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ABSTRACT
Probabilistic argumentation combines the quantitative un-
certainty accounted by probability theory with the qualita-
tive uncertainty captured by argumentation. In this paper,
we investigate the problem of learning the structure of an
argumentative graph to account for (a distribution of) la-
bellings of a set of arguments. We consider a general ab-
stract framework, where the structure of arguments is left
unspecified, and we focus on the grounded semantics. We
present, with experimental insights, an anytime algorithm
evaluating ‘on the fly’ hypothetical attacks from the exami-
nation of an input stream of labellings.
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1. INTRODUCTION
The combination of formal argumentation and probability

theory to account for uncertainty has been given increasing
attention in recent years, in particular with regard to ab-
stract frameworks, see e.g. [12, 21, 2, 6, 15, 19, 20]. In
this context, non-trivial problems regard (i) the (efficient)
computation of the probability of arguments’ statuses given
a background argumentative knowledge (and with the as-
sumption that arguments are not probabilistically indepen-
dent), and (ii) learning the probability distribution of argu-
ments’ statuses from examples of argument’s statuses. An-
other problem, which has not been addressed so far and
that we call here abstract structure learning, concerns the
induction of an argumentative structure accounting for ar-
guments’ statuses drawn from an unknown probability dis-
tribution. This paper addresses this problem, by presenting
an anytime algorithm evaluating ‘on the fly’ hypothetical
attack relations amongst arguments from the examination
of a sequence of arguments’ statuses. We consider a prob-
abilistic abstract framework, leaving thus the possibility to
complement this work with techniques for learning the in-
ternal structure of arguments.

The fundamental problem of learning a logical structure
from examples in a probabilistic setting is not new: it is
notably addressed in statistical relational learning (SRL) [9]
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and probabilistic inductive logic programming (PILP) [17].
However, argumentation plays no role in these approaches.

Some investigations focused on the relationship between
inductive reasoning and non-monotonic reasoning akin to
argument-based reasoning. [7], for example, gave an analy-
sis of logical induction with a focus on hypothesis generation
while [14] moved on with a characterisation for hypothesis se-
lection with an illustration in rule-based argumentation. [10]
investigated the induction of Defeasible Logic theories (pos-
sibly interpreted as an instantiated argumentation graph).
In a parallel line of research, argumentation and inductive
reasoning is combined in [13] to explain examples with ex-
pert’s arguments. These works, however, do not cater for
any probabilistic setting. Furthermore, they have little or no
consideration, in the inductive process, for the different rea-
soning levels characterising argumentation frameworks (such
as the labelling of arguments and the labelling of statements)
along the fine granularity of possible labellings whereby, for
example, an argument shall be labelled as justified, rejected,
undecided or unexpressed.

Besides, case-based reasoning (CBR) [11] is often closely
related to inductive reasoning since, from a set of cases, it
shall form generalizations of these cases. When CBR shows
dialectical features, as in legal reasoning, argumentation is
a natural mean to model parties arguing about cases. For
example, [16] proposed an early investigation of rule-based
argumentation for reasoning with precedents represented by
a set of attacking arguments, but the attacks over these
arguments are given instead of being learnt.

The problem of learning attacks over arguments from ar-
guments’ statuses is different from the classic problem of
learning a logical structure from statements, but our pro-
posal may be used to position the labelling of arguments
as a major reasoning step in structure learning, from the
perspective of abstract argumentation and within a proba-
bilistic framework.

As to the applications of the standalone problem, they re-
gard any sequential setting where one or more agents repet-
itively argue. For each repetition, the status of every argu-
ment is justified, rejected, undecided, or unexpressed. The
statuses of the arguments are observed, but the attack re-
lations between arguments are unknown. The goal is to
reconstruct the attacks.

This paper is organised as follows. Section 2 introduces
the probabilistic abstract argumentation setting. Section 3
defines the problem we address. Then, we investigate the
learning of argumentative structure in Section 4. with ex-
perimental insights in Section 5, before concluding.
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2. PROBABILISTIC ABSTRACT
ARGUMENTATION

Our setting for probabilistic abstract argumentation is
based on the proposal given in [19], which has the advantage
of giving an explicit probability space and which fully relaxes
probabilistic independences, even if there are no attack or
sub-argument relations amongst arguments. The setting is
built on abstract argumentation graphs [3].

Definition 1 (Argumentation graph). An argu-
mentation graph is a pair 〈A,;〉 where A is a set of
arguments, and ;⊆ A×A is a binary relation of attack.

As for notation, given an argumentation graph G = 〈A,;〉,
we write AG = A, and ;G=;.

Definition 2 (Sub-graph). A sub-graph H of an ar-
gumentation graph G = 〈A,;〉 is an argumentation graph
〈AH,RH〉, where AH ⊆ A, and ∀A,B ∈ AH, (A; B) ∈;G
iff (A; B) ∈;H.

Thus H is an induced sub-graph of G if it has exactly the
attacks that appear in G over the same set of arguments.

B C D

Figure 1: An argumentation graph. The argument
B attacks the argument C, the arguments C and D
attack each other.

C D C D

Figure 2: The graph on the left is a sub-graph of
the graph in Figure 1, while the graph on the right
is not one of its sub-graphs.

Given an argumentation graph, the sets of arguments that
are justified or rejected, that is, those arguments that shall
survive or not to possible attacks, are computed using some
semantics, and, for our purposes, we will consider Dung’s
grounded semantics [3] by labelling arguments as in [19],
which is a slight adaptation of the labellings reviewed in [1]
to fit a probabilistic setting. Accordingly, we will distinguish
{in, out, un}-labellings and {in, out, un, off}-labellings. In a
{in, out, un}-labelling, each argument is associated with one
label which is either in, out, un, respectively meaning that
the argument is justified, rejected, or undecided. ‘in’ means
the argument is justified while a label ‘out’ indicates that it
is rejected. The label ‘un’ marks the status of the argument
as undecided. In a {in, out, un, off}-labelling, the label ‘off’
indicates that the argument is not expressed, that is, it does
not occur.

Definition 3 (Labelling). Let G denote an argumen-
tation graph.

• A {in, out, un}-labelling of G is a total function L :
AG → {in, out, un}.

• A {in, out, un, off}-labelling of G is a total function L :
AG → {in, out, un, off}.

In the remainder, we will write in(L) for {A|L(A) = in},
out(L) for {A|L(A) = out}, un(L) for {A|L(A) = un}, and
off(L) for {A|L(A) = off}.

A {in, out, un}-labelling L will be represented as a tuple
〈in(L), out(L), un(L)〉, and a {in, out, un, off}-labelling L as
a tuple 〈in(L), out(L), un(L), off(L)〉.

Next the set of complete labellings is defined. As an ar-
gumentation graph may have several complete {in, out, un}-
labellings, we will focus on the unique complete labelling
with the smallest set of labels in, i.e. the grounded
{in, out, un}-labelling, see [1].

Definition 4 (Complete {in, out, un}-labelling).
Let G denote an argumentation graph. A complete
{in, out, un}-labelling of G is a {in, out, un}-labelling such
that for every argument A in AG it holds that:

• A is labelled in iff all attackers of A are labelled out,

• A is labelled out iff A has an attacker labelled in.

Definition 5 (Grounded {in, out, un}-labelling).
A complete labelling L is a grounded {in, out, un}-labelling
of an argumentation graph G if in(L) is minimal (w.r.t. set
inclusion) amongst all complete {in, out, un}-labellings of G.

Note that, since a complete labelling is a total function, if
an argument is not labelled in or out, then it is labelled un.

in(B) out(C) in(D)

Figure 3: A grounded {in, out, un}-labelling.

When some arguments are not expressed, we have
grounded {in, out, un, off}-labellings, where only expressed
arguments can effectively attack other expressed arguments.

Definition 6 (Grounded {in, out, un, off}-labelling).
Let G denote an argumentation graph and H an induced
sub-graph of G. A grounded {in, out, un, off}-labelling of G
is a {in, out, un, off}-labelling such that:

• every argument in AH is labelled according to the
grounded {in, out, un}-labelling of H,

• every argument in AG\AH is labelled off.

An argumentation graph has a unique grounded
{in, out, un}-labelling, but it has as many grounded
{in, out, un, off}-labellings as sub-graphs.

off(B) un(C) un(D)

Figure 4: A grounded {in, out, un, off}-labelling.

As for notational matters, a complete {in, out, un, off}-
labelling will be abbreviated as {in, out, un, off}c-
labelling, and a grounded {in, out, un, off}-labelling as
{in, out, un, off}g-labelling. By doing so, we can denote the
set of S-labellings of an argumentation graph G as LSG ,
and each set will basically constitute a possible sample
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space (i.e. the set of possible outcomes) of our probabilistic
setting for argumentation.

As an intuitive account of the probabilistic setting, an
agent is in front of a bag of S-labellings, and this agent ob-
serves a labelling L grasped from the bag with a probability
P ({L}). In other words, a labelling of an argumentation
graph is an outcome, and each outcome is associated with
a probability. This view on probabilistic argumentation is
formally captured by the following definition of probabilistic
argumentation frames.

Definition 7 (Prob. argumentation frame). A
probabilistic argumentation frame is a tuple (G,S, (Ω, F, P ))
where G is an argumentation graph (called the hypothetical
argumentation frame), S is the labelling specification and,
(Ω, F, P ) is a probability space such that:

• the sample space Ω is the set of S-labellings of the hy-
pothetical argumentation frame G, Ω = LSG ,

• the σ-algebra F is the power set of Ω,

• the probability function P from F (Ω) to [0, 1] satisfies
Kolmorogov axioms.

As an illustration, assume a hypothetical argumentation
frame as drawn in Figure 1, the sample space of grounded
{in, out, un, off}-labellings is shown in the table below.

B in in in in off off off off
C out out off off un in off off
D in off in off un off in off

Table 1: Sample space as the set of grounded
{in, out, un, off}-labellings of the argumentation graph
drawn in Figure 1.

In the remainder of this paper, we will focus on the
grounded {in, out, un, off}-labelling, thus S will hold for the
specification of grounded {in, out, un, off}-labellings. We will
consider a sequence of grounded {in, out, un, off}-labellings
drawn from a distribution, and our goal is to find an argu-
mentation graph that accounts for these labellings.

3. PROBLEM SETTING
From now, we assume an empirical probability distribu-

tion PO over a set O of observed grounded {in, out, un, off}-
labellings, such that these observed labellings are drawn
from a probability distribution of a probabilistic argumen-
tation frame 〈G,S, (Ω, F, P )〉. The distribution PO is thus
the empirical approximation of the distribution P . The hy-
pothetical argumentation frame G is called the source ar-
gumentation graph, since it is going to be the ‘source’ of a
stream of labellings, and P is called the source distribution.

We readily remark that different argumentation graphs
may be indistinguishable in the sense that they have, or
can account for, the same observed labellings. For ex-
ample, the graphs G1 = 〈{A,B}, {A ; A,A ; B}〉 and
G2 = 〈{A,B}, {A ; A,A ; B,B ; A}〉 have the same
grounded {in, out, un, off}-labellings. As the graph G1 has
less attacks than the graph G2, then one might consider
that the G1 is a better graph to account for some observed
labellings. However it may the case that the source under-
lying graph is in fact G2. This example shows that, in some

cases, we cannot aim to induce the exact source graph G
of a probabilistic argumentation frame 〈G,S, (Ω, F, P )〉 un-
derlying a distribution of observed labellings, but this does
not prohibit us to find an argumentation graph X that shall
explain (to different degrees) the observed labellings.

To measure how much an argumentation graph X explains
a set O of observed labellings along its empirical distribution
PO, we will assume an explanatory measure of this graph,
denoted M(X , PO), such that the value of this measure is
maximal when the graph X is the source argumentation
graph G.

Many different explanatory measures can be considered.
Here, an example of a measure that we shall call the expected
explanatory utility of a graph X w.r.t. a distribution PO of
a set O of observed labellings:

M(X , PO) =
∑
L∈O

PO(L) · µ(X , L) (1)

where µ(X , L) is the explanatory utility of the graph X to
explain the labelling L. We may consider that the graph X
is useful to explain a labelling L when the similarity of the
labelling L and the corresponding grounded {in, out, un, off}-
labelling of X , denoted L′ (the labelling with the same ar-
guments labelled off) is maximised. Accordingly, we may
measure the explanatory utility with the following explana-
tory index with a Jaccard flavour:

µ(X , L) =
s

sin + sout + sun + s
(2)

where1

s = |in(L)∩in(L′)|+|out(L)∩out(L′)|+|un(L)∩un(L′)| (3)

sin = |in(L) ∩ out(L′)|+ |in(L) ∩ un(L′)| (4)

sout = |out(L) ∩ in(L′)|+ |out(L) ∩ un(L′)| (5)

sun = |un(L) ∩ in(L′)|+ |un(L) ∩ out(L′)| (6)

Hence µ(X , L) ∈ [0, 1]: if all the labels mismatch then
µ(X , L) = 0, if all the labels match then µ(X , L) = 1.
Consequently, if all the labellings totally mismatch then
M(X , PO) = 0, if all the labellings totally match then
M(X , PO) =

∑
L∈O PO(L), and thus M(X , PO) = 1.

We reckon that the choice of an explanatory measure
shall much depend on the envisaged application, and thus,
we do not further discuss this point. However, we are now
prepared to precise our abstract structure learning problem.

Given:

• an empirical probability distribution PO of labellings
over a set O of observed labellings (of a set A of ob-
served arguments), such that these observed labellings
are drawn from a probability distribution of a proba-
bilistic argumentation frame 〈G,S, (Ω, F, P )〉.

• a set H of hypothetical argumentation graphs 〈A,;〉.

find (or induce or learn)

• a hypothetical argumentation graph X ∈ H such that
the explanatory measure M(X , PO) is maximised.

1Here, s is such that we ignore the labelling where all the
arguments are labelled off.
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If we find an argumentation graph indistinguishable from
the source argumentation graph G underlying the observed
labellings, then the explanatory measure will be maximised.
Even if the source argumentation graph G is not found, we
may confirm or discard some attack relations, which shall
nevertheless appear valuable to inform (i.e. explain) the
observed labellings.

4. LEARNING ATTACKS
Our problem assumes a set H of hypothetical argumen-

tation graphs, and we have to find in it an argumentation
graph to account for some labellings observed in sequence.
To build this set, we start from the complete argumentation
graph induced by the set of observed arguments, i.e. a graph
where all the arguments attack each other.

Definition 8 (Complete argumentation graph).
A complete argumentation graph induced by a set of
arguments A is an argumentation graph 〈A,;〉, where
;= {A; B|A,B ∈ A}.

B

CD

Figure 5: A complete argumentation graph induced
by the arguments {B,C,D}.

Given a probabilistic argumentation graph
〈G,S, (Ω, F, P )〉, the hypothetical argumentation frame
G is necessarily an ‘attack sub-graph’ (defined below) of
the complete argumentation graph C induced by the set of
arguments AG .

Definition 9 (Attack sub-graph). An attack sub-
graph of an argumentation graph 〈A,;〉 is an argumenta-
tion graph 〈A,;′〉 such that ;′⊆;.

For example, the graph in Figure 1 is an attack sub-graph
of the complete graph shown in Figure 5.

A brute force approach for our problem is to start from
the complete argumentation graph C induced by the set of
observable arguments, and then consider every attack sub-
graphs of C till we find a graph X covering all the observed
labellings. However this approach is of course not efficient.

As the brute force approach is not efficient, we investigate
here an alternative: we start from a complete hypothetical
argumentation graph induced from a set of arguments, then,
based on the labellings observed in sequence, we will attach a
credit value to any hypothetical attack relation, and we shall
discard or confirm attacks based on their credits. Since we
attach a credit value (or let us say a weight) to any hypo-
thetical attack, we resort to weighted argumentation graphs
(see [5]):

Definition 10 (Weighted argumentation graph).
A weighted argumentation graph is a triple 〈A,;, v〉 such
that 〈A,;〉 is an argumentation graph, and v :;→ R is a
function assigning a real valued weight to every attack.

B

CD

0

00

0

00

0

0

0

Figure 6: A weighted argumentation graph, where
all the weights have a value 0.

Note that weighted argumentation graphs in [5] are used
for different investigations: [5] uses weights to introduce an
inconsistency budget, whereas we are simply using weighted
argumentation graphs to store a number (that we call a
credit) to every attack, with the idea that this numerical
approach shall ease the treatment of noisy settings in future
investigations.

In the remainder, given a weighted argumentation graph
C, we will say that an attack A; B is

• discarded if vA;B < 0,

• confirmed if vA;B > 0,

• undecided if vA;B = 0,

• possible if vA;B ≥ 0 (in this case the argument A is
called a possible attacker of B).

When we abstract from the weight function of a weighted
argumentation graph 〈A,;, v〉, then we shall straightfor-
wardly consider the corresponding argumentation graph
〈A,;〉 where the weight function is omitted.

To learn attacks, we start from the weighted complete
argumentation graph C where an initial credit is attached
to every attack of C, and in order to cater for the observed
labellings, we shall change the value of the credits to discard
or confirm attacks. To change the credits, we consider
simple theorems considering labellings of single arguments
or pairs of arguments to induce the presence of some attacks.

Theorems. Let G be an argumentation graph, L be a
grounded {in, out, un, off}-labelling of G, and A, B and C
denote (not necessarily distinct) arguments in AG .

Theorem 1. If A and B are labelled in (i.e. L(A) = in
and L(B) = in), then there is no attack B ; A (i.e. B ;

A 6∈;G).

Proof. By contradiction. Suppose there is an attack
B ; A. Since B is in and L is complete, we conclude that
A is out, which contradicts our assumption that A is in.

Theorem 2. If A is labelled in and B is labelled un, then
there are no attacks A; B and B ; A.

Proof. By contradiction. (i) Suppose there is an attack
A ; B. Since A is in and L is complete, B is out, which
contradicts our assumption that B is un. (ii) Suppose that
there is an attack B ; A. Since B is un and L is complete, A
is not in, which contradicts our assumption that A is in.

Theorem 3. If A is labelled un, and any possible attacker
C of A is labelled out or off (C 6= A), then there is an attack
A; A.
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Proof. By contradiction. Suppose that there is no at-
tack A ; A. Since L is complete, we conclude that A
is labelled in, which contradicts our assumption that A is
un.

Theorem 4. If A is labelled un and B is labelled un, and
there are no attacks A ; A and B ; B, and any possible
attacker C of A or B is labelled out or off (C 6= A and
C 6= B), then there is an attack A; B and B ; A.

Proof. By contradiction. Suppose that there are no at-
tacks A; B and B ; A. Since L is grounded, we conclude
that A and B are not labelled un, which contradicts our
assumption that A and B are un.

Theorem 5. If A is out and B is in, and any possible
attacker C of A is labelled out or un or off (C 6= A and
C 6= B), then there is an attack B ; A and no attack
A; B.

Proof. By contradiction. Suppose it is not the case that
“there is an attack B ; A and there is no attack B ; A”.
Since L is grounded, A is not out and B is not in, which
contradicts our assumption that A is out and B is in.

Although these theorems are simple, they are at the core of
our approach. They are the basis of the credit rules used in
Algorithm 1 to progressively confirm or discard attacks, by
increasing or decreasing their credits each time a labelling
is observed.

Definition 11 (Credit rules). Let C = 〈A,;, v〉
denote a weighted complete argumentation graph, and L any
grounded {in, out, un, off}-labelling of C. For any argument
A and B labelled in L, we have the following rules updating
the credits of attacks:

R1(L, C): If L(A) = in and L(B) = in, then

vB;A ← vB;A − 1

R2(L, C): If L(A) = in and L(B) = un, then

vB;A ← vB;A − 1; vA;B ← vA;B − 1

R3(L, C): IfL(A) = un, L(B) = un, and for any possible
attacker C of A or B (C 6= A and C 6= B),L(C) =
out orL(C) = off, then

vB;A ← vB;A + 1; vA;B ← vA;B + 1

R4(L, C): If L(A) = out, L(B) = in, and for any possible
attacker C of A (C 6= A and C 6= B) we have L(C) =
out or L(C) = un or L(C) = off, then

vB;A ← vB;A + 1; vA;B ← vA;B − 1

On the basis of the credit rules, we propose an algorithm
(Algorithm 1) to learn the attack relations: it iteratively
credits the attack relations until some predefined compu-
tational budget (typically time or iteration constraint) is
reached or until every attack is either confirmed or dis-
carded, at which point the loop is halted and the argumen-
tation graph induced so far is returned.

The algorithm starts from a weighted argumentation
graph C, where the credit of every attack is initialised (line
2) - if we are ignorant about the status of an attack, then its

Algorithm 1 Attack learning algorithm.

1: input The weighted complete argumentation graph C =
〈AC ,;C , v〉.

2: For any arguments A,B ∈ AC, initialise credits vA;B .
3: while there is an attack which is neither confirmed nor

discarded, or within computational budget do
4: Get a labelling instance L.
5: Credit the attack relations of C using the credit rules

R1(L, C), R2(L, C), R3(L, C), R4(L, C).
6: C ← pruneDiscardedAttacks(C). (optional)
7: end while
8: X ← prune(C).
9: return the argumentation graph X .

credit is initialised to 0. Every time that a labelling is ob-
served (line 4), credits are possibly updated (line 5), until all
attacks are confirmed or discarded, or some computational
budget is reached. Notice that discarded attacks can be
dumped (line 6) to accelerate the application of credit rules.
When the loop ends, the weighted argumentation graph C
is pruned (line 8) by dumping any undecided or discarded
attacks, to return the argumentation graph with only the
confirmed attacks.

Example 1. Let us illustrate Algorithm 1. Consider the
argumentation graph shown in Figure 1 as our source graph
of a stream of labellings that we will observe. All attacks
are initialised with a credit 0, and thus we start from the
weighted argumentation graph as given in Figure 6.

1. Suppose that the 1st observed labelling instance is
({B,D}, {C}, ∅, ∅). Using the credit rule R1, the
weights of the weighted argumentation graph are up-
dated as follows.

B

CD

−1

0−1

0

0−1

−1

0

0

2. Suppose the 2nd observed labelling instance is
({B}, {C}, ∅, {D}). Using credit rules R1 and R4, the
weighted argumentation graph is updated as follows.

B

CD

−2

0−1

−
1

+
1−1

−1

0

0

3. Suppose the 3rd observed labelling instance is again
({B}, {C}, ∅, {D}). We use the credit rules R1 and R4.
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B

CD

−3

0−1

−
2

+
2−1

−1

0

0

4. Suppose the 4th observed labelling is (∅, ∅, {C,D}, {B}).
We use the credit rule R3.

B

CD

−3

0−1

−
2

+
2−1

−1

+1

+1

5. Suppose the 5th labelling instance is ({C}, ∅, ∅, {B,D}).
We use the credit rule R1 for the update.

B

CD

−3

−1−1

−
2

+
2−1

−1

+1

+1

At this stage, all attacks are either confirmed or discarded,
and thus we can prune the weighted argumentation graph by
dumping all discarded attacks. Finally we return the argu-
mentation graph with only the confirmed attacks, which is
the argumentation graph shown in Figure 1.

As the example illustrates, the algorithm works ‘on the
fly’ and thus a major benefit is that we do not have to keep
in memory the observed labellings. However we have to
keep in memory all the credits of all possible attacks be-
tween any pair of arguments amongst |AG | arguments of a
complete argumentation graph G. The space complexity is
thus quadratic.

Theorem 6 (Space complexity). The space com-
plexity of Algorithm 1 is quadratic.

Proof. Trivial, since the number of possible attacks
amongst n = |AG | arguments of a complete argumentation
graph G is n2.

Concerning time complexity, the burden stems from the
application of credit rules to all possible attacks for any pair
of arguments amongst |AG | arguments of a complete argu-
mentation graph G.

Theorem 7 (Time complexity). The time complex-
ity of applying credit rules is cubic.

Proof. In the worst case, the most demanding rules R3

and R4 have to check the status of n = |AG | attackers
for the arguments of any n2 possible attacks amongst ar-
guments.

In practice, the computational complexity is often dras-
tically decreased by pruning discarded attacks of the
argumentation graph C as optionally proposed in line 6 of
the algorithm.

In case of active learning (i.e. the algorithm can decide
which labellings to consider in line 4 of Algorithm 1), key
labellings (see Definition 13) can be observed to straight-
forwardly evaluate hypothetical attacks. A key labelling is
a {in, out, un, off}-labelling where a set of arguments is ‘iso-
lated’, i.e. all the arguments not in this set are labelled off.

Definition 12. A n-isolated grounded {in, out, un, off}-
labelling is a grounded {in, out, un, off}-labelling with exactly
n distinct arguments not labelled off.

Definition 13 (Key labelling). A key labelling is a
1-isolated grounded {in, out, un, off}-labelling or a 2-isolated
grounded {in, out, un, off}-labelling.

For instance, any labelling in Table 1 is a key labelling, ex-
cept the labellings ({B,D}, {C}, ∅, ∅) and (∅, ∅, ∅, {B,C,D}).

Table 2 summarises the coverage of credit rules w.r.t. ev-
ery possible key grounded {in, out, un, off}-labelling of two
arguments A and B whose the attack relation is unknown.

Table 2: Coverage of key labellings by the credit
rules.

A in in in in un un
B in out un off un off

R1 R4 R2 R1 R3 R3

Every key labelling is covered. However, as illustrated in
Section 3, we cannot distinguish the attacks between two ar-
guments from a labelling where both arguments are labelled
un and at least one argument self-attacks. We have thus
to resolve to induce argumentation graphs indistinguishable
from source graphs.

Theorem 8. Let G denote a source argumentation graph,
let n = |AG | denote the number of arguments in G. An ar-
gumentation graph, indistinguishable from the source graph
G, is induced by observing its n · (n+ 1)/2 key labellings.

Proof. The number of 1-isolated grounded
{in, out, un, off}-labellings of a graph with n arguments is n,
while the number of 2-isolated grounded {in, out, un, off}-
labellings is C(2, n) = n · (n − 1)/22. Thus the number
of key labellings is n · (n + 1)/2. By observing all the
n · (n + 1)/2 key labellings, we can thus confirm or discard
all the attack relations amongst the n arguments (see Table
2). Finally, the confirmed attacks are the attacks of a graph
indistinguishable from the source graph.

In practice, Theorem 8 is interesting because it implies that,
in an active learning setting where it is possible to choose
to observe some labellings in particular, one shall choose to
observe n·(n+1)/2 key labellings to straightforwardly induce
an argumentation graph indistinguishable from the source
graph (in this case the explanatory measure is maximised).

2using standard notation, C(k, n) = n!
k!(n−k)!

, k ≤ n.
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However, the number of labellings observed to induce the
source graph can be inferior to the number of key labellings,
because a labelling may contain multiple isolated (pairs of)
arguments.

If active learning is not possible, and if the algorithm ter-
minates before any attack is confirmed or discarded, then the
returned argumentation graph X may be such that there ex-
ists some labellings of X which are not in the set of observed
labellings, and there exists some observed labellings which
are not labellings of X . So, the algorithm may never confirm
or discard all the attacks, and for this reason, we will as-
sume in the remainder that the underlying probabilistic ar-
gumentation frame 〈G,S, (Ω, F, P )〉 of the observed labelling
is such that for any labelling L in the sample space Ω, we
have P ({L}) > 0. With this assumption, the algorithm will
always empty the set of undecided attacks.

Theorem 9 (Termination). If the computational
budget is finite, then Algorithm 1 terminates, else it ter-
minates almost surely (i.e. it terminates with probability
one).

Proof. If the computational budget is finite, then Al-
gorithm 1 terminates when the computational budget is
reached, else the probability that any key labelling get drawn
is one (since P ({L}) > 0). From the key labellings, the at-
tack relations between any pair of arguments are confirmed
or discarded, which terminates the loop while.

Theorem 10 (Soundness at Termination). If the
computational budget is infinite, Algorithm 1 returns almost
surely an argumentation graph indistinguishable from the
source argumentation graph.

Proof. From the key labellings, we induce an argumen-
tation graph indistinguishable from the source argumenta-
tion graph. Since all these labellings appear almost surely,
then the algorithm returns almost surely an argumenta-
tion graph indistinguishable from the source argumentation
graph.

In this regard, the waiting time to collect the set of key
labellings is the waiting time akin to a partial collection in
the coupon collector problem, see e.g. [8].

If active learning is not possible and the computational
budget is finite, some attacks may remain undecided, and
thus we may be willing to empty the set of undecided at-
tacks, so that the graph X can give full explanation of the
observed labellings. To empty the set of undecided attacks, a
solution consists in approaching the undecided attacks with
a brute force, or any other more subtle technique which we
do not address here. In the brute force approach, and using
Occam’s razor, the graph with the fewest attacks shall be
selected, but we leave such considerations for future work.

5. EXPERIMENTS
To obtain experimental insights, we created 100 artificial

(and thus domain independent) probabilistic argumentation
frames 〈G,S, (Ω, F, Pi)〉 (i ∈ {1, . . . , 100}), all based on the
source argumentation graph G shown in Figure 7. This
graph has no self-attacking arguments, and thus we can aim
to induce it exactly. Since we have 12 arguments, then a
brute approach for finding the graph G would have to con-
sider 2144 hypothetical graphs.

4

1 2

3 5 6 7 8

10

9

11 12

Figure 7: Source argumentation graph.

Each probabilistic argumentation frame had a different
entropy. The entropy of the distribution Pi of a probabilistic
argumentation frame 〈G,S, (Ω, F, Pi)〉 is defined as follows:

entropy(Pi) = −
∑
L∈Ω

Pi(L) · ln(Pi(L)) (7)

To ensure meaningful experiments, we set a probability 0 for
any labelling where all arguments were labelled off.

For every distribution, we run the Algorithm 1 on a stream
of labelling instances (drawn from the considered distribu-
tion) in order to induce a graph maximising the explanation
measure.

As we observed a sequence of n labelling instances, some
instances may not be distinct since a labelling may be drawn
twice or more. Accordingly, we have to distinguish the num-
ber n of labelling instances, and the number m of distinct
labelling instances which are observed (m ≤ n). In Example
1, we observed 6 labelling instances, but we observed 5 dis-
tinct labelling instances because the labelling instances at
the steps 2 and 3 are the same.

We stopped the algorithm as soon as:

• all the attacks of the source graph were included in the
set of confirmed attacks, and the number of undecided
attacks was less or equal to 10 (simulating so a brute
force search on the remaining undecided attacks), or

• n = 106 labelling instances were observed.

The number of observed labellings at termination is shown
in Figure 8 and the associated expected explanatory utility
(as formulated in Section 3) of the induced argumentation
graph is given in Figure 9.

Figure 8: Number of labelling instances and distinct
labellings observed at termination.

As expected, the lower the entropy, the longer it took
to induce the source argumentation graph. Whatever the
entropy, a few distinct labelling instances (less than one
hundred) were necessary to exactly induce the source graph
- to compare to the 2144 possible attack sub-graphs. For
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Figure 9: Expected explanatory utility of the in-
duced argumentation graph at termination w.r.t.
the observed labellings.

any entropy above 2, the source argumentation graph G was
exactly induced. Furthermore, Figure 9 shows that even the
original graph is not retrieved, the expected explanatory
utility of the returned graph may be close to the maximum.

In a second set of experiments, we evaluated the approach
on different distributions, all with an entropy 3±0.05, based
on source graphs with different number of arguments, and
with up to 100 arguments (i.e. up to 210000 hypothetical
graphs).

The number of labelling instances and distinct labelling
instances observed at termination is shown in Figure 10 for
each distribution.

Figure 10: Number of labellings at termination.

The more the number of observed arguments, the longer
the time to guess the source graph. Even when the
source graph was not found at termination, the expected
explanatory utility of the induced graph was above 0.99 at
termination (this pretty flat figure is not shown).

Since the source argumentation graphs were exactly in-
duced in most cases (as expected from Theorem 10) and
the expected explanatory utility of the induced graphs was
above 0.99 at termination in even more cases, the experi-
ments suggest that induced graphs ‘make sense’ in general.
The principal reason holds in that if an attack relation is
discarded then this attack is indeed not part of the source
graph, and when there are no self-attacking arguments, if an
attack relation is confirmed then this attack is indeed part of
the source graph, as ensured by backing our approach with
Theorems 1-5.

6. CONCLUSION
We settled a problem of abstract structure learning re-

garding the induction of attacks between arguments in a
probabilistic framework for abstract argumentation: la-
bellings of arguments are observed and the goal is to learn
attacks between arguments to account for the observed la-
bellings by maximising an explanation measure.

To address this problem of abstract structure learning,
we proposed to use five simple theorems about the attacks
which can be learned from a labelling of arguments. Based
on these theorems, we proposed an anytime and ‘on the fly’
algorithm taking as input a sequence of labellings, weight-
ing the credit of attacks using credit rules, and returning
an argumentation graph meant to account for the observed
labellings.

We showed that if the computational budget is infinite,
then the algorithm returns - almost surely - an argumen-
tation graph indistinguishable from the source graph. In
case of active learning, such an argumentation graph (of n
arguments) is returned for sure (and thus the explanatory
measure is maximised), by observing its n · (n + 1)/2 key
labellings. In practice, it is possible to induce some source
graphs with less labellings than the number of key labellings.
The experiments showed that the time to induce a graph in-
distinguishable from source graph is largely dependent on
the entropy of the source distribution of labellings. The
higher the entropy, the faster the induction is performed.

As future developments, one may regard different credit
rules and other types of labellings, possibly in the light of in-
sights regarding their properties (see e.g. [18, 4]). One may
also regard settings with structured arguments and more so-
phisticated updates of the credits to deal with some types
of noise. As the proposed algorithm works with streams of
labellings, it may be coupled with a so-called argumenta-
tive Boltzmann machine [19, 20] (by showing the labelling
grasped line 4 to the machine). Doing so, the induction of
the argumentation graph shall occur at the same time as the
learning of the probability distribution of labellings, giving
thus explanatory ability to the neural network.
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