB with multiple plays as
studied in [2,17]. Assume that actions are enumerated such
that θ1 ≥ θ2 ≥ . . . θm > · · · ≥ θd. Then M� = {1, 2, . . . ,m}
and σ(i) = m for all i /∈ M�. Hence, the regret upper bound
of Theorem 1 asymptotically coincides with the results pro-
vided in [2,17].

Next we compare KL-OSM and OMM [19] in terms of
their regret upper bounds. OMM achieves a regret upper-
bounded by

E[Rπ(T )] ≤
∑

i∈E\M�

16

Δmin,i
log(T ) +O(1),

where for any sub-optimal i:

Δmin,i = min
j∈E\M�

|θi − θj |.

Note that by Pinsker’s inequality, we have

kl(θi, θσ(i)) ≥ 2(θi − θσ(i))
2 ≥ 2Δ2

min,i.

Hence, the regret upper bound for KL-OSM is better than
that for OMM. The numerical experiments in Section 6 also
show that KL-OSM outperforms OMM in practice.

Implementation.
The KL-OSM algorithm finds a basis with the maximum

index using the Greedy algorithm, whose time complexity
under independence oracle model is O(d log(d)). We also re-
mark that the computation of index ωi(n) amounts to find-
ing the roots of a strictly convex and increasing function in
one variable (since z �→ kl(p, z) is an increasing function for
z ≥ p). Hence, ωi(n) can be computed straightforwardly by
a simple line search such as bisection. Therefore, the time
complexity of KL-OSM after T rounds is O(dT log(d)).

5. LOWER BOUND
In this section, we derive a lower bound on the regret

of any uniformly good algorithm π for the matroid bandit
problem under the case where the rewards across basic ac-
tions are independent. We define uniformly good algorithms
as in [22]: An algorithm π is uniformly good if and only if
Rπ(T ) = o(Tα) for all α > 0 and all parameters θ ∈ Θ.

The proof of this lower bound uses the theory of optimal
control of Markov chains with unknown transition probabil-
ities studied in [16]. Such a technique is also used in [10]
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to study the regret lower bound for generic stochastic com-
binatorial MABs. In what follows, first we state the latter
result.

Given θ ∈ Θ, define the set of bad parameters that cannot
be distinguished from θ when selecting arm M�(θ), and for
which the arm M�(θ) is sub-optimal:

B(θ) = {λ ∈ Θ : λi = θi, ∀i ∈ M�(θ), max
M

M�λ > M�(θ)
�
θ}.

According to [10, Theorem 1], the regret of any uniformly
good policy π ∈ Π for any θ ∈ Θ satisfies

lim inf
T→∞

Rπ(T )

log(T )
≥ c(θ),

where c(θ) is the optimal value of the following problem:

inf
x≥0

∑
M∈M

ΔMxM (2)

subject to:
∑

M∈M
xM

∑
i∈E

Mikl(θi, λi) ≥ 1, ∀λ ∈ B(θ).

Here kl(u, v) is the Kullback-Leibler divergence between Bernoulli
distributions of respective means u and v, i.e.,

kl(u, v) = u log(u/v) + (1− u) log((1− u)/(1− v)).

Let x� = (x�
M ,M ∈ M) denote the optimal solution to

this problem. It then follows from [16] that the expected
number of times that an optimal algorithm plays arm M up
to round T will be x�

M log(T ) + o(log(T )). Note that the
optimal value c(θ) and solution x� are unfortunately not
explicit.

Building on this result, in the next theorem we provide an
asymptotic lower bound on the regret of any uniformly good
policy π for the considered matroid optimization problem.

Theorem 2. For all θ ∈ Θ and any uniformly good algo-
rithm π ∈ Π,

lim inf
T→∞

Rπ(T )

log(T )
≥

∑
i∈E\M�

θσ(i) − θi

kl(θi, θσ(i))
.

Comparing the result of Theorem 1 with that of Theo-
rem 2, we observe that for the case of Bernoulli rewards,
the regret upper bound of KL-OSM asymptotically matches
the lower bound. Hence, it is asymptotically optimal. We
remark that contrary to the lower bound in [19], the lower
bound in Theorem 2 is problem-dependent, namely it holds
for any parameter θ and any matroid G. Moreover, in con-
trast to the lower bound given in [10, Theorem 1], ours is
explicit.

6. NUMERICAL EXPERIMENTS
We briefly illustrate the performance under the KL-OSM

algorithm for the case of graphic and partition matroids. In
our first experiment, we consider spanning trees in the com-
plete graph KN . We set N = 5, in which case by Cayley’s
formula there are 53 spanning trees or arms, and d = 10
basic actions. In this experiment we consider two scenar-
ios: ‘Scenario 1’, in which parameter θ is chosen such that
θi = 0.8 if i ∈ M� and θi = 0.6 otherwise; and ‘Scenario 2’,
where θ is drawn uniformly at random from [0, 1]10. In the
second experiment, we consider a partition matroid of rank
5 with d = 10 basic actions and 4 partitions. Furthermore,
parameter θ is drawn uniformly at random from [0, 1]10.
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(a) Graphic matroid, Scenario 1
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(b) Graphic matroid, Scenario 2
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(c) Partition matroid

Figure 2: Regret of various algorithms

Figures 2(a)-(c) present the regret vs. time horizon un-
der KL-OSM and OMM for the various cases. In these fig-
ures, curves in blue and black show the average over 100
independent runs along with the 95% confidence intervals.
Moreover, the curve in red represents the lower bound of
Theorem 2 for the corresponding scenario.

We observe that in all experiments, KL-OSM significantly
outperforms OMM. The curves in Figures 2(a)-(c) show the
regret of KL-OSM is growing at the same rate of the ‘lower
bound’ when the number of rounds grows large, thus ver-
ifying the asymptotic optimality of KL-OSM. Finally, we
remark that it is not contradictory that the ‘lower bound’
curve in Figure 2(a) or 2(c) lies above the regret curve of
KL-OSM. This is because the lower bound of Theorem 2
holds asymptotically, i.e., when T grows large.

7. CONCLUSION
In this paper we have investigated matroid bandits with

Bernoulli rewards. We have provided a tight and problem-
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(b) M(n)

Figure 3: An example of bijection τn for the case
of graphic matroids. In this case: τn(1) = 1, τn(3) =
2, τn(4) = 4, τn(6) = 5.

dependent lower bound on the regret. Moreover, we pro-
posed KL-OSM, an efficient algorithm for matroid bandits,
and provided a finite-time analysis of its regret. We showed
that the regret upper bound of KL-OSM matches the lower
bound, and hence it is asymptotically optimal. Moreover,
we showed that KL-OSM enjoys a better regret than exist-
ing algorithms both theoretically and experimentally. As a
future work, we will investigate matroid bandits with more
complicated reward functions. Of particular interest is the
case where the reward function is a submodular set function.
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APPENDIX
A. PROOF OF THEOREM 1

Proof. Let T > 0. Consider round n where M(n) = M�

is selected by the algorithm π =KL-OSM. Using Lemma 1,
proven at the end of this section, there exists a bijective
mapping τn such that: τn(i) = i if i ∈ M� ∩ M(n) or i ∈
M� ∪M(n). Otherwise, τn(i) = j for some j ∈ K′

i := Ki \M(n).
The mapping τn simply maps the sub-optimal basic actions
ofM(n) to the corresponding ones inM� that are not chosen
by the algorithm at round n. It then follows that

1{Mi(n) = 1} =
∑
j∈K′

i

1{Mi(n) = 1, τn(i) = j}

and that
∑

j∈K′
i
1{τn(i) = j} ≤ 1 since τn is bijective. An

example of mapping τn for the case of graphic matroids is
shown in Figure 3.

For any i, j ∈ E, define Δj,i = θj − θi. Then, the regret
under policy π=KL-OSM is upper bounded as:

Rπ(T ) ≤ E[
T∑

n=1

ΔM(n)]

= E[
T∑

n=1

∑
i∈E\M�

Δτn(i),i1{Mi(n) = 1}]

= E[
∑

i∈E\M�

T∑
n=1

∑
j∈K′

i

Δj,i1{Mi(n) = 1, τn(i) = j}].

Let i ∈ E \ M�. Motivated by the design of KL-OSM,
namely use of Greedy to determine M(n) at each round n,
we use the following decomposition:

1{Mi(n) = 1, ωi(n) ≥ ωτn(i)(n)} ≤ 1{ωτn(i)(n) < θτn(i)}
+ 1{Mi(n) = 1, ωi(n) ≥ θτn(i)}.

Hence,

T∑
n=1

∑
j∈K′

i

Δj,i1{Mi(n) = 1, τn(i) = j}

≤
T∑

n=1

∑
j∈K′

i

Δj,i1{τn(i) = j, ωj(n) < θj}

+
T∑

n=1

∑
j∈K′

i

Δj,i1{Mi(n) = 1, τn(i) = j, ωi(n) ≥ θj},

and therefore,

E[
∑

i∈E\M�

T∑
n=1

∑
j∈K′

i

Δj,i1{Mi(n) = 1, τn(i) = j}

≤ E[
∑

i∈E\M�

T∑
n=1

∑
j∈K′

i

1{τn(i) = j, ωj(n) < θj}]

+ E[
∑

i∈E\M�

T∑
n=1

∑
j∈K′

i

Δj,i1{Mi(n) = 1, τn(i) = j, ωi(n) ≥ θj}],

since Δj,i ≤ 1. We prove that there exist positive constants
C1, C2(ε), and β(ε) such that

E[
∑

i∈E\M�

T∑
n=1

∑
j∈K′

i

1{τn(i) = j, ωj(n) < θj}]

≤ (d−m)C1 log(log(T )), (3)

E[
∑

i∈E\M�

T∑
n=1

∑
j∈K′

i

Δj,i1{Mi(n) = 1, τn(i) = j, ωi(n) ≥ θj}]

≤
∑

i∈E\M�

(1 + ε)
θσ(i) − θi

kl(θi, θσ(i))
f(T ) + (d−m)

C2(ε)

T β(ε)
.

(4)

Hence, we get the announced result:

Rπ(T ) ≤ E[
∑

i∈E\M�

T∑
n=1

∑
j∈K′

i

Δj,i1{Mi(n) = 1, τn(i) = j}]

≤
∑

i∈E\M�

θσ(i) − θi

kl(θi, θσ(i))
(1 + ε)f(T )

+ (d−m)

(
C2(ε)

T β(ε)
+ C1 log(log(T ))

)
.

Inequality (3):

Fix j ∈ K′
i. By the concentration inequality in [14, Theo-

rem 10], we have

P[ωj(n) < θj ] ≤ �f(n) log(n)�e1−f(n),

and hence following the same steps as in the proof of [14,
Theorem 2], we observe that there exists constant C1 ≤ 7
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such that E[
∑T

n=1 1{ωj(n) < θj}] ≤ C1 log(log(T )). It then
follows that

∑
j∈K′

i

E[

T∑
n=1

1{τn(i) = j, ωj(n) < θj}] ≤ C1(log(log(T )))

since τn for any n is a bijection. As a result:

∑
i/∈M�

∑
j∈K′

i

E[
T∑

n=1

1{τn(i) = j, ωj(n) < θj}]

≤ (d−m)C1(log(log(T ))).

Inequality (4):

For x, y ∈ [0, 1], introduce kl+(x, y) = kl(x, y)1{x < y}.
Fix j ∈ K′

i. Observe that the event ωi(n) ≥ θj implies

ωi(n) ≥ θσ(i), which further implies that kl+(θ̂i(n), θσ(i)) ≤
kl(θ̂i(n), ωi(n)) = f(n)/ti(n).

We let θ̂i,s denote the empirical average of rewards of ac-
tion i when it is selected s times. Hence following the similar
steps as in the proof of Lemma 7 in [14], we obtain:

∑
j∈K′

i

T∑
n=1

1{Mi(n) = 1, τn(i) = j, ωi(n) ≥ θj}

≤
∑
j∈K′

i

T∑
n=1

1{Mi(n) = 1, τn(i) = j, ωi(n) ≥ θσ(i)}

≤
T∑

n=1

1{Mi(n) = 1, ωi(n) ≥ θσ(i)}

≤
T∑

n=1

1{Mi(n) = 1, ti(n)kl
+(θ̂i(n), θσ(i)) ≤ f(n)}

=
T∑

n=1

n∑
s=1

1{Mi(n) = 1, ti(n) = s, skl+(θ̂i,s, θσ(i)) ≤ f(n)}

≤
T∑

n=1

n∑
s=1

1{Mi(n) = 1, ti(n) = s, skl+(θ̂i,s, θσ(i)) ≤ f(T )}

=
T∑

s=1

1{skl+(θ̂i,s, θσ(i)) ≤ f(T )}
T∑

n=s

1{Mi(n) = 1, ti(n) = s}

=
T∑

s=1

1{skl+(θ̂i,s, θσ(i)) ≤ f(T )},

where in the last step, we used the fact that for any s, there
is only one round n such that ti(n) = s and Mi(n) = 1.
From [14, Lemma 8], we have that (see the arXiv version

of the present work for details [30]):

E[

T∑
s=1

1{skl+(θ̂i,s, θσ(i)) ≤ f(T )}] ≤ (1 + ε)f(T )

kl(θi, θσ(i))
+

C2(ε)

T β(ε)
,

so that

E[

T∑
n=1

∑
j∈K′

i

Δj,i1{Mi(n) = 1, τn(i) = j, ωi(n) ≥ θj}]

≤ θσ(i) − θi

kl(θi, θσ(i))
(1 + ε)f(T ) +

C2(ε)

T β(ε)
.

Summing over i ∈ E\M� completes the proof of inequality
(4) and hence concludes the proof.

Lemma 1. For every M,M ′ ∈ M, there exists a bijective
mapping τMM′ : E → E, or τ for short, such that τ(i) = i
if i ∈ M ∩M ′ or i ∈ M ∪M ′. Otherwise, τ(i) = j for some
j ∈ Li, where

Li =
{
� ∈ M ′ \M : (M ′ \ �) ∪ {i} ∈ M

}
.

In particular this lemma implies that for any problem in-
stance, i.e. fixed M�, and for any M ∈ M, there exists a
bijective mapping τMM� , or τ for short, which maps any op-
timal basic action of M to itself, and maps any sub-optimal
basic action i ∈ M to some element in Ki \ M . Note that
such a mapping may not be unique.

Proof. Let M,M ′ ∈ M. We provide an algorithm that
outputs τMM′ . To present the algorithm, for any i ∈ M \M ′

let us define:

Di =
{
� ∈ M ′ \M : (M \ i) ∪ {�} ∈ M

}
.

The pseudo-code of the algorithm is shown in Algorithm 3.

Algorithm 3 Construction of mapping τMM′

Initialization:
Set τ(i) = i for all i ∈ M ∩M ′ and i ∈ M ∪M ′.
Set Si = Di for all i ∈ M \M ′. Set Q = M .

while Q 
= M ′ do
Let i0 ∈ argmini∈M\M′ |Si| (ties are broken arbitrarily).

Select j ∈ Si0 arbitrarily. Set τ(i0) = j.

Q ← (Q \ i0) ∪ {j}
for i ∈ M \M ′ do

Si ← Si \ j
end for

end while

Output τ .

Clearly the algorithm terminates after at most m steps
since at each step one element in Q is replaced with some
element of M ′. In order to guarantee that the output of
the algorithm is a bijective mapping it suffices to show at
that any step, if Si = Sj = {x} for some i, j ∈ B, then
necessarily i = j. We prove this claim by contradiction.
Assume Si = Sj = {x} and i = j. Consider basis M1 =
(Q\ i)∪{x}. Note that M1 = M ′ since j ∈ M1. Hence there
must exist � ∈ M ′ \M1 such that (M1 \ j) ∪ {�} is a basis,
and by definition � ∈ Sj . This is clearly a contradiction since
Sj = {x} and x /∈ M ′ \M1.

Finally, we show that at each step τ(i0) ∈ Li0 . Observe
that τ(i0) ∈ Si0 implies τ(i0) ∈ Di0 since Si0 ⊆ Di0 . Ob-
serve that � ∈ Di0 implies that (M \ i0)∪ {�} is a basis, and
hence (M ′ \ �)∪{i0} is a basis, so that by definition � ∈ Li0 .
This further implies that τ(i0) ∈ Li0 , which concludes the
proof.

B. PROOF OF THEOREM 2

Proof. For any M = M� introduce

BM (θ) = {λ ∈ Θ : λi = θi, ∀i ∈ M�(θ), M�λ > M�(θ)
�
θ}.

Observing thatB(θ) = ∪M 	=M�BM (θ), we equivalently rewrite
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problem (2) as

inf
x≥0

∑
M 	=M�

ΔMxM , (5)

subject to:

inf
λ∈BM (θ)

∑
i∈M\M�

kl(θi, λi)
∑
Q∈M

QixQ ≥ 1, ∀M = M�.

Fix i ∈ E \ M�. Recall that σ(i) = argminj∈Ki θj and

let M (i) = (M� \ σ(i)) ∪ {i}. By Proposition 1, M (i) ∈ M.
We may simplify the l.h.s. of the constraint corresponding
to arm M (i) in (5) as follows:

inf
λ∈B

M(i) (θ)

∑
j∈M(i)\M�

kl(θj , λj)
∑
Q

QjxQ

= inf
λ∈B

M(i) (θ)
kl(θi, λi)

∑
Q

QixQ

= inf
λ∈Θ:λi>θσ(i)

kl(θi, λi)
∑
Q

QixQ

= kl(θi, θσ(i))
∑
Q

QixQ,

where we used M (i) \M� = {i}. Let M− = M\ ({M�} ∪
{M (i), i ∈ E \M�}). It then follows that

c(θ) = inf
x≥0

∑
M∈M

ΔMxM (6)

subject to:∑
M 	=M�

MixM ≥ 1

kl(θi, θσ(i))
, ∀i ∈ E \M�,

inf
λ∈BM (θ)

∑
Q∈M

xQ

∑
i∈E

Qikl(θi, λi) ≥ 1, ∀M ∈ M−.

Defining

P1: inf
x≥0

∑
M 	=M�

ΔMxM

subject to:
∑

M 	=M�

MixM ≥ 1

kl(θi, θσ(i))
, ∀i ∈ E \M�,

gives c(θ) ≥ val(P1) since the feasible region of problem (6)
is contained in that of P1. 3

For any sub-optimal action i ∈ E, introduce zi =
∑

M MixM ,
and define z = (zi, i ∈ E). Next we represent the objec-
tive of P1 in terms of z, and give a lower bound for it.
Using Lemma 1, there exists a bijective mapping τM such
that τM (i) = i if i ∈ M ∩ M� or i ∈ M ∪M�. Otherwise,
τM (i) = j for some j ∈ Ki \M . We have:

ΔM =
∑
i∈M

(θτM (i) − θi)

=
∑

i∈M\M�

(θτM (i) − θi)

=
∑

i∈E\M�

Mi(θτM (i) − θi)

≥
∑

i∈E\M�

Mi(θσ(i) − θi).

3We use val(P) to denote the optimal value of a given opti-
mization problem P.

Hence,
∑
M

xMΔM ≥
∑
M

xM

∑
i/∈M�

Mi(θσ(i) − θi)

=
∑

i/∈M�

(θσ(i) − θi)zi.

Then, defining

P2: inf
z≥0

∑
i∈E\M�

(θσ(i) − θi)zi

subject to: zi ≥ 1

kl(θi, θσ(i))
, ∀i ∈ E \M�,

yields: c(θ) ≥ val(P1) ≥ val(P2). The proof is completed by
observing that

val(P2) =
∑

i∈E\M�

θσ(i) − θi

kl(θi, θσ(i))
.
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