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ABSTRACT
There is a heterogeneous resource that contains both good parts and

bad parts, for example, a cake with some parts burnt, a land-estate

with some parts heavily taxed, or a chore with some parts fun to do.

The resource has to be divided fairly among n agents with different

preferences, each of whom has a personal value-density function on

the resource. The value-density functions can accept any real value

— positive, negative or zero. Each agent should receive a connected

piece and no agent should envy another agent. We prove that such

a division exists for 3 agents.

Full version is available at https://arxiv.org/abs/1704.00726.
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1 INTRODUCTION
Most research works on fair division assume that the manna (the

resource to divide) is good, e.g., tasty cakes, precious jewels or

fertile land-estates. A substantial minority of the works assume

that the manna is bad, e.g., house-chores or night-shifts. Recently,

Bogomolnaia et al. [2] introduced the more general setting ofmixed

manna — every resource can be good for some agents and bad for

others. Here are some illustrative examples.

(1) A cake with some parts burnt has to be divided among chil-

dren. Some (like this author as a child) find the burnt parts

tasty, but most children consider them bad (but still must eat

what they get in order not to insult the host).

(2) A land-estate has to be divided among heirs, where landown-

ers are subject to taxation. The value of a land-plot to an

heir may be either positive or negative, depending on his/her

valuation of the land and tax status.

(3) A house-chore such as washing the dishes has to be divided

among family members. Most of them consider this bad, but

some of them may view dish-washing, in some parts of the

day, as a perfect relaxation after spending hours in solving

mathematical problems.

While Bogomolnaia et al. [2] focused on dividing homogeneous

resources, we study the classic problem of cake-cutting [18] — di-

viding a single heterogeneous resource. The cake-cutting problem

comes in many flavors: the cake can be one-dimensional or multi-

dimensional [17]; the fairness criterion can be proportionality (each

agent receives a piece he values as at least 1/n of the total) or envy-

freeness (each agent receives a piece he values at least as much as
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the piece of any other agent); the pieces can be connected or dis-

connected; and more. See [3, 14, 16] for recent surveys. All variants

were studied in the good-cake setting (all agents consider every

piece of cake good). Some variants were also studied in the bad-

cake setting (all agents consider every piece of cake bad). So far, no

variants were studied in the general mixed-cake setting.

While all variants of the cake-cutting problem are interesting,

this paper focuses on a specific variant in which (a) the cake is

one-dimensional, (b) the fairness criterion is envy-freeness, (c) the

pieces must be connected (see Section 2 for the formal model).

The main question of interest in this paper is:

Does there exist a connected envy-free division of a mixed cake?

It is known that the answer is “yes” both for good cakes and for bad

cakes [22]. Moreover, there are procedures for approximating such

a division for any number of agents. However, the proofs are based

on a specific combinatorial structure, based on the well-known

Sperner’s lemma; this structure breaks down in the mixed-cake

setting, so the existing proofs are inapplicable (see Section 3).
Working with mixed cakes requires a new, more general com-

binatorial structure. This structure is based on a generalization of

Sperner’s lemma. Based on this structure, it is possible to prove the

main result (Section 4):
A connected envy-free division always exists for three agents.

1

The existence of a connected envy-free division implies that an

existing approximation algorithm can be adapted to approximate

such a division to any desired accuracy (Section 5).
Most parts of the proof are valid for any number of agents. How-

ever, there is one part which we do not know how to generalize

to an arbitrary number of agents. Recently, Meunier and Zerbib

[11] presented a proof that an envy-free division exists when the

number of agents is 4 or prime. A sketch of a proof for the case

of prime n, using more elementary arguments, appears in the full

version.

2 MODEL
A cake — modeled as the interval [0, 1] — has to be divided among

n agents. The agents are called A1, . . . ,An or Alice, Bob, Carl, etc.

The cake should be partitioned into n pairwise-disjoint intervals,

X1, . . . ,Xn (some possibly empty), whose union equals the entire

cake. IntervalXi should be given toAi such that the division is envy-
free — each agent weakly prefers his piece over any other agent’s

piece. Two models for the agents’ preferences are considered.

(A) Additive agents: each agentAi has an integrable value-density
function vi . The value of a piece is the integral of the value-density

1
Division problemswith 3 agents are quite common in practice. For example, according

to www.pewsocialtrends.org/2015/05/07/family-size-among-mothers, about 25% of

mothers have 3 children. Hence, about 25% of inheritance cases involve division among

3 agents. As another example, in the spliddit.org website [8], about 62% of all requests

for fair division of items involve 3 agents. We thank Nisarg Shah for this information.
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Cake Additive agents Selective agents

Good vi (x ) ≥ 0 for every x ∈ [0, 1].
si always contains a
non-empty piece.

Bad vi (x ) ≤ 0 for every x ∈ [0, 1].
si always contains an

empty piece, if one exists.

Mixed vi is any integrable function.

si is any continuous

selection function.

Table 1: Assumptions in different cake-cutting models.

on that piece:Vi (X j ) =
∫
x ∈X j

vi (x )dx . Note, the value of any single

point is 0, so it is irrelevant who receives the endpoints of pieces. A

division is envy-free if each agent believes his piece’s value is above

the value of any other agent’s piece: ∀i, j : Vi (Xi ) ≥ Vi (X j ).

(B) Selective agents: each agent Ai has a function si that accepts
a nonempty set of pieces X and returns a nonempty subset of X .
The interpretation is that the agent “prefers” each of the pieces

in si (X ) over all other pieces in X (this implies that the agent is

indifferent between the pieces in si (X )). A division X is envy-free

if each agent receives one of his preferred pieces: ∀i : Xi ∈ si (X ).
The preference functions should be continuous — any piece that is

preferred for a convergent sequence of partitions is preferred for

the limit partition (equivalently: for each i, j , the set of partitions X
in whichX j ∈ si (X ) is a closed set. See Su [22]). This, again, implies

that it is irrelevant who receives the endpoints of pieces.

Model (A) is more common in the cake-cutting world, while

model (B) is much more general. Every additive agent is also a se-

lective agent. But selective agents may have non-additive valuations

and even some externalities: the preference of an agent may depend

on the entire set of pieces in the partition rather than just his own

piece (however, the preference may not depend on which agent

receives what piece; see [5] for a discussion of such externalities).

In the good-cake and bad-cake settings, additional assumptions are

made on the agents’ preferences besides continuity, as shown in

Table 1. The present paper removes these assumptions.

Approximately-envy-free division. There are two ways to define

an approximately envy-free division. (A) With additive agents, the

approximation is measured in units of value: an ϵ-envy-free division
is a division in which each agent believes that his piece’s value is

at most ϵ less than the value of any other piece: ∀i, j : Vi (Xi ) ≥
Vi (X j ) − ϵ . The valuations are usually normalized such that the

value of the entire cake is 1 for all agents, so ϵ is a fraction (e.g.,

1% of the cake value). (B) With selective agents there are

no numeric values, so the approximation is measured in units of

length: a δ -envy-free division is a division in which, for every agent

Ai , movement of the borders by at most δ results in a division in

which Ai prefers his piece over any other piece.

Unless stated otherwise, all results in this paper are valid for

selective agents, therefore also for additive agents.

3 EXISTING PROCEDURES
With n = 2 agents, the classic “I cut, you choose” protocol produces

an envy-free division whether the cake is good, bad or mixed. The

fun begins at n = 3.

3.1 Reduction to all-goods and all-bads
One might think that mixed-manna problems could be reduced to

good-manna and bad-manna ones in the following way. For each

part of the resource: (a) if there is one or more agents who think it

is good, then divide it among them using any known procedure for

dividing goods; (b) otherwise, all agents think it is bad — divide it

among them using any known procedure for dividing bads.

However, this simple reduction does not work when there are ad-

ditional requirements besides fairness, such as economic efficiency

or connectivity. In Bogomolnaia et al. [2] the requirements are

envy-freeness and Pareto-efficiency; in this paper the requirements

are envy-freeness and connectivity. It is impossible to guarantee

all three properties simultaneously [20]. Hence the techniques and

results are quite different, and no one implies the other.

3.2 Moving-knives and approximations
Three procedures for connected envy-free division for three additive

agents are known: Stromquist [19], Robertson and Webb [15, pages

77-78] and Barbanel and Brams [1]. All of them use one or more

knives moving continuously. They were originally designed for

good cakes and later adapted to bad cakes. All of them crucially

rely on a monotonicity assumption: all agents weakly prefer a piece

to all its subsets (in a good cake), or all agents weakly prefer a piece

to all its supersets (in a bad cake). However, monotonicity does not

hold with a mixed cake, so these procedures cannot be used.

Another algorithm that does not work, but for a different rea-

son, is the generic approximation algorithm recently presented

by Brânzei and Nisan [4] for additive agents. Their algorithm can

approximate any division that is described by linear conditions;

in particular, it can approximate an envy-free division, whenever

such a division exists. Since an envy-free division of a mixed cake

among three agents always exists (as will be proved in this paper),

their algorithm can be used to find an approximation of it. The

problem is the runtime complexity: while with good cakes and bad

cakes their algorithm runs in time O (n/ϵ ) when ϵ is the additive

approximation factor, with mixed cakes the runtime complexity

might be unbounded. Details are in an appendix in the full version.

3.3 Simplex of partitions
With four or more agents, or even with three selective agents,

no moving-knives procedures are known. A different approach,

which works for any number of selective agents, was suggested by

Stromquist [19] and further developed by Su [22]. It is based on the

simplex of partitions. To present it we introduce some notation that

will also be used in the rest of the paper.

∆n−1 is the (n − 1)-dimensional standard simplex — the points

(l1, . . . , ln ) with l1 + · · · + ln = 1. Each such point represents a

cake-partition where the piece lengths are l1, . . . , ln ; see Figure 1.
[n] denotes the set {1, . . . ,n}. The n vertices of ∆n−1 are called

itsmain vertices and denoted by Fj , for j ∈ [n]. Each face of ∆n−1 is
the convex hull of some subset of its main vertices, convj ∈J (Fj ) for
some J ⊆ [n]; this face is denoted by F J . E.g, the face connecting
F1 and F2 is denoted F {1,2} , or just F12 for short. For each j ∈ [n],
we denote F−j := F

[n]\{j } = the face opposite to Fj . In all points on

F−j , the j-th coordinate is 0, so they represent partitions in which

piece number j is empty.
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Figure 1: Left: a generic partition of the cake among n = 3 agents.
l1 + l2 + l3 = 1. Right: The simplex of partitions for n = 3

agents. Each point represents a partition. Seven points are marked,
and the corresponding partitions are shown.

Figure 2: Possible labeling Li of a single agent. Left: the value of the
entire cake is positive. Hence, in eachmain vertex Fj , the agent prefers
only piece j , since it is the only non-empty piece. In the edges between
two main vertices Fj , Fk , the agent prefers either j or k .
Right: the value of the entire cake is negative, but it contains some
positive parts. In eachmain vertex Fj , the agent prefers the two empty
pieces — the two pieces that are NOT j . In the edges between two main
vertices, all three labels may appear.

Agent labelings. Given a partition of the cake into n intervals,

each agent has one or more preferred pieces. The preferences of

agent Ai can be represented by a function Li : ∆
n−1 → 2

[n]
. The

function Li maps each cake-partition (= a point in the standard

simplex) to the set of pieces that Ai prefers in this partition (= a set

of labels from [n]). The set of preferred pieces always contains at

least one label; it may contain more than one label if the agent is

indifferent between two or more best pieces. This is particularly

relevant in case the agent prefers an empty piece, since there are

partitions in which there is more than one empty piece. If x is

such a partition then Li (x ) contains the set of all empty pieces.

See Figure 2. An envy-free division corresponds to a point x in the

partition-simplex where it is possible to select, for each i , a single
label from Li (x ), such that the n labels are distinct.

Triangulations. A triangulation of a simplex is a partition into

sub-simplices satisfying some technical conditions. An example is

shown in Figure 2. We denote a triangulation by T , and the set of

vertices in the triangulation by Vert(T ).

Definition 3.1 (Envy-free simplex). Suppose we let n agents

label the vertices of T , so we have n labelings Li : Vert(T ) → 2
[n]

Figure 3: Left: Assignment of vertices to agents such that, in each
sub-triangle, each vertex is owned by a different agent.
Right: A combined labeling based on this ownership-assignment. The
emphasized triangle at the center is an envy-free simplex.

for i ∈ {1, . . . ,n}. An envy-free simplex is a sub-simplex in T with

vertices (t1, . . . , tn ), such that, for each i ∈ [n], it is possible to

select a single label from Li (ti ) such that the n labels are distinct.

If the diameter of each sub-simplex in T is at most δ , then each

envy-free simplex corresponds to a δ -envy-free division. If, for

every δ , there is an envy-free simplex with diameter at most δ , then
the continuity of the preference functions si implies the existence

of an envy-free division; see Su [22].

Good Cakes. In a partition of a good cake, there always exists

a non-empty piece with a weakly-positive value, so it is always

possible to assume that each agent prefers a non-empty piece. There-

fore, every labeling Li satisfies Sperner’s boundary condition: every

triangulation-vertex in the face F J is labeled with a label from the

set J (see Figure 2/Left). By Sperner’s lemma, for every i there is a
fully-labeled simplex — a simplex whose n vertices are labeled by

Li with n distinct labels.

In order to get an envy-free simplex, we combine the n agent-

labelings L1, . . . ,Ln to a single labeling LW : Vert(T ) → 2
[n]

in

the following way. Each triangulation-vertex is assigned to one of

the n agents, such that in each sub-simplex, each of its vertices is

owned by a unique agent. See Figure 3/Left. Now, each vertex is

labeled with the corresponding labels of its owner: if a vertex x
is owned by agent Ai , then LW (x ) := Li (x ). See Figure 3/Right. If
all the Li satisfy Sperner’s boundary condition, then the combined

labeling LW also satisfies Sperner’s boundary condition. Therefore,

by Sperner’s lemma, LW has a fully-labeled simplex. By definition

of LW , this simplex is an envy-free simplex [22].

Bad Cakes. In a partition of a bad cake, the values of all non-

empty pieces are weakly negative, so it is always possible to assume

that each agent prefers an empty piece. In the main vertices, there

are n− 1 empty pieces; the agent is indifferent between them, so we

may label each main vertex with an arbitrary empty piece. We can

always do this such that the resulting labeling satisfies Sperner’s

boundary condition [22]. Hence, an envy-free simplex exists.

Mixed Cakes. When the value of the entire cake is negative, but

the cake may contain positive pieces, each agent may prefer in

each point either an empty piece or a non-empty piece. Hence, the

agent labelings no longer satisfy Sperner’s boundary condition; see

Figure 2/Right. Here, our work begins.
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Figure 4: Three points representing the same physical partition.

4 CUTTING MIXED CAKES
4.1 The Consistency Condition
The first step in handling a mixed cake is to find boundary condi-

tions that are satisfied for all agent labelings, regardless of whether

the cake is good, bad or mixed. Our boundary condition is based on

the observation that different points on the boundary of the partition-

simplex may represent the same physical cake-partition. For example,

consider the three diamond-shaped points in Figure 4. In each of

these points, the set of pieces is the same: {[0, .8], [.8, 1], ∅}. There-

fore, a consistent agent will select the same piece in all three parti-

tions, even though this piece might have a different index in each

point. This means that the agent’s label in each of these points

uniquely determines the agent’s labels in the other two points. For

example, if the agent labels the top-left diamond point by “3”, this

means that he prefers the empty piece, so he must label the top-

right diamond point by “2” and the bottom-left diamond point by

“1” (as in the figure).

To formalize this boundary condition we need several definitions.

Definition 4.1. Two points in ∆n−1 are called friends if they have

the same ordered sequence of nonzero coordinates.

For example, on ∆3−1
, the points (0, .2, .8) ∈ F−1 and (.2, 0, .8) ∈

F−2 and (.2, .8, 0) ∈ F−3 are friends, since their ordered sequence

of nonzero coordinates is (.2, .8).
Since our boundary conditions have a bite only for friends, we

will consider from now on only triangulations that are “friendly”:

Definition 4.2. A triangulation T is called friendly if, for every

vertex x ∈ Vert(T ), all the friends of x are in Vert(T ).

Our boundary condition is that the label of a vertex in F−1
uniquely determines the labels of all its friends on the other faces.

Specifically, consider a vertex xk ∈ F−k . By definition of F−k , the
k-th coordinate of xk iz zero. If we move the k-th coordinate of

xk to position 1 and push coordinates 1, . . . ,k − 1 one position

rightwards, we get a vertex on F−1 that is a friend of xk ; denote it
by fk (xk ). Since the triangulation is friendly, it contains fk (xk ).

Suppose that the label of fk (xk ) is l . Then the label on xk is:

π−k (l ) :=




k l = 1 [agent prefers empty piece]

l − 1 1 < l ≤ k

l l > k

(1)

For every k , the function π−k is a permutation (a bijection from [n]
to [n]). π−1 is the identity permutation.

The table below shows the three permutations for n = 3: π−1,
π−2 and π−3. The rightmost column is an illustration corresponding

to the sequence of labels on each face in Figure 4:

Preferred piece: Empty Left Right {ER}ELRE{EL}

Label on F−1: 1 2 3 {13}1231{12}

Label on F−2: 2 1 3 {23}2132{21}

Label on F−3: 3 1 2 {32}3123{31}

Definition 4.3. A labeling L : Vert(T ) → 2
[n]

is consistent if,
for every k ∈ [n] and vertex xk ∈ F−k :

L(xk ) = π−k (L( fk (xk )))

where π−k is defined by (1), and fk (xk ) is a friend of xk on F1,
derived from xk by moving its k-th coordinate to position 1.

Note that L(x1) may be a set of more than one label, and in this

case, consistency implies that L(xk ) is a set with the same number

of labels. For example, if x1 ∈ F−1 and L(x1) = {1, 2} and x3 ∈ F−3
then L(x3) = π−3 ({1, 2}) = {π−3 (1),π−3 (2)} = {3, 1}.

Figures 2, 4 show examples of consistent labelings.

We present two lemmas about consistency. The first relates to

the parity of permutations. Recall that a permutation is even/odd

if it can be implemented by an even/odd number of swaps. The

following lemma is simple and its proof is omitted:

Lemma 4.4. The permutation π−k is even/odd iff k is odd/even.

The case n = 3 is shown in the above table: π−1 is even (the

identity permutation), π−2 is odd (maps 123 to 213) and π−3 is even
(maps 123 to 312).

The second lemma relates to labels on faces F J where |J | ≤ n− 2.
Such faces are intersections of two or more n − 1-dimensional faces.

For example, let x be the main vertex F3 = (0, 0, 1). Then, x is a

friend of itself, with f2 (x ) = x . Therefore, consistency implies that

L(x ) = π−2 (L(x )). Hence, L(x ) contains 2 if-and-only-if it contains
1. This makes sense: since all empty pieces are identical, the agent

prefers an empty piece if and only if it prefers all empty pieces.

This is generalized in the following lemma, whose proof appears in

the full version :

Lemma 4.5. Let L be a consistent labeling. Then, for every vertex

x ∈ F
[n]\J , either L(x ) ∩ J = J or L(x ) ∩ J = ∅.

Our goal now is to prove that, if all n agent-labelings are consistent,

then an envy-free simplex exists. We will proceed in two steps.

• If all labelings L1, . . . ,Ln are consistent, then there exists a

single consistent combined labeling LW (Subsection 4.2).

• If a labeling is consistent, then it has a fully-labeled simplex

(Subsections 4.3-4.4).
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Figure 5: Left: barycentric subdivision of a triangle.
Right: Barycentric triangulation of a triangle, with a friendly and
diverse ownership assignment (here A, B, C are agents A1, A2, A3).

4.2 Combining n labelings to a single labeling
The consistency condition is valid for a single agent. We have to

find a way to combine n different consistent labelings into a single

consistent labeling. For this we need several definitions.

Definition 4.6. An ownership-assignment of a triangulationT is a

function from the vertices of the triangulation to the set of n agents,

W : Vert(T ) → {A1, . . . ,An }.

Definition 4.7. Given a triangulation T , n labelings L1, . . . ,Ln ,
and an ownership assignmentW , the combined labeling LW is the

labeling that assigns to each vertex in Vert(T ) the label/s assigned
to it by its owner. I.e., ifW (x ) = Ai , then LW (x ) := Li (x ).

Definition 4.8. An ownership-assignmentW is called:

(a) Diverse — if in each sub-simplex in T , each vertex of the

sub-simplex has a different owner;

(b) Friendly — if it assigns friends to the same owner. I.e., for

every pair x ,y of friends (see Definition 4.1),W (x ) =W (y).

The diversity condition was introduced by Su [22]. As an ex-

ample, the ownership-assignment of Figure 3 is diverse. However,

it is not friendly. For example, the two vertices near (1, 0, 0) are
friends since their coordinates are (.8, .2, 0) and (.8, 0, .2), but they
have different owners (B,C). This means that the combined labeling

is not necessarily consistent. Fortunately, there always exists an

ownership-assignment that is both friendly and diverse.

Lemma 4.9. For any n ≥ 3 and δ > 0, there exists a friendly

triangulation T of ∆n−1 where the diameter of each sub-simplex is

≤ δ , and an ownership-assignment of T that is friendly and diverse.

Proof. The construction is based on the barycentric subdivi-

sion.
2
The barycentric subdivision of a simplex with main vertices

F1, . . . , Fn is constructed as follows.

Pick a permutation σ of the main vertices. For every prefix of

the permutation, σ1, . . . ,σm (form ∈ {1, . . . ,n}), definevm as their

barycenter (arithmetic mean): vm := (σ1 + · · · + σm )/m. We call

vm a level-m vertex. The vertices v1, . . . ,vn define a subsimplex.

Each permutation yields a different subsimplex, so all in all, the

barycentric subdivision of an (n − 1)-dimensional simplex contains

n! subsimplices. Note that each sub-simplex has exactly one vertex

of each levelm ∈ [n].
By recursively applying a barycentric subdivision to each subsim-

plex (as in Figure 5/Right), we get iterated barycentric triangulations.

The ownership assignment is determined by the levels of vertices

2
the explanation follows the Wikipedia page “barycentric subdivision”.

in the last subdivision step: each vertex with level i is assigned to

agent Ai (see Figure 5/Right). This ownership assignment is:

• diverse — since for every i , each subsimplex has exactly one

vertex of level i .
• friendly — since, by the symmetry of the barycentric subdi-

vision, every two friend-vertices have the same level. □

Lemma 4.10. Let L1, . . . ,Ln be consistent labelings of a friendly

triangulation T . IfW is a friendly ownership-assignment, then the

combined labeling LW is consistent.

Proof. Consistency restricts only the labels of friends. Since all

friends are labeled by the same owner, and the labeling of each

owner is consistent, the combined labeling is consistent too. □

Lemmas 4.9 and 4.10 reduce the problem of finding an envy-free

simplex with n labelings, to the problem of finding a fully-labeled

simplex with a single labeling. This is our next task.

4.3 The Degree Lemma
We want to prove that any consistent labeling has a fully-labeled

simplex. For this we develop a generalization of Sperner’s lemma.

In this subsection we will consider single-valued labelings. To

differentiate them from the multi-valued labelings denoted by L :

Vert(T ) → 2
[n]

, we will denote them by ℓ : Vert(T ) → [n].
We will use the following claim that we call the Degree Lemma:

Let ℓ : Vert(T ) → [n] a labeling of a triangulation T .
The interior degree of ℓ equals its boundary degree.

To explain this lemma we have to explain what are “interior

degree” and “boundary degree” of a labeling.
3

Throughout this subsection,Q denotes a fixed n− 1-dimensional

simplex in Rn−1 whose vertices are denoted by Q1, . . . ,Qn . Q
′

denotes a fixed face of Q of co-dimension 1 (so Q ′ is an n − 2-

dimensional simplex). Most illustrations are for the case n = 4.

4.3.1 Interior degree. Let P be an n − 1 dimensional simplex

in Rn−1. Let д : P → Q be a mapping that maps each of the n
vertices of P to a vertex of Q . By basic linear algebra, there is a

unique way to extend д to an affine transformation from P to Q .
Define deg(д) as the sign of the determinant of this transformation:

• deg(д) = +1 means д is onto Q and can be implemented by

translations, rotations and scalings (but no reflections);

• deg(д) = −1 means д is onto Q and can be implemented by

translations, rotations, scalings and a single reflection;

• deg(д) = 0 means д is not onto Q (i.e., it maps the entire P
into a single face of Q with dimension n − 2 or less).

Every labeling ℓ : Vert(P ) → [n] defines a mapping дℓ where for
each vertex v ∈ Vert(P ) whose label is j, we let дℓ (v ) = Q j . The

pictures below show three such mappings with different degrees

from different source simplices in R3 to the same target Q : 4

3
The Degree Lemma can be proved as a corollary of much more general theorems in

algebraic topology. See Corollary 3 in Meunier [10] and Corollary 3.1 in Musin [13].

For simplicity and self-containment we present it here using stand-alone geometric

arguments. Some of the definitions follow Matveev [9].

4
To visualize the degree, imagine that you transform the source simplex until it

overlaps the target simplexQ , such that each vertex labeled with j overlapsQ j . If you

manage to do that without reflections then the degree is +1; otherwise it is −1.
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We make several observations that relate the labeling to the degree.

(1) If P is fully-labeled (each vertex has a unique label), then дℓ
is onto Q , so deg(дℓ ) is either +1 or −1 (examples д1 and д2
above). If P is not fully-labeled (two or more vertices have

the same label), then дℓ is not ontoQ so deg(дℓ ) = 0 (ex. д3).
(2) Swapping two labels on P corresponds to a reflection. There-

fore, an odd permutation of the labels inverts the sign of

deg(дℓ ), while an even permutation keeps deg(дℓ ) unchanged.

LetT be a triangulation of some simplex and ℓ : Vert(T ) → [n] a
labeling. In eachn−1 dimensional sub-simplex t of the triangulation
T , the labeling ℓ defines an affine transformation дℓ,t : t → Q . The

interior degree of ℓ is defined as the sum of the degrees of all these

transformations:

ideg(ℓ) :=
∑
t ∈T

deg(дℓ,t )

Note that each fully-labeled sub-simplex of T contributes either

+1 or −1 to this sum and each non-fully-labeled sub-simplex con-

tributes 0. So if ideg(ℓ) , 0, there is at least 1 fully-labeled simplex.

4.3.2 Boundary degree. Consider now an n − 2-dimensional

simplex inRn−1. It is contained in a hyperplane and this hyperplane
divides Rn−1 into two half-spaces. Define an oriented simplex in

Rn−1 as a pair of an n − 2-dimensional simplex and one of its two

half-spaces (so each such simplex has two possible orientations).

Let P ′,Q ′ be two oriented simplices in Rn−1. Let д be a mapping

that maps each vertex of P ′ to a vertex of Q ′, and maps the half-

space attached to P ′ to the half-space attached to Q ′. There are

infinitely many ways to extend д to an affine transformation, but

all of them have the same degree. Three examples are shown below;

an arrow denotes the half-spaces attached to the simplex:
4

Consider now an n − 2-dimensional simplex P ′ that is a face of

an n − 1-dimensional simplex P . Since P is convex, it is entirely

contained in one of the two half-spaces adjacent to P ′. We orient

P ′ by attaching to it the half-space that contains P (figuratively, we

attach to P ′ an arrow pointing inwards, towards the interior of P ).
Let Q ′ be a fixed n − 2-dimensional face of Q oriented towards

the interior of Q . Let ℓ : Vert(P ′) → [n] be a labeling. If every

label on P ′ is one of the n−1 labels onQ ′, then ℓ defines a mapping

дℓ : P ′ → Q ′ where for each vertex v ∈ Vert(P ′) whose label is
j, we let дℓ (v ) = Q j , and the half-space attached to P ′ is mapped

to the half-space attached to Q ′. The same observations (1) and (2)

above relate the labeling ℓ with the degree deg(дℓ ,Q
′). If some label

on P ′ is not one of the labels onQ ′, then we define deg(дℓ ,Q
′) = 0.

It is convenient to define the degree of дℓ w.r.t. at all n faces ofQ
simultaneously. We denote by deg(дℓ ) (without the extra parameter

Q ′) the arithmetic mean of deg(дℓ ,Q
′) over all n faces of Q :

deg(дℓ ) :=
1

n

∑
Q ′ face of Q

deg(дℓ ,Q
′)

In this notation, if ℓ puts n − 1 distinct labels on some face, then

deg(дℓ ) = ±
1

n since exactly one term in the mean is ±1 and the

rest are zero. Otherwise, deg(дℓ ) = 0 since all terms are zero.

LetT be a triangulation of some simplex P and let ℓ : Vert(T ) →
[n] be a labeling of the vertices of T . Denote by ∂T the collection

of n − 2-dimensional faces of T on the boundary of P . In each

such face t ′ ∈ ∂T , the labeling ℓ defines n affine transformation

дℓ,t ′ : t
′ → Q ′ and their average degree deg(дℓ,t ′ ) can be calculated

as explained above. The boundary degree of ℓ is defined as the sum:

bdeg(ℓ) :=
∑

t ′∈∂T

deg(дℓ,t ′ )

We now re-state the degree lemma:

Lemma 4.11 (Degree Lemma). For every triangulation T of a

simplex P and every labeling ℓ : Vert(T ) → [n]:

ideg(ℓ) = bdeg(ℓ)

Proof. Part 1. We first prove the lemma for the case when the

triangulationT is trivial — contains only the singlen−1 dimensional

simplex P . In this case, the sum ideg(ℓ) contains a single term

— deg(дℓ ) — which can be either −1 or 0 or 1. The sum bdeg(ℓ)
contains n terms — one for each face of P . We consider several

cases depending on the number of distinct labels on Vert(P ).
If the number of distinct labels is n (i.e., P is fully-labeled), then

ideg(ℓ) is +1 or −1. Each face of P is labeled withn−1 distinct labels
so its degree is + 1

n or − 1

n . The same affine mapping дℓ that maps

P to Q , also maps each face P ′ to each face Q ′ with corresponding

labels. Therefore, all terms have the same sign, and we get either

+1 =
∑ +1

n or −1 =
∑ −1

n , both of which are true.

If the number of distinct labels is n − 2 or less, then P is not

fully-labeled so ideg(ℓ) = 0. No faces of P are labeled with n − 1
distinct labels, so bdeg(ℓ) = 0 too.

If the number of distinct labels is n−1, then P is not fully-labeled

so ideg(ℓ) = 0. P has exactly two faces with n − 1 distinct labels;
let’s call them P ′+ and P ′−. For each s ∈ {+,−} and for each face

Q ′ ⊆ Q , let д′s be the mapping from P ′s onto Q
′
. It can be proved

that deg(д′+) = − deg(д
′
−) (see full version). Therefore deg(д

′
+) +

deg(д′−) = 0 and so bdeg(ℓ) = 0 too. The latter case is illustrated

below, where Q ′ = Q1Q3Q4; the degree is +1 at the top 134 face

and −1 at the bottom 134 face.

Part 2.We now prove the lemma for a general triangulation. For

each n−1-dimensional sub-simplex t ∈ T , denote by ℓt the labeling
ℓ in t , and by ℓt ′ the labeling on its n − 2-dimensional face t ′. Then:

ideg(ℓ) =
∑
t ∈T

ideg(ℓt ) =
∑
t ∈T

∑
t ′ face of t

bdeg(ℓt ′ ) By Part 1.
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The sum in the right-hand side counts all n−2-dimensional faces in

T — both on the boundary ∂T and on the interior. Each face on the

boundary is counted once since it belongs to a single sub-simplex,

while each face in the interior is counted twice since it belongs

to two sub-simplices. The orientations of this face in its two sub-

simplices are opposite, since the interiors of these sub-simplices

are in opposite directions of the face. This is illustrated below:

Therefore, the two contributions of this face to bdeg(ℓt ) cancel out,
and the right-hand side becomes

∑
t ′∈∂T bdeg(ℓt ′ ) = bdeg(ℓ). □

An illustration of the Degree Lemma for n = 3 is shown below:

There are six fully-labeled triangles: in five of them, the transfor-

mation дℓ onto Q requires no reflection so its degree is +1. In the

sixth, the transformation дℓ onto Q requires a single reflection so

its degree is −1. Therefore: ideg(ℓ) = +5 − 1 = 4.

At the boundary of P there are four edges labeled 1, 2. The arrow

adjacent to each edge indicates its orientation. Each of these edges

can be transformed ontoQ ′ with no reflection while preserving the

inwards orientation, so their degree is +1/3. The same is true for the

four edges labeled 2, 3 and 3, 1. Therefore: bdeg(ℓ) = 12 · (1/3) = 4.

The Degree Lemma reduces the problem of proving existence of a

fully-labeled simplex, to the problem of proving that the boundary-

degree is non-zero. Therefore, our next goal is to prove that every

consistent labeling has a non-zero boundary degree. However, there

is a technical difficulty: consistency is defined for multi-valued la-

belings, while the degree is only defined for single-valued label-

ings. For the purpose of envy-free cake-cutting, we can convert

a multi-valued labeling L : Vert(T ) → 2
[n]

to a single-valued

labeling ℓ : Vert(T ) → [n] by simply selecting, for each vertex

x ∈ Vert(T ), a single label from the set L(x ). In effect, we select

for the agent one of his preferred pieces in that partition; this does

not harm the envy-freeness. If ℓ is created from L using such a

selection, we say that ℓ is induced by L, and denote ℓ ∼ L.
For our purposes, it is sufficient to prove that every consistent

labeling L induces at least one labeling ℓ with non-zero boundary

degree. We will prove this for n = 3.

4.4 Consistency → Nonzero Boundary Degree
In this subsection n = 3, so the simplex P is the standard triangle

∆3−1 = ∆2
. The simplexQ is any triangle whose vertices are labeled

by Q1,Q2,Q3. The boundary-degree of a single-valued labeling ℓ is

Figure 6: Boundary degrees of labelings in the positive case (left) and
the negative case (right).

determined by the cyclic sequence of labels around the boundary

of P (in the counterclockwise direction). For any two labels i, j ∈
{1, 2, 3}, denote by #i j (ℓ) the net number of adjacent i, j pairs in
the cyclic sequence of labels going counterclockwise around the

boundary of P (i − j edges minus j − i edges). Then:

bdeg(ℓ) = [#12 (ℓ) + #23 (ℓ) + #31 (ℓ)] / 3

Our goal now is to prove that bdeg(ℓ) is non-zero.

Lemma 4.12. Let L : Vert(T ) → 2
[3]

be a consistent labeling

of a friendly triangulation of ∆3−1
. Then, L induces a single-valued

labeling ℓ : Vert(T ) → [3] with:

bdeg(ℓ) . 0 mod 3

Proof. First, we simplify L by removing multiple labels while

keeping L consistent. This can be done arbitrarily for any interior

vertex, since these vertices are not bound by consistency. For any

boundary vertex x that is not a main vertex, we remove labels

consistently. For example, if a label x1 ∈ F−1 is originally labeled by
{2, 3} and we remove the 2, then by consistency its friend x3 ∈ F−3
is originally labeled by {1, 2} and we remove the 1.

For the main vertices, Lemma 4.5 implies that there are exactly

two cases regarding the labels on the main vertices.

Positive case (Figure 6/Left): For each main vertex Fj , j ∈ L(Fj )
(this corresponds to the owner of the main vertices valuing the

entire cake as weakly-positive). We remove all other labels from Fj .
The labeling remains consistent and it is now single-valued.

We calculate the boundary degree on each face in turn.We denote

by ℓ[F12] the labeling ℓ restricted to the face F12. This sequence
of labels starts with 1 (the left piece) and ends with 2 (the right

piece), so bdeg(ℓ[F12]) = k + 1/3 for some integer k . The sequence
ℓ[F23] also starts with the left piece (2) and ends with the right

piece (3); by consistency, it is exactly the same sequence as in

F12, up to an even permutation. Therefore its degree is the same:

k + 1/3. The sequence ℓ[F13] also starts with the left piece (1) and

ends with the right piece (3); by consistency, it is exactly the same

sequence as in F12, up to an odd permutation (Lemma 4.4). Therefore

bdeg(ℓ[F13]) = −(k +1/3). When traveling around the boundary in

the counter-clockwise direction, the face F13 is traveled backwards.

Therefore, bdeg(ℓ) = bdeg(ℓ[F12])+bdeg(ℓ[F23])−bdeg(ℓ[F13]) =
3(k + 1/3) = 3k + 1.

Negative case (Figure 6/Right): For each main vertex Fj , L(Fj ) =
[n] \ {j} (this corresponds to the owner of the main vertices valuing

the entire cake as strictly negative). Here, by Lemma 4.5, there is

no way to remove labels while keeping L consistent. So L induces
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2
3 = 8 single-valued labelings. We will prove that the sum of

boundary-degrees of these eight labelings is nonzero modulo 3.

We calculate this sum for each face separately. First, consider the

face F12 and focus on the labels on the vertices F1, F2. If these labels
are 2, 1 then the degree is k1 − 1/3 for some integer k1; if they are

2, 3 then it is k2 + 1/3; if they are 3, 1 then it is k3 + 1/3; if they are

3, 3 then it is k4. We add all these numbers, then multiply by two

for the two possible labels on F3. We get k + 2/3 for some integer k .
Next, consider the face F23. By consistency, for every possible

selection of labels on F1, F2, the images of these labels under the

relevant permutation are a possible selection of labels on F2, F3
(even if the label on F2 is not the same). Therefore, the sum of

degrees for all possible selections on F23 is the same as on F12: it
is k + 2/3. Similarly, the sum on the face F13 is −(k + 2/3) but it
is traveled backwards. Therefore, the sum of the boundary-degree

over all 2
3
selections is 3(k + 2/3) = 3k + 2.

In all cases,

∑
l∼L bdeg(ℓ) . 0 mod 3. Hence, there is at least

one ℓ ∼ L with bdeg(ℓ) . 0 mod 3, as claimed. □

4.5 Tying the knots
The final theorem of this section ties the knots.

Theorem 4.13. For n = 3 selective agents, there always exists a

connected envy-free division of a mixed cake.

Proof. Let T be a barycentric triangulation of the partition-

simplex∆n−1. LetW be a friendly and diverse ownership-assignment

on T , which exists by §4.2. Ask each agent to label the vertices he

owns by the indices of his preferred pieces.

Alln labelingsL1, . . . ,Ln are consistent (§4.1). SinceW is friendly,

LW is consistent too (§4.2). Therefore, there exists a single-valued

labeling, ℓW ∼ LW , having bdeg(ℓW ) , 0 (§4.4). By the Degree

Lemma (§4.3), ideg(ℓW ) , 0 too. Therefore ℓW has at least one

fully-labeled simplex. SinceW is diverse, a fully-labeled simplex of

ℓW is an envy-free simplex.

All of the above can be done for finer and finer barycentric tri-

angulations. This yields an infinite sequence of envy-free simplices.

This sequence has a convergent subsequence. By continuity of pref-

erences, the limit of this subsequence is an envy-free division. □

We could not extend Lemma 4.12 ton > 3; it is left as a conjecture.

Conjecture 4.14. Let L : Vert(T ) → 2
[n]

be a consistent labeling

of a friendly triangulation of ∆n−1. Then, L induces a single-valued

labeling ℓ : Vert(T ) → [n] with:

bdeg(ℓ) . 0 mod n

If this conjecture is true, then Theorem 4.13 is true for any n.

5 FINDING AN ENVY-FREE DIVISION
Stromquist [21] proved that connected envy-free allocations cannot

be found in a finite number of queries even when all valuations are

positive, so the best we can hope for is an approximation algorithm.

The following simple binary-search algorithm can be used to find

a fully-labeled sub-simplex in a labeled triangulation. It is adapted

from Deng et al. [6]:

(1) If the triangulation is trivial (contains one sub-simplex), stop.

(2) Divide the simplex into two halves, respecting the triangula-

tion lines. Calculate the boundary degree in each half.

(3) Select one half in which the boundary degree is non-zero;

perform the search recursively in this half.

While Deng et al. [6] present this algorithm for the positive case,

it works whenever the boundary degree of the original simplex is

non-zero. Then, in step 3, the boundary degree of at least one of the

two halves is non-zero, so the algorithm goes on until it terminates

with a fully-labeled simplex. This is the case when there are n = 3

agents with arbitrary mixed valuations (Lemma 4.12). If Conjecture

4.14 is true, then this is also the case for any n.
To calculate the runtime of the binary search algorithm, suppose

the triangulation is such that each side of the original simplex is

divided into D intervals. Then, the runtime complexity of finding a

fully-labeled simplex is O (Dn−2) [7].
To calculate the complexity of finding a δ -approximate envy-free

allocation, we have to relate D to δ . In each barycentric subdivision,

the diameter of the subsimplices is at most n/(n + 1) the diameter

of the original simplex [12]. Hence, to get a barycentric triangula-

tion in which the diameter of each sub-simplex is at most δ , it is
sufficient to perform k ≈ n ln(1/δ ) steps of barycentric subdivision.
In each step, the number of intervals in each side is doubled, so

D ∈ Θ(2k ) = Θ(1/δn ). So the total runtime complexity of find-

ing a δ -approximate envy-free allocation using the barycentric

triangulation is O (1/δn (n−2) ).
Deng et al. [6] note the slow convergence of the barycentric

triangulation, and propose to use the Kuhn triangulation instead.

This triangulation looks similar to the equilateral triangulations

shown in Figure 3. In this triangulation, D = 1/δ so the runtime

complexity of the binary search is O (1/δn−2). They prove that this

is the best possible for selective agents. However, their triangulation

does not support a diverse and friendly ownership-assignment.

For n = 3, we found a variant of the equilateral triangulation

that does support a diverse and friendly ownership-assignment.

The first two steps of this triangulation are illustrated below:

So for n = 3, a δ -envy-free division can be found in time O (1/δ ).
Generalizing this “trick” to n > 3 is left for future work.
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