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ABSTRACT
Researchers have observed that people will more accurately
trust an autonomous system, such as a robot, if they have a
more accurate understanding of its decision-making process.
Studies have shown that hand-crafted explanations can help
maintain effective team performance even when the system
is less than 100% reliable. However, current explanation
algorithms are not sufficient for making a robot’s quantita-
tive reasoning (in terms of both uncertainty and conflicting
goals) transparent to human teammates. In this work, we
develop a novel mechanism for robots to automatically gen-
erate explanations of reasoning based on Partially Observ-
able Markov Decision Problems (POMDPs). Within this
mechanism, we implement alternate natural-language tem-
plates and then measure their differential impact on trust
and team performance within an agent-based online test-
bed that simulates a human-robot team task. The results
demonstrate that the added explanation capability leads to
improvement in transparency, trust, and team performance.
Furthermore, by observing the different outcomes due to
variations in the robot’s explanation content, we gain valu-
able insight that can help lead to refinement of explanation
algorithms to further improve human-robot interaction.

General Terms
Algorithms
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1. INTRODUCTION
Robots are increasingly teaming with humans in complex

real-world tasks, ranging from search and rescue to space
exploration [2, 3]. Although the ever-improving capabilities
of robotic systems may lead to improved team capabilities,
they also create challenges that need to be overcome before
such hybrid partnerships can achieve their full potential [1].
When robots are more suited than humans for a certain task,
then we want the humans to trust the robots to perform
that task. When the robots are less suited, then we want
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the humans to appropriately gauge the robots’ ability and
perform the task themselves. Failure to do so results in
disuse of robots in the former case and misuse in the latter
[27]. Real-world case studies and laboratory experiments
show that failures in both cases are common [20].

Research has also shown that people are more likely to
avoid such failures if they have an accurate understanding
of the robot’s decision-making process [19]. Unfortunately,
as robots gain complexity and autonomy, it is increasingly
challenging for humans to understand their decision pro-
cesses. Successful human-robot interaction (HRI) therefore
hinges on the robot’s ability to make its decision-making pro-
cess transparent to the people it works with. Hand-crafted
explanations have shown to be effective in providing such
transparency [7].

However, such hand-crafted explanations do not scale to
the sophisticated reasoning that robots currently perform to
handle the uncertainty and conflicting goals within their task
environments. Many robotic platforms use Partially Ob-
servable Markov Decision Problems (POMDPs) [14], whose
quantitative transition probabilities, observation probabili-
ties, reward functions, and decision-making algorithms have
proven successful in many robotic domains, such as naviga-
tion [4, 18] and HRI [28]. Unfortunately, the quantitative
nature of these models and the complexity of their solution
algorithms also make POMDP-reasoning opaque to poten-
tial human teammates.

In our work, we develop algorithms that can generate
natural-language explanations from POMDP-based reason-
ing. We thus draw inspiration from the aims of prior re-
searchers in “explainable AI” [33, 40], but within the novel
context of decision-theoretic reasoning with uncertain be-
liefs. We build our algorithms on top of a multiagent so-
cial simulation framework, PsychSim [21, 29], that includes
transparency of the various components of a POMDP model
(e.g., beliefs, observations, outcome likelihoods). By ground-
ing explanations in the agent’s decision-making process, we
can automatically generate a space of possible explanation
content and measure their impact on the human-robot in-
teraction (Section 4).

To quantify the effectiveness of different explanation con-
tent in achieving the desired transparency, we implemented
an experimental testbed to simulate an HRI scenario (Sec-
tion 5). This virtual human-robot simulation teams a robot
with a human counterpart in reconnaissance missions [38].
The robot is modeled as a POMDP, with beliefs and obser-
vations of its surroundings, goals (e.g., mission objectives),
and actions to achieve those goals. We conducted a study
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where people interacted with different versions of the robot,
where we varied its ability and its explanation content. The
empirical results quantify the degree to which the explana-
tions impacted transparency, human-robot trust, and over-
all team performance (Section 6). By examining people’s
behaviors over different combinations of the robot’s ability
and explanation content, we discuss the implications of the
results and directions for future work (Section 7).

2. RELATED WORK
Our current work follows a long history of similar ex-

plorations of automated explanation mechanisms, especially
within the context of expert systems [33]. While most of
this work operated on rule- and logic-based systems, there
has been more recent work on generating explanations based
on Markov Decision Problems (MDPs) [8, 15]. However,
there has been no work on explaining POMDP-based poli-
cies, where the system operates under uncertainty about
the state of the world. Furthermore, there has been little
empirical evaluation of the impact of these explanations on
human-machine trust, although the existing data suggest
that explanations do increase user acceptance of expert sys-
tems [40]. This limited evidence is encouraging as to the
potential success of applying a general-purpose explanation
on top of a robot’s decision-making process.

The need for such explanations is evidenced by existing
HRI studies that have shown that a human’s ability to un-
derstand its robot teammate has a clear impact on trust [19].
Explanations have shown to contribute to that understand-
ing in a way that provides transparency and improves trust
[7]. Our goal is to create an automated, domain-independent
method for generating explanations that has the same im-
pact as the manually crafted explanations used in prior work.

Looking beyond the AI and HRI literature, we can find
a large number of studies that measure the impact of var-
ious forms of explanation on people’s perceptions of risks
and uncertainties when making decisions. A survey of these
studies across multiple domains indicates that “People pre-
fer numerical information for its accuracy but use a verbal
statement to express a probability to others.” [36]. This
finding led to a recommendation to include a numeric rep-
resentation in any communication informing a person of the
uncertainties underlying a decision. On the other hand, one
of the studies in the survey contrasted a numeric representa-
tion of uncertainty with more anecdotal evidence and found
that the numeric information carried less weight when both
types were present [12]. A study of risk communication in
medical trade-off decisions showed that people performed
better when receiving numeric expressions of uncertainty in
percentage (67%) rather than frequency (2 out of 3) form
[39]. This same study also found that people expressed a
preference for information “as words” rather than “as num-
bers”. It is therefore clear that both percentage and verbal
expressions of uncertainty have value in conveying uncer-
tainty, but it is less clear what form makes the most sense
in an HRI context. In translating our robot’s reasoning
into a human-understandable format, our explanation al-
gorithms use natural-language templates inspired by these
various findings in the literature.

3. POMDP MODEL OF AN HRI SCENARIO
We have implemented the explanation algorithms using

PsychSim [21, 29], which combines two established agent
technologies: decision-theoretic planning [14] and recursive
modeling [9]. Decision-theoretic planning provides an agent
with quantitative utility calculations that allow it to assess
tradeoffs between alternative decisions under uncertainty.
Recursive modeling gives the agent a theory of mind, allow-
ing it to form beliefs about the human users’ preferences,
factor those preferences into its own decisions, and update
its beliefs in response to observations of the users’ decisions.
The combination of decision theory and theory of mind has
enabled PsychSim agents to operate in a variety of human-
agent interaction scenarios [13, 16, 17, 23, 26].

PsychSim agents generate their beliefs and behaviors by
solving POMDPs [6, 14]. In precise terms, a POMDP [14] is
a tuple, 〈S,A, P,Ω, O,R〉, that we describe here in terms of
an illustrative HRI scenario [37]. In it, a human teammate
works with a robot in reconnaissance missions to gather in-
telligence in a foreign town. Each mission involves the hu-
man teammate searching eight buildings in the town. The
robot serves as a scout, scans the buildings for potential dan-
ger, and relays its findings to the teammate. Prior to en-
tering a building, the human teammate can choose between
entering with or without equipping protective gear. If there
is danger present inside the building, the human teammate
will be fatally injured without the protective gear. As a re-
sult, the team will have to restart from the beginning and
re-search the entire town. However, it takes time to put
on and take off protective gear (e.g., 30 seconds each). So
the human teammate is incentivized to consider the robot’s
findings before deciding how to enter the building. In the
current implementation, the human and the robot move to-
gether as one unit through the town, with the robot scan-
ning the building first and the human conducting a detailed
search afterward. The robot has a NBC (nuclear, biologi-
cal and chemical) weapon sensor, a camera that can detect
armed gunman, and a microphone that can listen to discus-
sions in foreign language.

Within the POMDP model of this scenario, the state, S,
consists of objective facts about the world, some of which
may be hidden from the robot itself, such as the separate lo-
cations of the robot and its human teammate, as well as the
presence of dangerous people or chemicals in the buildings
to be searched. The state also includes feature-value pairs
that represent the human teammate’s health level, any cur-
rent commands from the teammate, and the accumulated
time cost so far.

The robot’s available actions, A, correspond to the pos-
sible decisions it can make. Given its search mission, the
robot’s first decision is where to move to next. We divide the
environment into a set of discrete waypoints, so the robot’s
action set includes potentially moving to any of them. Upon
arrival, the robot then makes a decision as to whether to de-
clare a location as safe or unsafe for its human teammate.
For example, if the robot believes that armed gunmen are at
its current location, then it will want its teammate to take
adequate preparations (e.g., put on body armor) before en-
tering. Because there is a time cost to such preparations,
the robot may instead decide to declare the location safe,
so that its teammates can more quickly complete their own
reconnaissance tasks.

We model the dynamics of the world using a transition
probability function, P , that captures the possibly uncer-
tain effects of the robot’s actions on the subsequent state.
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We simplify the robot’s navigation task by assuming that a
decision to move to a specific waypoint succeeds determinis-
tically. However, we could relax this assumption to decrease
the robot’s movement ability, as is done in more realistic
robot navigation models [4, 18]. The robot’s recommenda-
tion decision affects the health of its teammate, although
only stochastically, as its teammate may not follow its rec-
ommendation. Instead, a recommendation that a building is
safe (unsafe) has a high (low) probability of decreasing the
teammate’s health if there are, in fact, chemicals present.

The robot has only indirect information about the true
state of the world. Within the POMDP model, this in-
formation comes through a subset of possible observations,
Ω, that are probabilistically dependent (through the obser-
vation function, O) on the true values of the correspond-
ing state features. We make some simplifying assumptions,
namely that the robot can observe the location of itself and
its teammate with no error (e.g., via GPS). However, it
cannot detect the presence of armed gunmen or dangerous
chemicals with perfect reliability or omniscience. Instead, it
receives a local reading about their presence (or absence) at
its current location. For example, if dangerous chemicals are
present, then the robot’s chemical sensor will detect them
with a high probability. There is also a lower, but nonzero,
probability that the sensor will not detect them. In addition
to such a false negative, we can also model a potential false
positive reading, where there is a low, but nonzero, prob-
ability that it will detect chemicals even if there are none
present. By controlling the observations that the robot re-
ceives, we can manipulate its ability in our testbed.

Partial observability gives the robot only a subjective view
of the world, where it forms beliefs about what it thinks
is the state of the world, computed via standard POMDP
state estimation algorithms. For example, the robot’s be-
liefs include its subjective view on the presence of threats,
in the form of a likelihood (e.g., a 33% chance that there are
toxic chemicals in the farm supply store). Again, the robot
derives these beliefs from its local sensor readings, so they
may diverge from the true state of the world. By decreas-
ing the accuracy of the robot’s observation function, O, we
can decrease the accuracy of its beliefs, whether receiving
correct or incorrect observations. In other words, we can
also manipulate the robot’s ability by allowing it to over- or
under-estimate the accuracy of its sensors.

We instantiate the human-robot team’s mission objectives
within the POMDP’s reward function, R, which maps the
state of the world into a real-valued evaluation of benefit
for the agent. The highest reward is earned in states where
all buildings have been explored by the human teammate.
This reward component incentivizes the robot to pursue the
overall mission objective. There is also an increasingly pos-
itive reward associated with level of the human teammate’s
health. This reward component punishes the robot if it fails
to warn its teammate of dangerous buildings. Finally, there
is a negative reward that increases with the time cost of the
current state. This motivates the robot to complete the mis-
sion as quickly as possible. By providing different weights
to these goals, we can change the priorities that the robot
assigns to them. For example, by lowering the weight of the
teammate’s health reward, the robot may allow its team-
mate to search waypoints that are potentially dangerous, in
the hope of searching all the buildings sooner. Alternatively,
lowering the weight on the time cost reward might motivate

the robot to wait until being almost certain of a building’s
threat level (e.g., by repeated observations) before recom-
mending that its teammate visit anywhere. By varying the
relative weights of these different motivations, we can ma-
nipulate the benevolence of the robot toward its teammate
in our testbed.

The robot can autonomously generate its behavior based
on its POMDP model of the world by determining the opti-
mal action based on its current beliefs, b, about the state of
the world [14]. Rather than perform an offline computation
of a complete optimal policy, π, over all possible beliefs, we
instead take an online approach so that the robot computes
the optimal decision with respect to only its current beliefs,
π(b) [31]. The robot uses a bounded lookahead procedure
that seeks to maximize expected reward by simulating the
dynamics of the world from its current belief state. In partic-
ular, the robot will consider declaring a building dangerous
or safe (i.e., recommending that its teammate put protec-
tive gear on or not). It will combine its beliefs about the
likelihood of possible threats in the building with each pos-
sible declaration to compute the likelihood of the outcome,
in terms of the impact on the teammate’s health and the
time to search the building. It will finally combine these
outcome likelihoods with its reward function and choose the
option that has the highest reward.

4. POMDP-GENERATED EXPLANATIONS
By exposing different components of the robot’s POMDP

model, we can make different aspects of its decision-making
transparent to its human teammate. We create natural-
language templates to translate the contents of a POMDP
model into human-readable sentences:

• A: The robot can make a decision as to whether to de-
clare the building safe or not and communicate its chosen
action, e.g., “I think the doctor’s office is safe.” The string
representation of each action, a ∈ A, is a domain-specific
string. Upon making its decision, the robot chooses the
string corresponding to its current choice, π(b).

• S: The robot can also communicate the level of uncer-
tainty underlying its beliefs, e.g., “I am 67% confident
about this assessment,” if it believed that the probabil-
ity of the doctor’s office being safe was 67%. We use
a template that includes a variable indicating which el-
ement(s) of the factored state representation the robot
should substitute for the probability reference. In this
case, the only variable of interest is the robot’s b(safeX =
True,my location = X). When generating such an expla-
nation, the robot will compute the indicated belief and
insert it into the natural-language template.

• P : The robot can also reveal the relative likelihood of
possible outcomes, e.g., “There is a 33% probability that
you will be injured if you enter the doctor’s office without
protective gear.” Here, the robot will weigh the possible
outcomes by its belief in the hidden state. In particular,
it can compute

∑
s b(s) Pr(health ↓ |s, no protection) to

instantiate this template.

• Ω: Communicating its observation can reveal information
about its sensing abilities, e.g., “My NBC sensors have de-
tected traces of dangerous chemicals.” We write domain-
specific strings for each possible observation, ω ∈ Ω.
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• O: Beyond the specific observation it received, the robot
can also reveal information about how it models its own
sensor capabilities, e.g., “My image processing will fail to
detect armed gunmen 30% of the time.” In this case,
we combine the domain-specific templates for each possi-
ble observation, ω ∈ Ω, with the appropriate observation
function value:∑

ω 6=gunmen
∑

s|gunmenx,my location=X

∑
aO(s, a, ω)∑

ω

∑
s|gunmenx,my location=X

∑
aO(s, a, ω)

.

• R: By communicating the expected reward outcome of
its chosen action, the robot can reveal its benevolence (or
lack thereof) toward its teammate, e.g., “I think it will be
dangerous for you to enter the informant’s house without
putting on protective gear. The protective gear will slow
you down a little.” The template here relies on factored
rewards, allowing the robot to compute separate expected
rewards, E[R], over the goals of keeping its teammate alive
and achieving the mission as quickly as possible. We write
domain-specific templates for each goal, for both the posi-
tive and negative cases. The robot then computes the sep-
arate E[R] values and chooses the appropriate template
depending on whether the value is positive or negative.

These templates provide a variabilized mechanism for spec-
ifying natural-language forms offline that can be instantiated
by the robot at runtime based on its current beliefs. These
various template formats can be used for any POMDP. We
thus ensure that the results can be re-used by other re-
searchers studying other HRI domains as well.

5. EVALUATION

5.1 Simulation Testbed for HRI
We implemented an online version of our HRI scenario to

study the impact of these automatically generated explana-
tions on trust and team performance. The testbed can be
accessed from a web browser. The testbed’s server executes
the POMDP to both maintain the state of the simulated
mission and to generate decisions for the robot. These are
displayed on the participant’s web browser, which sends de-
cisions made by the participant back to the testbed’s server.

5.2 Participants
We recruited 220 participants from Amazon Mechanical

Turk (AMT). The participants had previously completed
500 or more jobs on AMT and had a completion rate of 95%
or higher. All participants were located in the USA.

5.3 Design
We used the online testbed to evaluate how the differ-

ent POMDP-generated explanations from Section 4 impact
trust and team performance. We conducted two iterations
of the study. For the sake of clarity, we will describe the
methodology of the two iterations together. The first it-
eration of the study primarily focused on whether expla-
nations can build transparency, establish a proper level of
trust, and improve task performance. There were two inde-
pendent variables for the first iteration of the study: ability
and explanation. The ability variable had two levels: low
and high. The explanation variable also has two levels: no
explanation, and explanation of two sensor readings. After

preliminary analysis of the first iteration of the study (de-
tails in Section 6.1), we extended the explanation variable
to include two additional types of explanations: explanation
of three sensor readings, confidence-level explanations. The
two iterations of the study all combine to form a 2x4 design.

As already mentioned, the ability variable has two levels:
a low-ability robot vs. a high-ability robot. Regardless of
the ability of the robot, the human teammates will learn the
correctness of the robot’s individual decisions upon entering
the buildings themselves.

• High Ability The robot with high ability makes the cor-
rect decision 100% of the time.

• Low Ability The robot with low ability has a faulty
camera and makes only false-negative mistakes, e.g., not
detecting armed gunmen in the simulation. The other
simulated sensors (e.g., NBC weapon detector and micro-
phone) and the robot’s decision-making capability remain
intact. As a result, the low-ability robot will occasionally
give an incorrect “safe” assessment.

The explanation variable has a total of four levels: no ex-
planation, explanation of two sensor readings, explanation
of three sensor readings, and confidence-level explanation.
At all four levels, the robot informs its teammate of its de-
cision, derived from the A template from Section 4 (e.g., “I
have finished surveying the doctor’s office. I think the place
is safe.”). Under the conditions where explanations are of-
fered, the robot augments this decision with additional in-
formation that should help its teammate better understand
its ability (e.g., decision-making and sensing), one of the key
dimensions of trust [22].

• NoExp In the No Explanation condition, the robot only
informs its teammate of its decisions. One such commu-
nication from our scenario would be: “I have finished sur-
veying the Cafe. I think the place is safe.”

• Exp2Sensor In the Explanations of Two Sensor Obser-
vations condition, these explanations augments the de-
cision message with non-numeric information about the
robot’s sensing capability. In this case, the sensing ca-
pability is limited to the NBC sensor and the camera –
the only two sensors used by the PsychSim agents. Sec-
tion 4’s Ω template thus provides the teammate with the
robot’s observations from these two sensors. One such
communication with both decision and explanation from
our scenario would be: “I have finished surveying the Cafe.
I think the place is dangerous. My sensors have detected
traces of dangerous chemicals. From the image captured
by my camera, I have not detected any armed gunmen in
the Cafe. I think it will be dangerous for you to enter the
Cafe without protective gear. The protective gear will slow
you down a little.” Although these explanations can po-
tentially actually help the robot’s teammate understand
which sensors are working correctly (e.g., the NBC sensor)
and which ones are not (e.g., the faulty camera), they do
not actually help the teammate decide what to do with
sensor readings from the Camera. This is because the
robot, particularly the one in the Low Ability condition,
has a faulty camera that makes false-negative mistakes.
This means that when the robot reports no danger found
by the camera, the teammate still doesn’t know if they
should put on the protective gear or not.
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Figure 1: Human Robot Interaction Simulation Testbed with HTML front-end.

• Exp3Sensor In the Explanations of Three Sensor Ob-
servations, the explanations again augments the decision
message with non-numeric information about the robot’s
sensing capability – the NBC sensor, the camera and the
microphone. Section 4’s Ω explanation provides the team-
mate with the robot’s observations from these two sensors.
One such communication with both decision and explana-
tion from our scenario would be: “I have finished survey-
ing the Cafe. I think the place is safe. My sensors have
not detected any NBC weapons in here. From the image
captured by my camera, I have not detected any armed
gunmen in the cafe. My microphone picked up a friendly
conversation.” These explanations will thus potentially
help the robot’s teammate understand which sensors are
working correctly and which ones are not, and help them
decide what to do in case of camera failure. For example,
while a faulty camera may not be able to detect armed
gunman, the microphone is capable of picking up a suspi-
cious conversation.

• ExpConf In the Confidence-Level Explanations condi-
tion, the confidence-level explanations augment the deci-
sion message with additional information about the robot’s
uncertainty in its decision. Section 4’s S template incor-
porates the robot’s probabilistic assessment of the hidden
state of the world (e.g., the presence of threats) on which it
bases its recommendation.1 One example of a confidence-
level explanation would be: “I have finished surveying the

1Probability and confidence are generally different concepts.
We used the probability as an approximation of the robot’s
confidence level.

Cafe. I think the place is dangerous. I am 78% confident
about this assessment.” Because the low-ability robot’s
one faulty sensor will lead to occasional conflicting obser-
vations, it will on those occasions have lower confidence in
its erroneous decisions after incorporating that conflicting
information into its beliefs.

The study is a between-subject design. Each participant
interacted with one of the eight simulated robots. In the first
iteration of the study, we assigned 30 participants to each
condition. In the second iteration of the study, we assigned
25 participants to each condition.

5.4 Procedure
Each participant first read an information sheet about the

study and then filled out the background survey. Next, par-
ticipants worked with a simulated robot on three reconnais-
sance missions. After each mission, participants filled out a
post-mission survey. Each participant worked with a robot
with the same ability and communication (e.g., low abil-
ity and communicates with confidence-level explanations)
throughout the three missions. Participants were randomly
assigned to team up with one of the eight robots. The study
was designed to be completed in 90 minutes. Participants
were compensated with $10 for their participation.

5.5 Measure
The Background Survey includes measures of the demo-

graphic information, education, video game experience, mil-
itary background, predisposition to trust [24], propensity to
trust [25], complacency potential [30], negative attitude to-
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wards robots [34] and uncertainty response scale [10]. In
the Post-Mission Survey, we have designed items to mea-
sure participants’ understanding of the robot’s decisions and
decision-making process. A sample item from this measure
is “I understand the robot’s decision-making process”. We
modified items on interpersonal trust to measure trust in
the robot’s ability, benevolence and integrity [22]. We also
included the NASA Cognitive Load Index [11], Situation
Awareness Rating Scale [35], trust in oneself and teammate
[30], and trust in robots [32]. The Post-Mission survey
was filled out after each mission (3 missions total in the
study). We have also collected interaction logs from the on-
line testbed. Based on the log data, we compute measures
of team performance: mission success, percentage of correct
decisions, and compliance (e.g., percentage of the robot’s de-
cision adopted by its teammate). The Post-Mission survey
data and the log data provide coarse measures of how trust
changes over time, which is beyond the scope of this paper.
In this paper, the analysis includes measures on team per-
formance, and trust in the robot’s ability [22] and the scale
we designed on the understanding of the robot’s decision-
making process presented in the Post-Mission Survey.

6. RESULTS
We excluded data from 18 participants due to incomplete

entries (e.g., participants skipped survey questions or left the
simulations). Although not part of the experiment manip-
ulation, a closer examination revealed that the incomplete
entries only occurred in conditions where explanations were
offered. As a result, 202 participants are included in the
analysis. The participants average 33.4 years old. 42% of
the participants are female and 58% participants are male.
5 participants answered that they had worked with an au-
tomated squad member (such as a robot) before. 3 partici-
pants had reconnaissance or search and rescue training, and
1 was actually involved in such missions. Only 1 participant
was an active service member.

We measured participants’ predisposition to trust, propen-
sity to trust, complacency potential, negative attitude to-
wards robots and uncertainty responses. We did not find
any significant main or interaction effect of the independent
variables on any of these scales. Studying the impact of in-
dividual differences on trust is not the focus of this paper.
Instead, we will focus on comparing the impact of different
explanation algorithms on trust [22] and team performance.
In the analysis presented here, we focus on self-reported per-
ceptions of the robot’s ability and behavioral measures of
task performance (e.g., mission success rates, correct deci-
sions percentage). Self-reported measures are calculated by
averaging survey responses gathered after each mission (3
missions total). Behavioral measures are based on log data
from all 3 missions as well.

The four dependent variable included in the analysis are:

• Trust in Robot’s Ability Trust in the robot’s ability,
benevolence and integrity is measured by modifying an
existing scale [22] that measures these three factors of
trustworthiness. Each factor of trust is calculated by aver-
aging corresponding Post-Mission Survey items collected
after each of the 3 missions. The explanations compared
in this paper are designed to influence perceptions of the
ability factor of trust, and do not explicitly target the

benevolence and integrity factors of trust. So we focus on
only the ability component of trust in this paper. The
value ranges from 1 to 7.

• Understand Robot’s Decisions This is measured us-
ing 1âĂŞ7 Likert scale items on the understanding of
the robot’s decision-making process, designed by the re-
searcher. A sample item from this measure is ”I under-
stand the robot’s decision-making process”. The measure
is calculated by averaging responses to corresponding sur-
vey items in the Post-Mission Survey after each of the 3
missions. The value range from 1 to 7.

• Mission Success Percentage This team-performance
measure is extracted from a line in the interaction log
indicating whether the mission ended in success/failure,
then divided by the total number of missions (3) in the
study. The value ranges from 0 to 100.

• Percentage of Correct Decisions This variable is mea-
sured using log data. It is calculated by dividing the total
number of the participant’s correct decisions (e.g., putting
on protective gear when there is danger, and forgo the
protective gear when it is safe) by the total number of
participant’s decisions, across three missions. The value
ranges from 0 to 100.

• Percentage of Decisions that Follow Robot Recom-
mendations This variable is measured using log data. It
is calculated by dividing the total number of the partici-
pant’s decisions that are the same as the robot’s recom-
mended, by the total number of participant’s decisions,
across three missions. The value ranges from 0 to 100.

6.1 First Iteration of Study
Preliminary analysis of data collected from the first itera-

tion of the study using ANOVA tests revealed no significant
impact of the explanation of two sensor readings on any of
the four measures, except for understanding of the robot’s
decisions, compared to when no explanations were offered,
regardless of the robot’s ability. Closer examination of the
scenario design and explanation of two sensor readings sug-
gests that this could be due to the “usefulness” or “help-
fulness” of the explanations. The robot, particularly the
low-ability robot, makes only false-negative mistakes due to
its faulty camera. This means that even when the partici-
pants know the robot’s decision may not be correct because
of the camera failure, they still do not know what the cor-
rect decision to make is, e.g., whether to put protective gear
on or not. The sensible yet conservative decision would be
putting on protective gear all the time. Thus, we added two
additional explanation levels— explanation of three sensor
readings and confidence-level explanations— that aimed to
help participants diagnose faulty sensors and make decisions
on whether to put on protective gear. In these two explana-
tions, we also removed the recommendation to put on pro-
tective gear, because it is redundant (e.g., the robot’s finding
of danger implicitly suggests that one should put protective
gear on) and removing it reduces the length of text.

6.2 Main Effect of Ability and Explanations
The subsequent analyses include data from both iterations

of the study. Overall, ANOVA tests indicate that partici-
pants who worked with a high-ability robot reported trusting
the robot more, made better decisions and succeeded in more
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Table 1: Comparing the main effect of the robot’s
ability. Means are shown in the table. Differences
on all variables between High and Low ability robot
are statistically significant (p < .05)

High Ability Low Ability
Trust in
Robot’s Ability

6.46 5.05

Understand Robot’s
Recommendations

5.98 4.70

Mission Success % 82.8 67.6
% of Correct
Decisions

92.6 80.0

missions (Table 1). Surprisingly, participants also felt that
they understood the robot’s decision and decision-making
process more, when the robot’s ability is high.

As for the main effect of the explanations offered by the
robot, Table 2 shows that not all explanations are created
equal (Tukey HSD tests on all possible pairwise contrasts).
Overall, explanations that facilitate decision-making (e.g.,
confidence-level explanations, and explanations of 3 sensors)
helped the participants succeed in more missions and made
the participants feel that they can trust the robot’s ability
more. Surprisingly, we did not find any significant impact
of explanations on the percentage of correct decisions.

There is a significant interaction between the robot’s abil-
ity and the explanation offered on trust in the robot’s ability
(p < .0001), and understanding of the robot’s decisions and
decision-making process (p < .0001), mission success rate
(p = .0008), and percentage of correct decisions (p < .0001).
We will break down the comparison of the impact of robot’s
explanation between high and low ability robot in the fol-
lowing sections.

6.3 Explanation and Low-Ability Robot
When the low-ability robot makes a decision (e.g., rec-

ommendation) that has unwanted consequences, it not only
affects the team performance but also jeopardizes the trust
its teammate has in it. When no explanations were offered,
its human teammate had no additional information to help
him/her understand why the robot’s recommendation failed.
The goal of the explanations is not to help human teammates
trust the low-reliability robot more, but to instead calibrate
their trust level appropriately and know when and when
not to trust it. As a result, the teammate’s decision-making
and the team performance can be improved. Results from
ANOVA and Tukey’s HSD tests (on all possible pairwise
contrasts) are presented in Table 3. From the table, we can
see that the decision-facilitating explanations (e.g., expla-
nations of three sensor and confidence-level explanations),
help the teammate understand the low-ability robot’s de-
cision and decision-making process, make better decisions,
and succeed in more missions, compared to when no expla-
nations were offered or when the explanation is not helpful
towards decision making (e.g., explanations of two sensors).
The human teammates also trusted the low-ability robot
more when it offered the decision-facilitating explanations.

6.4 Explanations and High-Ability Robot
It may seem counter-intuitive that one would not trust a

perfectly reliable robot that makes correct decisions 100% of

the time. However, disuse is a realistic and common prob-
lem in human-automation interaction [27] and often linked
to lack of transparency [5]. So we hypothesize that expla-
nations, even offered by a reliable robot, can help improve
the trust relationship and team performance. ANOVA and
Tukey’s HSD tests revealed that there was no statistically
significant impact of the robot’s explanations on trust in
the robot’s ability, understanding of the robot’s decision and
decision-making process, correct decisions made and mission
success rate, when the robot is making correct recommen-
dations 100% of the time.

7. DISCUSSION
In this paper, we discussed the design of POMDP-based

algorithms for explaining a robot’s decision making to a hu-
man teammate. We implemented an online experiment plat-
form that we used to conduct an evaluation of the explana-
tion algorithms, where participants teamed up with a simu-
lated robot with either high or low ability, and offered three
different types of explanations or no explanations with its
decisions. Results indicate that the robot explanations can
potentially improve task performance, build transparency
and foster trust relationship. However, only explanations
that are designed to facilitate decision-making made much
difference. Explanations that left participants ambiguous
about how to act on the recommendation and explanations
did not achieve such an effect, and were as badly regarded
as when no explanations were offered at all. This is par-
ticularly true so when the robot’s ability is low and makes
unreliable recommendations.

Additionally, the decision-facilitation explanation helped
improve understanding of the robot’s decision, but only in
the low-ability robot and not the high-ability one. This
could be due to the fact that the high-ability robot is making
correct decisions 100% of the time. Participants who inter-
acted with this robot never needed to question the robot’s
decision. Thus, these participants may have never carefully
examined the robot’s statement that explained its confidence
level or observations. Working with a low-ability robot, on
the other hand, requires the teammates to pay close atten-
tion to the explanations to gauge when and when not to
trust the robot’s decisions.

Earlier studies on the impact of hand-crafted explanations
on trust [7] show that explanations, even those were provided
before the interaction and used in ways similar to “excuses”,
can draw someone into the pitfall of trusting the robot more,
even though the robot is unreliable. The result presented
here, particularly the finding on decision-facilitating expla-
nation offered by the low-ability robot and subjective trust,
sheds some light on the hidden factors between explanations
and trust— the “helpfulness” or “usefulness” of the explana-
tion. Our results show that explanations made participants
trust the robot’s ability more, but only when the explana-
tions facilitated decision-making and not when the explana-
tions left participants unsure about what decisions to make.
Participants distrusted a robot that offered such explana-
tions as much as one that did not offer explanations at all.

Interestingly, we did not find any significant differences on
the measures we analyzed between the two decision-facilita-
ting explanations e.g., confidence-level explanations and ex-
planations of three sensors. Both types of explanations are
useful in helping the human teammate decide when to trust
the robot. For example, a teammate could potentially learn
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Table 2: Compare the main effect of explanations offered by the robot. Means are shown in the table. A
pair of ∗ or † or ♣ or ♠ means the difference between the two variables are statistically significant (p < .05).

NoExp Exp2Sensor Exp3Sensor ExpConf

Trust in Robot’s Ability 5.37∗† 5.44♣♠ 6.27∗♣ 6.17†♠

Understand Robot’s Recommendation 4.75∗† 5.36 5.93∗ 5.51†

Mission Success % 65.0∗† 58.9♣♠ 92.3∗♣ 96.0†♠

% of Correct Decisions 82.8 84.1 89.6 90.0
% of Decisions Follow Robot’s Recommendation 83.9 85.6 86.6 86.0

Table 3: Compare the main effect of explanations offered by the Low Ability robot. Means are shown in the
table. A pair of ∗ or † or ♣ or ♠ means the difference between the two variables are statistically significant
(p < .05).

NoExp Exp2Sensor Exp3Sensor ExpConf

Trust in Robot’s Ability 4.31∗† 4.28♣♠ 6.07∗♣ 6.15†♠

Understand Robot’s Recommendation 3.66∗† 4.46♣♠ 5.71∗♣ 5.51†♠

Mission Success % 52.2∗† 43.0♣♠ 93.7∗♣ 97.0†♠

% of Correct Decisions 71.9∗† 74.0♣♠ 87.0∗♣ 91.9†♠

% of Decisions Follow Robot’s Recommendation 74.2 77.0 81.5 84.6

his/her own heuristics that if the robot’s confidence level
is below (for example) 75%, then do not follow the robot’s
decision. Similarly, a teammate could diagnose from the ob-
servation explanations that if the camera reports no signs
of danger, but the robot’s microphone picks up unfriendly
conversations, then it is time to be cautious and put pro-
tective gear on, regardless of the robot’s overall assessment
of safety. It is concerning that participants who received
confidence-level explanations also felt that they understood
the robot’s decision-making process, even though such ex-
planations did not reveal any of the robot’s inner work-
ings. While confidence-level explanations may help team-
mates make decisions just as well as with observation ex-
planations, they will not help teammates diagnose or repair
the robot (e.g., the participants will not know that it is the
camera that caused the robot to make wrong decisions).

One of the limitations of the current work is that the un-
derstanding of the robot’s decisions is measured via self-
report. In other words, it is unclear whether the participants
actually understood the decisions, as they claimed. Future
work can include measures to test participants’ knowledge of
the robot, e.g., its capability, or allow it to be inferred more
directly and specifically from the subsequent decisions that
participants made, e.g., ask participants to choose MOPP
gear vs. body armor. Another limitation of the current
work is that the measures are aggregated from participants’
responses after each of the 3 missions. More fine-grained
analysis of data collected from each mission can be con-
ducted to study how trust evolves over time. These future
analyses can lead to further refinements of our explanation
algorithms that can increase the positive impact already
exhibited by the current implementation on human-robot
trust.
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