
Concurrent Multi-Player Parity Games

Vadim Malvone
Università degli Studi di Napoli

Federico II, Italy
vadim.malvone@unina.it

Aniello Murano
Università degli Studi di Napoli

Federico II, Italy
murano@na.infn.it

Loredana Sorrentino
Università degli Studi di Napoli

Federico II, Italy
loredana.sorrentino@unina.it

ABSTRACT
Parity games are a powerful framework widely used to ad-
dress fundamental questions in computer science. In the
basic setting they consist of two-player turn-based games,
played on directed graphs, whose nodes are labeled with
priorities. Solving such a game can be done in time expo-
nential in the number of the priorities (and polynomial in
the number of states) and it is a long-standing open question
whether a polynomial-time algorithm exists. Precisely this
problem resides in the class UP ∩ co-UP.

In this paper we introduce and solve efficiently concurrent
multi-player parity games where the players, being existen-
tial and universal, compete under fixed and strict alternate
coalitions. The solution we provide uses an extension of the
classic Zielonka Recursive Algorithm. Precisely, we introduce
an ad hoc algorithm for the attractor subroutine. Directly
from this, we derive that the problem of solving such games
is in PSpace. We also address the lower bound and show
that the complexity of our algorithm is tight, i.e. we show
that the problem is PSpace-hard by providing a reduction
from the QBF satisfiability problem.

Categories and Subject Descriptors
I.2.11 [Artificial intelligence]: Distributed artificial intel-
ligence — Multi-agent systems

General Terms
Theory, Verification

Keywords
Parity games; Concurrent multi-player games

1. INTRODUCTION
Parity games [15, 40] are a very powerful mathematical

framework widely used to address fundamental questions in
computer science. They are strictly connected with other
games of infinite duration and in particular with the multi-
agent strategic reasoning [4, 8, 9, 12].

In the basic setting parity games consist of two-player turn-
based games, played on directed graphs, whose nodes are

Appears in: Proceedings of the 15th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2016), J. Thangarajah, K. Tuyls, C. Jonker, S.
Marsella (eds.), May 9–13, 2016, Singapore.
Copyright © 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

labeled with priorities (i.e., natural numbers). The players,
conventionally named Player0 and Player1, move in turn a
token along graph’s edges. Thus, a play induces an infinite
path and Player0 wins the play if the greatest priority visited
infinitely often along the path is even; otherwise, Player1

wins the play. Player0 wins the game if he can induce a play
that is winning. Otherwise Player1 wins the game. The
problem of finding the winner in a parity game is known
to be in UPTime ∩ CoUPTime [23]. Deciding whether a
polynomial-time solution exists is a long-standing open ques-
tion. Aimed to solve this question, as well as to come out
with solutions working efficiently in practice, several algo-
rithms have been proposed in the last two decades. Among
the others we mention the Zielonka Recursive Algorithm [40]
as the best performing one in practice [17].

Parity games have been largely and beneficially applied in
formal system design and verification [13,14,26,35,38]. In
such a domain, we mainly distinguish between closed and
open (reactive) systems [18,27]. While the behavior of closed
systems fully depends on internal states, open systems are
characterized by an ongoing interaction with an external
unpredictable environment whose interaction possibly affects
the system behavior. In open system verification we check
that the system satisfies a desired behavior (specification)
no matter how the environment acts. In a very large set-
ting of specification, the problem reduces to solve a parity
game where the system and the environment take place as
adversarial players [3, 15,26].

In recent years, we are witnessing a strong expansion and
adaptation of models and game-based reasoning in the multi-
player area [1, 21, 22, 32]. In this domain, the game often
involves a multitude of players who play different roles. In
some simplified yet powerful settings, one can have two teams
competing for opposite objectives [1]. In this scenario, if
one wants to make use of parity games then there are two
basic ways to follow. The first, very restricted to the specific
problem under exam is to possible reduce the multi-player
reasoning to a two-players one. The second, much more
efficient, elegant, and general would rather introduce a multi-
player parity game concept, give an efficient solution to the
problem and apply it directly whenever it is required. The
latter is the motivation of this paper. Our aim is indeed to
come up with an abstract tool to both model reactive multi-
player systems and properly solve related decision problems.
In the multi-player setting these games could be efficiently
applied to reasoning about the strategic interaction among
the players by means of logical formalism. As a more concrete
example, one can polynomially reduce formal verification

689

questions about logics for the strategic reasoning such as
Strategy Logic [5, 10, 32, 33] and the like [29, 31] into our
game setting, as well as reasoning efficiently about solution
concepts in multi-player games.

In this paper we introduce and solve efficiently Concurrent
Multi-Player Parity Games (CMPG, for short), in which the
players behave existential or universal in strict and fixed
alternation. With more details, a CMPG extends classic
two-player turn-based parity games by admitting n players,
namely Player0 . . . P layern−1, to play simultaneously over
the prioritized arena. Each Playeri, with i mod 2 = 0 acts
as existential ; the other players are instead universal. The
aim in a CMPG is to check whether there exists a Player0

strategy such that for all Player1 strategies there exists a
Player2 strategy, and so on, such that the resulting plays
satisfy the parity condition. In this case we say that the
team of the existential players wins the game. Solving a
CMPG amount to check whether this is the case.

We show a solution for the introduced CMPG class of
games by using a non-trivial extension of the classic Zielonka
Recursive Algorithm that, we recall, has been conceived for
two-player turn-based parity games. Precisely, we build a
new algorithm for the attractor subroutine. We show that
our solution takes, as complexity, polynomial space in the
size of the game. We also show that this is a tight-complexity
solution. Indeed, we provide a PSpace lower bound by using
a reduction from the satisfiability problem for Quantified
Boolean Formulas (QBF). As another evidence of the strength
of our result, we show that our solution algorithm is better
than a simple (direct) reduction to a two-player turn-based
parity game. In fact, given a CMPG G, such a translation
would lead to a classic parity game with a number of states
that is exponential in the number of players’ decision in G
(and thus exponential in the number of the players) but with
the same number of priorities. By recalling that the Zielonka
Recursive Algorithm is polynomial in the number of states
but exponential in the number of priorities, we would obtain
a non-tight exponential-time upper-bound.

We strongly believe that our result can be usefully used
in a wide range of application domains. The verification
setting we have mentioned above is surely a good example.
In multi-player strategic reasoning several questions can
be directly reduced to this problem. For example it can
be used to address the model checking question of logics
for the strategic reasoning. See [5] for an argument. It is
worth mentioning that the specific setting of multi-player
parity games we have introduced has never been addressed
before. Indeed, all the literature on parity games mainly
concentrates on solving the two-player setting [24, 25, 40],
trying to reduce the time complexity [16, 17, 37] or to get
parametrized algorithms [17,19,28,36], as well as to apply
them in the synthesis and verification of reactive systems [2,
27, 28]. In case a multi-player system is faced, then parity
game have been always applied by first introducing a two-
player intermediate setting [1, 11]. Finally, we report that
concurrent two-player parity games have been considered in
the stochastic setting [6, 7, 12,39].

Outline The sequel of the paper is structured as follows.
In Section 2, we introduce Concurrent Multi-Player Parity
Structures and other preliminary concepts about games. In
Section 3, we report the classic Zielonka Recursive Algorithm
used to solve turn-based parity games. In Section 4, we
introduce CMPG and provide a first simple but non-tight

solution via a translation to turn-based two-player parity
games. In Section 5 we provide a PSpace solution algorithm
to solve CMPG by introducing a new appropriate Attractor
function of the Zielonka Recursive Algorithm to work with
multiple players. In Section 6, we study the lower bound of
the address problem and show that it is PSpace-hard by
means of a reduction from the QBF satisfiability problem.
Finally, in Section 7 we give some conclusions.

2. MODEL
In this section, we introduce a semantic framework, namely

a Concurrent Multi-Player Parity Structure as an abstract
game arena in which a number of players, concurrently and
independently, perform their moves. Such a structure is ob-
tained by further equipping classic Concurrent Game Struc-
tures [1,32] with a labeling function that assigns to each state
a natural number called priority. The definition follows.

Definition 2.1. A Concurrent Multi-Player Parity Struc-
ture (CMPS) is a tuple G ,< Pl,Ac, St, sI , λ, tr >, where
Pl = {Player0, . . . , P layer|Pl−1|} is a finite non-empty set
of players, Ac and St are enumerable non-empty sets of
actions and states, sI ∈ St is a designated initial state, and
λ : St→ N is a labeling function that assigns to each state
a natural number named priority. Let Dc,Pl⇀Ac be the
set of decisions, i.e., partial functions describing players’
action choices. Also, let d[i→ a] be the decision that differs
from d on the fact that Playeri chooses action a. Then,
tr : Dc→(St⇀St) denotes the transition function mapping
every decision δ ∈ Dc to a partial function tr(δ) ⊆ St×St
representing a deterministic graph over the states.

We will use CMPS to define the semantics of Concurrent
Multi-Player Parity Games (CMPG). Before doing that we
need some additional basic game concepts.

A track is a finite sequence of states ρ ∈ St∗ such that, for
each i ∈ [0, · · · , |ρ| − 1[, there exists a decision d ∈ Dc such
that (ρ)i+1 = tr((ρ)i, d). A track ρ is non trivial if |ρ| > 0.
We use Trk ⊆ St+ to denote the set of all non trivial traces.
Moreover, by fst(ρ) = ρ0 we denote the first state of a track.
By Trk(s) ⊆ Trk we denote the set of tracks starting from

the state s, i.e. Trk(s) , {ρ ∈ Trk : fst(ρ) = s}.
A path π is an infinite sequence of states π ∈ Stω such

that, for each i ∈ N, there exists a decision d ∈ Dc such that
(π)i+1 = tr((π)i, d). We use Pth ⊆ Stω to indicate the set
of all paths and Pth(s) ⊆ Pth for the set of paths starting

from the vertex s, that is Pth(s) , {π ∈ Pth : fst(()π) = s}.
A CMPG is a game played over a CMPS by players

Player0, . . . , P layer|Pl−1| under the assumption that they
will play for an infinite number of rounds. In each round,
the players concurrently and independently choose moves,
and the current state and the action chosen for each player
determine the successor state. In details we have that each
Playeri, with i mod 2 = 0 is part of the existential (even)
team; the other players are instead part of the universal (odd)
team. Informally, the goal in a CMPG is to check whether
there exists a Player0 strategy such that for each Player1

strategy there exists a Player2 strategy, and so forth, such
that the induced plays satisfy the parity condition. Then, we
say that the existential player team wins the game. A strategy
can be seen as a scheme that, for each player, contains all
the choices of actions he can perform depending on the track
of the game. The formal definition follows.

690

s
1

s
0

s
2

s

3

s

4

aab

a ? a b ? ? abb

? ? ?

a ? ?/b ? a

b ? b ? ? ?

? ? ?

Figure 1: Concurrent Multi-Player Parity Game.

Definition 2.2. A strategy is a partial function σ : Trk ⇀
Ac that maps each non-trivial internal track in its domain to
an action. Given a state s ∈ St, a strategy σ is said s-total if
it is defined on all tracks starting in s, i.e., dom(σ) = Trk(s).
Str (resp., Str(s)) denotes the set of all (resp., s-total) strate-
gies. Additionally, for a player Playeri ∈ Pl, we indicate
with Stri(s) the set of all strategies for P layeri starting from
s and with σi ∈ Stri(s) one of its strategies.

A play is an outcome of the game determined by the
strategies of all the players being involved. Its definition
follows.

Definition 2.3. Given a fixed strategy σi ∈ Stri(s) for
each P layeri ∈ Pl, the composition of these strategies induces
a unique path π = π0π1π2 . . . named play such that for all
j ∈ N, it holds that (π)j+1 = tr((π)j , dj), where dj is the
decision σ0((π)≤j)× . . .× σ|Pl−1|((π)≤j).

For the sake of clarity we introduce the following example.

Example 2.1. Consider the CMPG depicted in Figure 1.
It models the interaction between three players Pl={P layer0,
P layer1, P layer2} over an arena with five states, St = {s0, s1,
s2, s3, s4}, where s0 is the initial state. Each state of the
arena is labeled with a natural number, reported under the
name of the graph vertex, as defined by the priority function:
λ(s0) = 1, λ(s1) = 2, λ(s2) = 0, λ(s3) = 3, λ(s4) = 4.
The transition function is so defined: tr(s0, a ? a) = s1,
tr(s0, b ? ?) = s2, tr(s0, abb) = s3, tr(s0, aab) = s0 tr(s1, ? ?
?) = s1, tr(s2, a ? ?) = s3, tr(s2, b ? a) = s3, tr(s2, b ? b) = s4,
tr(s3, ? ? ?) = s3 and tr(s4, ? ? ?) = s4, for all ? ∈ Ac.
A possible play is π = s0s2s4

ω. This play is obtained by
letting the players to take in traces (s0) (s0s2) (s0s2s4)ω the
following actions, respectively: for Player0 the actions b, b,
?, for P layer1 the actions ? ? ?, and for P layer2 the actions
? b ?.

3. ZIELONKA RECURSIVE ALGORITHM
A Turn-Based Two-Player Parity Game (T2PG, for short)

is played on a Turn-Based Two-Player Game Structure
(T2PS), an arena in which the states are partitioned into
two sets and respectively assigned to the two players P layer0
and P layer1. These players move a (single and shared) token
along the edges of the graph and a player moves the token

1 Algorithm Solve(G) :
2 i f St = ∅ then
3 W0 = ∅ ;
4 W1 = ∅ ;
5 i f St 6= ∅ then
6 p = max{λ(s)|s ∈ St} ;
7 i = p mod 2 ;
8 X = {s ∈ St : λ(s) = p} ;
9 A = Attri(G,X) ;

10 (W′i,W
′
¬i) = Solve(G \A) ;

11 i f W′¬i = ∅ then
12 Wi = A ∪W′i ;
13 W¬i = ∅ ;
14 else
15 B = Attr¬i(G,W

′
¬i) ;

16 (W′′i ,W
′′
¬i) = Solve(G \B) ;

17 Wi = W′′i ;
18 W¬i = B ∪W′′¬i ;
19 return (Wi,W¬i)

Figure 2: Zielonka Recursive Algorithm.

to an adjacent node when he owns it along one of its states.
As in CMPG, the moves of the player induce an infinite play
and P layer0 wins this play if the largest priority that occurs
infinitely often is even; otherwise P layer1 wins. Formally, the
winner of the play π = s0, s1, ... ∈ Pth under the parity condi-
tion is P layeri iff max{p : ∀j ∃k > j : λ(sk) = p} mod 2 = i.
P layer0 wins the game if he is can prevent P layer1 to induce
a play in which Player1 is the winner.

It is useful to observe that, if we consider a CMPG with
two players in which in each state only one player can choose
an action (this is possible as we have set decision function
to possibly be partial along the definition) then we obtain a
T2PG. Therefore, in the following we assume a T2PG to be
just a CMPG with two players and equipped with a specific
partial decision function, as described before, that effectively
let partitioning the set of states among the two players.

In the literature, several algorithms have been introduced
to solve T2PG and, among the others, the Zielonka Recursive
Algorithm [40] has been shown to perform better than the
others in randomly generated games [17]. This slgorithm, as
reported in Figure 2, uses a divide and conquer technique.
It constructs the winning sets for both players using the
solution of sub-games. It removes the nodes with the highest
priority from the game, together with all nodes (and edges)
attracted to this set. The algorithm Solve(G) takes as input
a game graph G and, after a number of recursive calls over
ad hoc built sub-games, returns the winning sets W0 and
W1 for Player0 and Player1, respectively. It constructs the
winning sets W0 and W1 for both players using the solution
of sub-games. In particular, it makes use of a subroutine
called attractor. Informally, starting from a set X ⊆ St and
Playeri, with i ∈ {0, 1}, the i-attractor of X is the least
set of nodes Attri(X) containing X such that i can force
a visit to X from every node in Attri(X). In other words,
it starts with the initial set X and adds, in every step, all
nodes belonging to Playeri that can reach X with a single
edge and all nodes belonging Player1−i that must reach X
no matter which edge P layer1−i takes. Since calculating the
reachable vertexes from a set of vertexes X requires at most
time O(|e|+ |n|), we have that, in the worst case, calculating
Attri(X) requires time O(|n|2).

691

The following theorem reports the complexity of the Zielon-
ka Recursive Algorithm.

Theorem 3.1. [40] For a T2PG G with n states, e edges,
and k priorities, the algorithm Solve(G), returning the win-
ning sets for both players, takes time complexity O(e · nk).

4. SOLVING CMPG VIA A REDUCTION TO
T2PG

In this section, we introduce an algorithm to solve CMPG
through a direct reduction to T2PG. As we will see later, this
gives a non-efficient solution. Indeed, in Section 5 we show
a better performing algorithm resulting from a non-trivial
extension of the Zielonka Recursive Algorithm. Precisely, we
introduce an ad hoc algorithm for the attractor subroutine.

In the reduction we propose from a CMPG to a T2PG,
the players are not treated in a one-shot fashion, but rather
they are emulated by finite games between the two players:
the first chooses the actions of the players of the existential
team and the second the ones from the universal one. The
resulting T2PG is just polynomial in the number of actions
and exponential in the number of players of the starting
CMPG.

Theorem 4.1. Given a CMPG G with |St| states and k
priorities, there is a T2PG G?, played by P layer0 and P layer1
over a T2PS with |St| · |Pl| · |AcPl| states and O(|k|) priorities
such that P layer0 wins the T2PG G? iff the existential player
team wins the CMPG G.

Proof (Sketch). Let G ,< Pl,Ac, St, sI , λ, tr > be a
CMPG, we now show how to construct the required T2PG
G? ,< Pl?,Ac?, St?, sI

?, λ?, tr? >.
By definition, G? has two players, P layer0 and P layer1, and

Player0 wins the game if he is able to induces only plays in
which the greatest priority that occurs infinitely often along
the corresponding paths in the structure of the game is even;
otherwise Player1 wins the game. To achieve this task, for
each state in St, Player0 (resp., Player1) chooses an appro-
priate action for each player even (resp., odd). Thus we set

Pl? , {P layer0, P layer1} and Ac? , Ac. The state space has
to maintain an information about the position in G together
with the index of the player that has still to be evaluated and
the actions already associated to the previous players. To
do this, we set St? , St× [0, |Pl| − 1]×i(Dc<i) where Dc<i

is the decision of Playerj , for each j = 0, . . . , i− 1.
Before proceeding with the definition of the transition

function, it is helpful to identify which are the active play-
ers for each possible state. We define a function type :
{0, . . . , |Pl|} → Pl? that for an index of player gives the
corresponding player in G?. For a state (s, i, d) ∈ St? the

active player is type(i) , i mod 2.
The transition function is defined as follows. For each state

(s, i, d) with i < |Pl| − 1 and decision type(i) 7→ c, we simply
need to increase the counter i and associate the player i with
action c. Formally, we set tr?((s, i, d)) , (s, i+ 1, d[i 7→ c]).
For a state (s, |Pl| − 1, d), instead, we define a transition to
the state (s′, 0,∅), where s′ is the successor of s in the game
G following the decision d[|Pl| − 1 7→ c], whenever active.

Formally, we have tr?((s, |Pl| − 1, d)) , (tr(s, d[|Pl| − 1 7→
c]), 0, ∅). Now, we define the priority function λ?. For each
state (s, i, d), we have that:

s,0,∅
3

s,1,a
0

s,1,b
0

s,2,aa
0

s,2,ab
0

s,2,bb
0

s,2,ba
0

s,0,∅
5

s,0,∅
4

s,0,∅
2

a b

ba ba

a b

b

a ∗∗

Figure 3: Conversion of the initial state.

λ?((s, i, d)) ,

{
λ(s) + 2, if i = 0 and d = ∅;
0, otherwise.

The idea behind the priority function is to simulate in an
equivalent manner the concurrent game. Given a transition
from s to s′ in G with d the actions associated to each player,
the effective transition in G occurs when the game is in
(s, |Pl| − 1, d′) with d′ in accordance with d, and the player
|Pl|−1 selects the action in accordance with d, then the game
passes at the state (s′, 0, ∅). We name all states (s, i, d) with
i = 0 and d = ∅ the external states and internal the others.
Our goal is to use a small priority for the internal states, i.e.
the states that do not correspond to any state in the original
game. To do this, we label all internal states with the lowest
priority (i.e. 0) and all external states by increasing their
priority by a factor of 2. We increase the priority of external
states to avoid the case that the internal states may have
the same priority of the external once. Finally, the initial
state is s?I , (sI , 0,∅).

Now, we discuss the complexity of reduction from G to G?.
First, we have that for each s ∈ St the reduction produces a
number of states equal to

∏
|Pl| |AcPl|. In fact, given a state

s for each player, in the worst case, the number of states
produced by the reduction is |AcPl|, i.e. the cardinality of
the set of decisions. Then, the complexity result follows.

To better understand the reduction in the previous theorem,
consider again the model introduced in the previous section
and in particular its initial state s0. In gray rectangle de-
picted in Figure 3 there are the states that represent s0 in a
two-player turn-based parity game. In particular, there are
three level of decision, two for Player0 and one for Player1

(depicted in bold). After the three level of decision, as in
Figure 1 there are the effective transactions. For example,
consider the state (s, 2, aa). The owner of this state is
Player0 in fact type(2) = 0. If Player0 chooses the action b
it returns to state (s, 0, ∅) that in G is represented through
a loop on initial state s0.

By the construction showed in the Theorem 4.1 and by
the complexity for solving a T2PG reported in Theorem 3.1,
we obtain the following result.

Corollary 4.1. The complexity to solve the CMPG is
exponential in both the number of the priorities and the num-
ber of players.

692

5. SOLVING EFFICIENTLY A CMPG
The main complexity bottleneck in dealing with CMPG

is the number of players. Indeed, the attractor procedure
needs to follow the full chain of players to come up with the
winning set of states and this requires, in the worst case,
exponential time. In this section we provide some tools in
order to simplify this task and then we show how to apply
them to have an efficient solution algorithm to solve the
game.

Generally speaking, standard quantification over strategies
introduces an unintuitive interpretation in the semantics of
games, since it instantiates full strategies, which includes
also future actions, whereas players see only actions played
in the past. In more details, a quantification of the form
∀∃ means that the existentially quantified strategy is chosen
in response to the universally quantified strategy, which
prescribes actions in response to tracks that may never arise
in the actual game. In classic games, a player reacts only
to current and past actions taken by other players, so the
response of the existentially quantified strategy to a given
track should depend only on the response of the universally
quantified strategy to this track. We deeply make use of
this concept along the proposed solution for CMPG. To
explain this formally, we make use of the concept of Skolem’s
dependence function of a quantification, as introduced in [32].
The main idea here is inspired by what Skolem proposed
for First Order Logic in order to eliminate all existential
quantifications over variables, by substituting them with
second order existential quantifications over functions, whose
choice is uniform w.r.t. the universal variables.

We start by introducing some notation regarding quantifi-
cation prefixes.

Let ℘ ∈ Qnt(V) be a quantification prefix over a set

V (℘) , V ⊆ Vr of variables. By 〈〈℘〉〉 , {x ∈ V (℘) :

∃i ∈ [0, |℘|[. (℘)i = 〈〈x〉〉} and [[℘]] , V (℘) \ 〈〈℘〉〉 we denote
the sets of existential and universal variables quantified in
℘, respectively.

Let x, y ∈ V (℘) be two variables. We say that x precedes
y in ℘, in symbols x <℘ y, if x occurs before y in ℘, i.e.,
there are two indexes i, j ∈ [0, |℘|[, with i < j, such that
(℘)i ∈ {〈〈x〉〉, [[x]]} and (℘)j ∈ {〈〈y〉〉, [[y]]}. We also say that y
is functional dependent on x, in symbols x ℘ y, if x ∈ [[℘]],
y ∈ 〈〈℘〉〉, and x <℘ y, i.e., y is existentially quantified
after that x is universally quantified, so, there may be a
dependence between a value chosen by x and that chosen
by y. This definition induces the set Dep(℘) , {(x, y) ∈
V (℘)× V (℘) : x ℘ y} of dependence pairs and its derived

version Dep(℘, y) , {x ∈ V (℘) : x ℘ y} containing all
variables from which y depends.

We use ℘ ∈ Qnt(V (℘)) to indicate the quantification
derived from ℘ by dualizing each quantifier contained in it,
i.e., for all indexes i ∈ [0, |℘|[, it holds that (℘)i = 〈〈x〉〉 iff
(℘)i = [[x]], with x ∈ V (℘). It is evident that 〈〈℘〉〉 = [[℘]]
and [[℘]] = 〈〈℘〉〉.

Finally, we define the notion of valuation of variables. Let
D a generic set, called domain, by V alD(V) , V → D we
denote the set of all valuation functions over D defined on
V ⊆ Vr. In the sequel of the paper we consider as domain
set just the set of actions.

We now give a general high-level semantics for the quantifi-
cation prefixes by means of the following definition of Skolem
dependence function.

Definition 5.1 (Skolem Dependence Function).
Let ℘ ∈ Qnt(V) be a quantification prefix over a set V ⊆
Vr of variables, and D a set. Then, a Skolem dependence
function for ℘ over D is a function θ : V alD([[℘]])→ V alD(V)
satisfying the following properties:

1. θ(v)
�[[℘]] =v, for all v ∈ V alD([[℘]]);

2. θ(v1)(x) = θ(v2)(x), for all v1, v2 ∈ V alD([[℘]]) and
x∈〈〈℘〉〉 such that v1�Dep(℘,x) =v2�Dep(℘,x).

By ΘD(℘) we denote the set of all Skolem dependence func-
tions for ℘ over D. It is important to note that, by replacing
D with the set of strategies, we obtain a Skolem dependence
function over strategies.

We have now all the ingredients to give an appropriate
definition of the Attractor function for a given CMPG G.
Recall that, differently from the turn-based case, we do
not have the specific membership of a state to a specific
player. Also, we do not have two single players but rather
two teams of players, one existential and one universal, with
the players of the two teams playing in a precise shuffled
modality. Accordingly, we introduce two different sub-notions
of Attractor, one used for the team of players to which is
associated the existential quantifier Attr∃(G,X) and the
other for the one to which it is associated the universal
quantifier Attr∀(G,X). The two definitions follow.

Definition 5.2. Attr∃(G,X) is the largest set of vertexes
such that the players associated to the existential quanti-
fier have a strategy that allows to move from any vertex of
Attr∃(G,X) to X in a finite number of steps. Formally, for
each k ∈ N we define
X0 = X;
Xk+1 = Xk ∪ {s ∈ St : ∃θ ∈ ΘAc(℘), ∀c ∈ V alAc([[℘]]) :
tr(s, θ(c)) ∈ Xk}.
Attr∃(G,X) =

⋃
k∈N Xk.

Definition 5.3. Attr∀(G,X) is the largest set of vertexes
such that the players associated to the universal quantifier
have a strategy that allows to move from any vertex of
Attr∀(G,X) to X in a finite number of steps. Formally,
for each k ∈ N we define
X0 = X;
Xk+1 = Xk ∪ {s ∈ St : ∃θ ∈ ΘAc(¬℘), ∀c ∈ V alAc([[℘]]) :
tr(s, θ(c)) ∈ Xk}.
Attr∀(G,X) =

⋃
k∈N Xk.

Similarly, we can define the sets of vertexes from which
the existential ∃ or the universal ∀ team gets trapped, so
losing the game. The formal definition of the trap notion
follows.

Definition 5.4. Let i ∈ {∃,∀}. A σi-trap over G is any
non-empty set X of vertexes such that for each vertex s ∈ X,
if i = ∃ there exists a function θ ∈ ΘAc(¬℘)∀c ∈ V alAc([[℘]])
such that tr(s, θ(c)) ∈ X, otherwise there exists a function
θ ∈ ΘAc(℘)∀c ∈ V alAc([[℘]]) such that tr(s, θ(c)) ∈ X.

Below, we report some basic properties about the construc-
tion of the winning sets for the coalitions of players ∃ and ∀.
The following facts are immediate remarks on the definition
of the game and extend to our game setting similar concepts
from the classic two-player turned-based parity games.

693

1 Algorithm Attr (G,X, f , n) :
2 c = |X| ;
3 for k = 1 to c do
4 v = Xk ;
5 h = numadj(Xk)\removeAdjIn(v,X) ;
6 while h 6= 0
7 u = removeFirst (adj (v)) ;
8 h = h−1;
9 i f Check(n, f, 0, ∅, s,X) = 1 then

10 X = X ∪ u ;
11 return (X)

Figure 4: Multi-player Attractor Algorithm.

1 Algorithm Check (n , f , i , d , s , X) :
2 r = i mod 2 ;
3 for c ∈ Ac do
4 i f i = n− 1 then
5 i f i mod 2 = f
6 r = (r ∨ tr(s, d[i→ c]) ∈ X) ;
7 else
8 r = (r ∧ tr(s, d[i→ c]) ∈ X) ;
9 else

10 i f i mod 2 = f
11 r = (r ∨ Check(n, f, i+ 1, d[i→ c], s,X)) ;
12 else
13 r = (r ∧ Check(n, f, i+ 1, d[i→ c], s,X)) ;
14 return (r)

Figure 5: Check Algorithm.

Remark 5.1. Let G be a CMPG. For each set X ⊆ St we
have that St\Attr∀(G,X) is a trap for the players associated
to the universal quantifier.

Remark 5.2. Let G be a CMPG. For each set X ⊆ St we
have that St\Attr∃(G,X) is a trap for the players associated
to the existential quantifier.

Finally, the next remark refers to the winning sets W
constructed in the algorithm Solve(G) in Figure 2.

Remark 5.3. For i ∈ {∃,∀} and X ⊆ St. If W
′
¬i = ∅

then Wi = Attri(G,X) ∪W
′
i is a winning set for a set of

player i.

In the sequel we describe how to compute the attractor
sets. We also discuss the time and space complexity of the
related routines.

Theorem 5.1. Let G be a CMPG, p ∈ {∃,∀}, and X ⊆
Attrp(G,X). Let m = |St| be the number of vertexes in G.

The set Attrp(G,X) is computable in time 2O(log(m)+log|Ac|∗n)

where n is the number of players and Ac the set of actions.

Proof. Consider the algorithm Attr(G,X, f, n) in Fig-
ure 4. It takes as input a game graph G, a set X ⊆ St of
vertexes, a flag f indicating whether it is the turn of the
player belonging to the team even or odd, and n correspond-
ing to the number of players. Suppose that the vertexes are
ordered. First, the algorithm computes the size of the set X
(c = |X|). For each vertex in X, its adjacency list is scanned,

checking if every adjacent vertex satisfies the IF condition
in line 9. The algorithm terminates when all the adjacency
lists of the vertexes in X have been exploited. Then the
algorithm returns the set X containing the largest set of
vertexes form which, in a finite number of steps, it is able to
reach a vertex in X. The algorithm in the mentioned IF con-
dition makes a call to the subroutine Check(n, f, 0, ∅, s,X).
This function takes as input n corresponding to the number
of players, a flag f indicating whether it is the turn of a
player belonging to the team even or odd, an index i tracking
the player who is playing at the current time, a decision d
representing the choice of an action for each player, a vertex
s and a set X that are used to determine whether, from s
and performing the decision d, it is possible to stay in X. It
assigns, from a vertex s taken as input, an action to a player
and then checks whether this choice allows to achieve the
target. Let analyze the time complexity of the subroutine
Check(n, f, 0, ∅, s,X). We indicate this value with TCheck(n).
This complexity clearly relies on the construct FOR in line
3 that gives the major contribution over the input param-
eters. This construct is repeated at most |Ac| times. To
calculate TCheck(n), we calculate the complexity of a generic
TCheck(n−i). Let TCheck(n−i) be a positive function expressed
as follows.

TCheck(n−i)=

{
2 + 3 ∗ |Ac| if i=n− 1

2 + (3 + TCheck(n−(i+1))) ∗ |Ac| if i<n− 1

By replacing, iteratively, the values of the variable i, we
obtain TCheck(n) = 2 + 5 ∗

∑n−1
i=1 |Ac|i + 3 ∗ |Ac|n. From this

we can deduce what follows.

TCheck(n) = 2 + 5 ∗
∑n−1

i=1 |Ac|i + 3 ∗ |Ac|n

≤ 2 + 5 ∗ (n− 1) ∗ |Ac|n−1 + 3 ∗ |Ac|n 1

≤ (n− 1) ∗ |Ac|n−1

= O(n ∗ (|Ac|n ÷ |Ac|))
= O(n ∗ |Ac|n−1)

= O(n ∗ |Ac|n)

= O(n ∗ 2log |Ac|∗n)

= O(2log n ∗ 2log |Ac|∗n)

= O(2log n+log |Ac|∗n)

= 2O(log |Ac|∗n)

So far, we have calculated the complexity of the subroutine
Check(n, f, 0, ∅, s,X).

Now, we analyze the complexity of the attractor function
Attr(G,X, f, n) . The assignment at the line 1 is done in
constant time. The FOR (line 3...11) is performed |X| times
that, in the worst case, is equal to |St|. The WHILE construct
(line 6) is performed h times. Based on these considerations,
we say that the running time of the attractor function is

given by
∑|X|

k=1 3 + (4 + TCheck(n))hk.
Assume that m = |St| and j = |X|. It is easy to see

that hk = m − j (line 5). So, we have that
∑j

k=1 3 + (4 +
TCheck(n))k(m− k). By a matter of calculation and over ap-
proximation, we get that the time complexity of the attractor
is 2O(log(m)+log|Ac|∗n).

1 Note that |Ac| > (n− 1)

694

It is clear that the extra time complexity in solving a
CMPG, with respect to the classic two player parity games,
relies on the fact that it admits a multitude of players. In
particular, this is due to the fact that on increasing the
number of players, for each state, the number of decisions
increases exponentially.

The complexity of the proposed algorithm results to be
much better in terms of space consumption. Indeed, it
only requires polynomial space, as we prove in the next
theorem. In the next section we also show that this is a tight
complexity.

Theorem 5.2. Let G be a CMPG. The algorithm Solve(
G) is computed in space |St|2 + (log|C| + log|St| + |Pl| ∗
log|Ac|) ∗ |St| where St, C, Pl and Ac are the set of states,
the set of different priorities, the set of players and the set
of the actions, respectively.

Proof. We first analyze the subroutines of the recursive
algorithm. Start with the function Check(n, f, i, d, s,X). At
line 2 it is initialized a Boolean variable that needs constant
space. For the assignments at the lines 6 and 8, we do not
need additional storage space as we can overwrite the same
boolean variable. As the FOR construct regards (line 3 - 13)
we need log|Ac| space. Concerning lines 11-13, the algorithm
is recursively called (by the next player).

By iterating on the number of players, we have that

SCheck(1) = 1 + log|Ac|
SCheck(2) = 1 + log|Ac|+ SCheck(1) = 2 ∗ (1 + log|Ac|)
SCheck(3) = 1 + log|Ac|+ SCheck(2) = 3 ∗ (1 + log|Ac|)

...

The generic element SCheck(n−i) is given by

SCheck(n−i) =

{
1 + log|Ac| if i=n− 1

1 + log|Ac|+ SCheck(n−(i+1)) if i<n− 1

It is easy to note that, to each iteration, the value 1 +
log|Ac| does not depend on the next iteration. So, we can
conclude that

SCheck(n) = n ∗ (1 + log|Ac|) since n = |Pl|
= O((1 + log|Ac|) ∗ |Pl|)
= O(|Pl| ∗ log|Ac|)

Then, the amount of memory required to perform Check(n,
f, i, d, s,X) is O(|Pl| ∗ log|Ac|). We proceed by analyz-
ing the space complexity of the function Attr(G,X, f, n).
Each of the basic operations needs space log|St|. Then, we
have 5 ∗ log|St|. By knowing the space complexity of the
function Check(n, f, i, d, s,X), we have that the amount of
memory required to perform Attr(G,X, f, n) is given by
SAttr(G,X, f, n) = O(log|St|+ |Pl| ∗ log|Ac|).

Finally, we analyze the complexity of the algorithm
Solve(G). The assignments at lines 3-4 require constant space.
In addition, the operations from lines 5 to 19 (excluding the
attractor calls) need the declaration of the seven variables,
each of which needs |St| space. By knowing the complexity
space of the function Attr(G,X, f, n), we have that the space
complexity of the recursive algorithm Solve(G) is given by
SSolve(G) = 7∗|St|+log|C|+SSolve(G\A)+SAttr(G,X, f, n)
where C corresponds to the maximum number of priority.

Let n = |St|, by using an over-approximation of the G \A,
we have that

SSolve(n)={
2 if n=0

7∗n+log|C|+SSolve(n− 1)+SAttr(G,X, f, n) if n>0

By iterating over n, we have that

SSolve(0) = 2
SSolve(1) = 7 + log|C|+ SSolve(0) + SAttr(G,X, f, n)

= 7 + log|C|+ 2 + SAttr(G,X, f, n)
= 9 + log|C|+ SAttr(G,X, f, n)

SSolve(2) = 14 + log|C|+ SSolve(1) + SAttr(G,X, f, n)
= 14 + log|C|+ 9 + log|C|+ SAttr(G,X, f, n)+
SAttr(G,X, f, n)
= 23 + 2 ∗ log|C|+ 2 ∗ SAttr(G,X, f, n)
...

SSolve(n) = (7 ∗ (n ∗ (n+ 1)))/2 + 2 + n ∗ log|C|+ n∗
SAttr(G,X, f, n)

= (n2 + (log|C|+ SAttr(G,X, f, n)) ∗ n)
= (n2 + (log|C|+ log|St|+ |Pl| ∗ log|Ac|) ∗ n)
= (|St|2 + (log|C|+ log|St|+ |Pl| ∗ log|Ac|) ∗ |St|)

Hence, in term of space complexity, the algorithm is
quadratic in the number of states, logarithmic in the num-
ber of priorities and actions and polynomial in the number
of players. In other words, it takes polynomial space and
therefore we are done with the proof.

6. LOWER BOUND
In this section we show that solving CMPG is PSpace-

hard through a reduction from the satisfiability problem of
quantified Boolean formulas (QBF, for short). A (fully) quan-
tified Boolean formula is a formula in quantified propositional
logic where every variable (from a finite set) is quantified
by using either an existential or a universal quantifier. For
example, ∃x ∀y ∃z ((x ∧ z) ∨ y) is an instance of QBF. A
quantified Boolean formula is in prenex normal form if it
has two basic parts: a portion containing only quantifiers
and a portion containing an unquantified Boolean formula.
Checking whether in a quantified Boolean formula φ there
exists an assignment profile to the variables, given in accor-
dance with the quantifiers, that satisfies φ is known to be
a PSpace-complete problem. We will provide a reduction
such that for each instance φ ∈ QBF we build a CMPG G
such that φ is true if and only if the existential coalition in
G wins the game.

The reduction we provide uses and extends a reduction
introduced in [20, 30]. They show that, in case we restrict
to formulas in QBF with a prefix of quantification ∃∀ the
satisfiability problem can be reduced to solving a game over a
specific concurrent arena (formally a CGS) where each move
comes from the possible interaction between the coalitions
of players. These moves are defined through a Σp

2 algorithm,
named CPre, that calculates the pre-image of a set of states
over a given coalition. We recall that Σp

i is the class of
problems that can be solved by a nondeterministic Turing
machine in polynomial time with i recursive calls to an NP

oracle, that ∆p
i+1 = PΣ

p
i , and that PH =

⋃
k∈N ∆p

i [34].
The CPre algorithm in [20,30] considers just one call to

an NP oracle as the game structure cannot accommodate

695

s
0

s⊥
1

s>
2

Figure 6: The game resulting from the reduction.

more than one coalition alternation. In our case, instead
we can address games with an arbitrary number of (strict)
alternation among coalitions of players.

Theorem 6.1. The problem of deciding a winner in a
CMPG is PSpace-hard

Proof. Given a fully quantified Boolean formula φ =
Q0x0 · · ·Qn−1xn−1ϕ(x0, . . . , xn−1) in prenex normal form,
we now show how to construct an instance of a CMPG G
such that the existential team wins the game if and only if
the formula is satisfiable. The game is G ,< Pl,Ac,St, sI , λ,
tr > where the set of players Pl = {x0, . . . , xn−1} is the set
of the Boolean variables, the set of actions Ac = {0, 1} is the
sets of the truth values to be assigned to Boolean variables,
the set of states is St = {s0, s>, s⊥}, the labeling function
λ : St → N assigning to each state a priority is such that
λ(s0) = 0, λ(s⊥) = 1, and λ(s>) = 2. Finally, sI = {s0} ∈ St
is a designated initial state. It just remains to define the
transition function tr. Let d ∈ Dc be a specific decision where
Dc,Pl⇀Ac is the set of decisions. We say that

tr(s0, d) =

{
s>, if d |= ϕ

s⊥, otherwise

The game built out of this construction is showed in Fig-
ure 6. Note that, if the assignment of the truth values at
the Boolean variables makes the formula true then the to-
ken remains infinitely often at the state s> (so letting the
existential team to win the game) otherwise it remains in s⊥
infinitely often.

It is easy to see that by using an explicit transition func-
tion (as we have done so far) the reduction from QBF to
CMPS is exponential. In order to make the reduction to be
polynomial one can use instead an implicit representation of
the transition function as in [30]. Precisely, we assume that
the transitions from any state s are given by the sequence
((ϕ0, s0), (ϕ1, s1), . . . , (ϕ|tr(s)|, s|tr(s)|)), where si ∈ St and ϕi

is a boolean combination of propositions xj = aj that evalu-
ate to true iff xj chooses the action aj . The transition table
is then defined as follows: tr(s, a0, . . . an−1) = sj iff j is the
lowest index s.t. ϕj evaluates to true when players x0 to xn−1

choose moves a0 to an−1. At this point, we use the procedure
in Figure 7 to calculate the transition function that extends
the one introduced in [30]. The procedure CPre guesses an
action for each player in order to construct a decision. It
expands the set of states that are winning for the existential
players if the QBF formula ϕ holds. In particular, note that
s0 belongs to CPre(Pl, s>) iff there exists a valuation for
variables assigned to the existential quantifiers such that
ϕ> is true whatever the players associated to the variables
universally quantified will choose. Finally, the theorem holds
by using the following reasoning. Given ϕ, the algorithm
CPre requires a tower of guesses whose height depends on
the number n of quantifications. More precisely, for all ϕ
with n quantifications CPre is in Σp

n.
Hence in general, for each formula ϕ, we have that the

algorithm CPre is in PH.

1 Procedure CPre(Pl, S) :
2 W = ∅ ;
3 For each s ∈ St
4 i = 0 ;
5 For each i < |Pl|
6 i f (i mod 2 == 0)
7 ai = guess∃(s,Pli, d<i);
8 else
9 ai = guess∀(s,Pli, d<i);

10 d<i+1 = d<i · ai;
11 j = 0;
12 while (¬ϕj(d))
13 j + +;
14 i f sj ∈ S
15 W = W ∪ {sj};
16 return W

Figure 7: Procedure CPre.

7. CONCLUSION
In this paper, we have introduced and solved Concurrent

Multi-Player Parity Games (CMPG) as an extension of the
classic and well-known (two player turn-based) parity games.
In a CMPG several players concurrently and independently
move along edges by taking decisions as tuples of action
moves. As for classic parity games the arena is labeled
with natural number priorities. In a CMPG players are
partitioned into two teams: the existential and universal
teams. In a play, players take role (from the two teams) in a
strict ∃∀ alternation and the existential team wins the game
if all the players it comprises can enforce a play that satisfies
the parity condition, i.e. the maximal priority that is seen
infinitely often is even. We have proved that the problem
of solving a CMPG is PSpace-complete. For the upper
bound we have introduced a non-trivial extension of the
attractor function along the Zielonka Recursive Algorithm.
For the lower bound we have provided a reduction from the
QBF satisfiability problem.

Classic parity games have been deeply investigated in a
number of application fields both as an abstract tool to model
reactive systems and a machinery to properly solve decision
problems. In the multi-player setting they have been also
recently applied to reasoning about the strategic interaction
of players by means of logic formalisms [5]. However, a strong
limitation in this area resides on the fact that problems
have to be first casted somehow in a two-player turn-based
framework and then reduced to parity games. This often
requires resources and the solution through these games
becomes less effective. We believe that having now introduced
and solved efficiently concurrent multi-player parity games
could get back more attention to such an approach and solve
open problems efficiently in the multi-player setting.

As future work it would be interesting to consider some
improvements and heuristic evaluation by implementing our
algorithm. A good platform to do this is PGSolver [17] that
contains most of the known algorithms to solve classic parity
games.

Acknowledgments
This work has been partially supported by the FP7 EU
project 600958-SHERPA and the IndAM project “Logica,
Automi e Giochi per Sistemi Auto-adattivi”.

696

REFERENCES
[1] R. Alur, T. Henzinger, and O. Kupferman.

Alternating-Time Temporal Logic. JACM,
49(5):672–713, 2002.

[2] B. Aminof, F. Mogavero, and A. Murano. Synthesis of
Hierarchical Systems. SCP, 83:56–79, 2014.

[3] B. Aminof and O. Kupferman and A. Murano.
Improved model checking of hierarchical systems. Inf.
Comput., 210:68–86, 2012.

[4] D. Berwanger. Admissibility in Infinite Games. In
STACS’07, LNCS 4393, pages 188–199. Springer, 2007.

[5] P. Cermak, A. Lomuscio, and A. Murano. Verifying
and synthesising multi-agent systems against one-goal
strategy logic specifications. In AAAI’15, pages
2038–2044, 2015.

[6] K. Chatterjee, L. D. Alfaro, and T. Henzinger. The
complexity of quantitative concurrent parity games. In
SODA’06, pages 678–687, 2006.

[7] K. Chatterjee, L. D. Alfaro, and T. A. Henzinger.
Qualitative concurrent parity games. TOCL, 12(4):28,
2011.

[8] K. Chatterjee, L. Doyen, T. Henzinger, and J.-F.
Raskin. Generalized Mean-payoff and Energy Games.
In FSTTCS’10, LIPIcs 8, pages 505–516.
Leibniz-Zentrum fuer Informatik, 2010.

[9] K. Chatterjee, T. Henzinger, and M. Jurdzinski.
Mean-Payoff Parity Games. In LICS’05, pages 178–187.
IEEE Computer Society, 2005.

[10] K. Chatterjee, T. Henzinger, and N. Piterman.
Strategy Logic. Information and Computation,
208(6):677–693, 2010.

[11] K. Chatterjee and T. A. Henzinger. A survey of
stochastic ω-regular games. Journal of Computer and
System Sciences, 78(2):394–413, 2012.

[12] K. Chatterjee, M. Jurdziński, and T. Henzinger.
Quantitative stochastic parity games. In SODA’04,
pages 121–130, 2004.

[13] E. Clarke and E. Emerson. Design and Synthesis of
Synchronization Skeletons Using Branching-Time
Temporal Logic. In LP’81, LNCS 131, pages 52–71.
Springer, 1981.

[14] E. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 2002.

[15] E. Emerson and C. Jutla. The Complexity of Tree
Automata and Logics of Programs (Extended
Abstract). In FOCS’88, pages 328–337. IEEE
Computer Society, 1988.

[16] O. Friedmann. Recursive algorithm for parity games
requires exponential time. RAIRO-Theoretical
Informatics and Applications, 45(04):449–457, 2011.

[17] O. Friedmann and M. Lange. Solving parity games in
practice. In ATVA’09, LNCS 5799, pages 182–196.
Springer, 2009.

[18] D. Harel and A. Pnueli. On the Development of
Reactive Systems. Springer, 1985.

[19] P. Hoffmann and M. Luttenberger. Solving parity
games on the GPU. In ATVA’13, pages 455–459.
Springer, 2013.

[20] W. Jamroga and J. Dix. Do agents make model
checking explode (computationally)? In CEEMAS’15,
LNCS 3690, pages 398–407. Springer, 2005.

[21] W. Jamroga and A. Murano. On Module Checking and
Strategies. In AAMAS’14, pages 701–708. IFAAMAS,
2014.

[22] W. Jamroga and A. Murano. Module checking of
strategic ability. In AAMAS’15, pages 227–235.
IFAAMAS, 2015.

[23] M. Jurdzinski. Deciding the winner in parity games is
in up ∩ co-up. Inf. Process. Lett., 68(3):119–124, 1998.

[24] M. Jurdzinski. Small progress measures for solving
parity games. In STACS’00, LNCS 1770, pages
290–301. Springer, 2000.

[25] M. Jurdzinski, M. Paterson, and U. Zwick. A
deterministic subexponential algorithm for solving
parity games. SIAM J. Comput., 38(4):1519–1532,
2008.

[26] O. Kupferman, M. Vardi, and P. Wolper. An Automata
Theoretic Approach to Branching-Time Model
Checking. JACM, 47(2):312–360, 2000.

[27] O. Kupferman, M. Vardi, and P. Wolper. Module
Checking. Information and Computation,
164(2):322–344, 2001.

[28] O. Kupferman and M. Y. Vardi. Weak alternating
automata and tree automata emptiness. In STOC’98,
pages 224–233. ACM, 1998.

[29] F. Laroussinie and N. Markey. Augmenting atl with
strategy contexts. Information and Computation,
245:98–123, 2015.

[30] F. Laroussinie, N. Markey, and G. Oreiby. On the
expressiveness and complexity of atl. LMCS, 4(2):1–25,
2008.

[31] A. Lopes, F. Laroussinie, and N. Markey. ATL with
Strategy Contexts: Expressiveness and Model Checking.
In FSTTCS’10, LIPIcs 8, pages 120–132.
Leibniz-Zentrum fuer Informatik, 2010.

[32] F. Mogavero, A. Murano, G. Perelli, and M. Vardi.
Reasoning About Strategies: On the Model-Checking
Problem. TOCL, 15(4):34:1–42, 2014.

[33] F. Mogavero, A. Murano, and M. Vardi. Reasoning
About Strategies. In FSTTCS’10, LIPIcs 8, pages
133–144. Leibniz-Zentrum fuer Informatik, 2010.

[34] C. H. Papadimitriou. Computational complexity. John
Wiley and Sons Ltd., 2003.

[35] J. Queille and J. Sifakis. Specification and Verification
of Concurrent Programs in Cesar. In SP’81, LNCS 137,
pages 337–351. Springer, 1981.

[36] S. Schewe. Solving parity games in big steps. In
FSTTCS’07, LNCS 4855, pages 449–460. Springer,
2007.

[37] A. D. Stasio, A. Murano, V. Prignano, and
L. Sorrentino. Solving parity games in scala. In
FACS’14, LNCS 8997, pages 145–161. Springer, 2015.

[38] W. Thomas. Infinite games and verification. In CAV’02,
pages 58–64. Springer, 2002.

[39] M. Yannakakis and K. Etessami. Recursive concurrent
stochastic games. Logical Methods in Computer Science,
4, 2008.

[40] W. Zielonka. Infinite Games on Finitely Coloured
Graphs with Applications to Automata on Infinite
Trees. TCS, 200(1-2):135–183, 1998.

697

	Introduction
	Model
	Zielonka Recursive Algorithm
	Solving CMPG via a reduction to T2PG
	Solving efficiently a CMPG
	Lower Bound
	Conclusion

