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ABSTRACT
We present a novel, multi-agent reinforcement learning formulation

of multi-object tracking that treats creating, propagating, and termi-

nating object tracks as actions in a sequential decision-making prob-

lem. In our formulation, each agent tracks a single object at a time by

updating a Bayesian filter according to a discrete set of actions. At

each timestep, the reward received is dependent on the joint actions

taken by all agents and the ground truth object tracks. We optimize

for different tracking metrics directly while propagating covariance

information about each object’s state. We use trust region policy

optimization (TRPO) to train a shared policy across all agents, pa-

rameterized by amulti-layer neural network. Our experiments show

an improvement in tracking accuracy over similar state-of-the-art,

rule-based approaches on a popular multi-object tracking dataset.
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1 INTRODUCTION
Fast, online multi-object tracking is desirable in many applications.

In autonomous driving, tracking surrounding cars helps to predict

their behavior. In biology, tracking fluorescently-labeled cells in

vivo can help diagnose disease. In air traffic control, monitoring

the state of multiple aircraft is crucial to maintaining safety.

In the multi-object tracking problem, we receive a set of noisy ob-

ject detections from a sensor at every timestep, and the goal is to use

these detections to estimate a set of object tracks. Multi-object track-

ing is more challenging than single-object tracking, where the main

challenges include providing robustness to noise, false positives,

false negatives, and occlusions. First, we must address data asso-

ciation. Since there are multiple objects, we might receive multiple

detections at the same timestep. In order to update our belief about

the current position of an object, we have to know what detections

to use, if any. Second, the number of objects present changes over

time. We have to decide when to start new tracks (without starting

them for false positives) and when to terminate old tracks (without

ending them for false negatives or temporarily occluded objects).
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Multi-object tracking algorithms can be vision-based or vision-

free. Vision-based approaches often develop a template for the

appearance of objects to make them easier to track and detect over

time [7, 24]. However, in certain scenarios, such as when tracking

visually indistinguishable objects, visual appearance does not help.

Furthermore, there are many domains where the detection sensor

is not a camera, and where algorithms for extracting object ap-

pearance may not be as developed. Finally, recent work has shown

that tracking performance for vision-based algorithms is highly

dependent on the performance of the vision component, making it

difficult to compare the tracking components of algorithms with dif-

ferent vision pipelines [3]. Instead, our paper focuses on vision-free

algorithms like multiple-hypothesis tracking [4] or joint probability

data association [9], which rely on object motion alone.

Tracking algorithms can be further divided into online and batch-

based approaches. In online tracking (or filtering), the goal is to

update tracks every timestep given the detections received so far.

In contrast, batch-based tracking (or smoothing) considers the en-

tire sequence of detections and optimizes object tracks with the

benefit of hindsight [1, 6, 31]. Our work focuses on efficient online

approaches that can run in real time.

We develop an algorithm using multi-agent reinforcement learn-

ing for multi-object tracking (MARLMOT). MARLMOT is an online,

vision-free, supervised tracking algorithm that optimizes the se-

quential decisions involved in updating a bank of Bayesian filters.

With each new set of detections, multiple agents act simultaneously.

Each agent manages a separate Kalman filter, and decides when

to create, propagate, or terminate object tracks. We associate de-

tections to agents according to each filter’s prior prediction about

the tracked object’s position. We then compute each agent’s poste-

rior hypothesis about the object’s position, and compute the joint

reward for all agents according to ground truth labels. The joint

tracking policy is parameterized by a multi-layer neural network

with its weights shared across all agents, and optimized using policy

gradient methods. Our approach can tentatively track objects or

estimate the states of occluded objects, including their covariances.

We evaluate MARLMOT on a simulated multi-object tracking

scenario and on the MOTChallenge tracking dataset. On the sim-

ulated scenario, we show improved robustness to long-term oc-

clusions, motion model failures, and identity switches compared

to the well-performing, rule-based SORT algorithm. Our results

on MOTChallenge indicate state-of-the-art performance on most

popular tracking metrics for online, vision-free approaches.

2 RELATEDWORK
Bayesian approaches such as the probability hypothesis density

(PHD) filter and its variants have been used for multi-object track-

ing [26, 27]. While they can estimate a posterior distribution over

the locations of objects and the number of objects present in a given
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instant, these approaches do not explicitly track object identities

over time. Maintaining object identities is important in settings

where providing occupancy probability densities in space is not

enough, such as when attempting to predict the intentions of dri-

vers from past behavior. They also require priors over the object

birth and death process, as well as over the distribution of the false

positive clutter, both of which can be difficult to estimate.

Multiple-hypothesis tracking and joint probability data associa-

tion are two well-understood approaches to identity-based, online

tracking [4, 9]. However, their complexity increases exponentially

as the number of objects is increased, making them impractical

for most settings. One of the simplest approaches to multi-object

tracking is to use the Hungarian algorithm to associate detections

to existing object tracks and update their positions using a Kalman

filter [13, 15]. In practice, this algorithm is vulnerable to false pos-

itives, false negatives, and occlusions. However, recent work has

shown that by making a few modifications, this approach can actu-

ally outperform the state of the art given an appropriate detection

algorithm [3]. In the simple, online, realtime tracking (SORT) algo-

rithm, objects are tentatively tracked, and tracks are not reported

until the object has been successfully associated to a detection for

a specific number of timesteps. Similarly, tracks are not terminated

until no detection has been associated to the track for a number

of timesteps. Furthermore, detection associations above a certain

cost threshold are ignored. While SORT is fast, easy to implement,

and performs very well in practice, it cannot handle longer-term

occlusions, re-entering objects, or a failure by the Kalman filter to

account for the motion of the objects. Furthermore, if the nature of

the tracking scenarios is changed, the parameters of the algorithm

must be manually readjusted.

Several recent papers have explored supervised tracking, where

the tracking task is learned from ground truth labels [14, 17]. In

a recent approach, the authors train recurrent neural networks to

perform filtering and data association [19]. Another recent algo-

rithm performed well on video sequences by modeling the lifetime

of each object as a Markov decision process [29]. Deterministic ac-

tions determine the transitions between states, and a predetermined

tracking policy determines how to track at each state. The reward

function is learned from a labeled dataset using inverse reinforce-

ment learning [22], and it is parameterized as a function of visual

object features, including optical flow. As such, it is not directly

comparable to our work. Similarly, recent work has explored using

deep reinforcement learning to track objects in videos, but does not

handle multiple objects or address vision-free tracking [30].

Supervised approaches to tracking are frequently forced to use

proxy tracking metrics during training, instead of the target metrics

used for evaluation such as MOTA and MOTP [2]. Usually, the

target metric cannot be used during training either because it is not

differentiable or because it depends on the joint tracking decisions

made for all objects at a given point in time. For example, the MOTA

metric is defined as

MOTA = 1 −

∑T
t=1 (mt + fpt +mmet )∑T

t=1 gt
(1)

where mt , fpt , and mmet are the number of missed objects, false

positives, and mismatch errors with respect to the ground truth

at time t , while gt is the total number of objects present at time t .

This computation cannot be incorporated into an analytical loss

function as it involves an algorithm with zero-gradient components.

Our approach reformulates multi-object tracking as a multi-agent

reinforcement learning problem [5], such that learning the optimal

policy for an agent is equivalent to optimizing the desired tracking

metric. We leverage a structure similar to the traditional Kalman

filter and Hungarian algorithm approach, but rather than rely on

heuristics such as SORT to deal with detector noise, we use ground

truth labels to train our algorithm to take intelligent sequences of

tracking decisions.

3 APPROACH
Wemodel the dynamics of objects using linear motion and measure-

ment models, and perform data association using the Hungarian

algorithm. We create a bank of tracking agents, each of which man-

ages a single object track at a time. Agents interact in lockstep in a

multi-agent reinforcement learning environment. The actions taken

by each agent determine how to update a Kalman filter, and the

reward received during training is dependent on the joint tracking

performance relative to ground truth object tracks.

3.1 Model
We model each object as a 7-dimensional vector changing over

time:

x it = (pxt ,p
y
t ,v

x
t ,v

y
t ,v

s
t , s

a
t , s

r
t )
⊤

(2)

where (pxt ,p
y
t ) is the relative position of the object, (vxt ,v

y
t ) is the

relative velocity of the object, sat is the area of the object bounding

box, and srt is the aspect ration of the bounding box. We include the

velocityvst of the object’s changing area over time to account for the

object moving closer or further away from the sensor. Additionally,

an object has an associated unique ID.

A detection d jt is a noisy measurement of the position and size

of some object:

d jt = (p̃xt , p̃
y
t , s̃

a
t , s̃

r
t )
⊤

(3)

There is no ID associated with a detection — it is unknown what

object is responsible for it, if any. A detection may also include a

scalar, real-valued score c
j
t indicating the confidence of the detection

algorithm in reporting d jt .
We maintain N simultaneous tracks. A track consists of a filter,

a track mode (inactive, visible, or hidden), and a track ID. The filter

provides both a prior prediction x̂ it |t−1 about the true state xi of

the object and a posterior hypothesis x̂ it |t of the state of the object

given a new detection.We use a linear Kalman filter for this purpose,

with a constant velocity Euler motion model:

x it = Fx it−1 +w (4)

Above, F is a matrix representing the linear motion model, andw
represents the acceleration process noise, which is assumed to be

drawn from a zero-mean multi-variate normal distribution with

covariance matrixQ . We initialize state estimates using the position

of the detection and zero velocity, and use an initial state estimate

covariance matrix Pinit that assigns a high covariance to the velocity
components. Finally, we use a linear measurement model for the
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detections:

dit = Hx it +v (5)

Above,H is a matrix representing the measurement process, andv

represents the measurement noise, which is assumed to be drawn

from a zero-meanmulti-variate normal distribution with covariance

matrix R. In our MOTChallenge experiments, we set F ,Q , Pinit, H ,

and R to the values in the publicly-available implementation of

the SORT algorithm [3]. Although we use a Kalman filter to easily

compare results against existing approaches, any type of motion

filter can be used in practice.

3.2 Data Association
Our approach requires a cost function C (dit , x̂

j
t |t−1) that returns

the cost of associating a detection dit to an object prediction x̂ jt |t−1.

The cost function can be 1 − P (dit | x̂
j
t |t−1) if there is a suitable

estimate for it. In our case, we use negative intersection over union

between the bounding box of the detection and the bounding box

of the prediction. Therefore, if a detection mostly overlaps with the

predicted location of an existing object track, the cost of associating

the two will be low.

At each timestep t , we receive a set ofM detections d1t , . . . ,d
M
t .

We use the filter for each track to predict the current position of its

associated object.We use theHungarian algorithm to efficiently find

the bijection between detections and predictions that minimizes

the sum of the costs [15]. Note that N and M may not be equal;

some detections may not have an associated prediction, and vice-

versa. Once data association is complete, we formulate the creation,

propagation, and termination of object tracks as a multi-agent

sequential decision-making problem.

3.3 Multi-Object Tracking Environment
At any point in time, the internal mode of each track can be either

visible, hidden, or inactive. Visible and hidden tracks are associated

to a unique object in the scene, but only visible tracks are exposed

to the downstream system. Initially, all tracks are inactive. Once

a track becomes visible, it receives a new, unique object ID. The

hidden track state allows MARLMOT to tentatively track objects

until there are enough detections to report an object present with

high confidence, or to continue tracking objects if they temporarily

leave the scene but later return. A visible track becoming inactive

signifies an object leaving the scene.

Figure 1 outlines the tracking environment. Episodes begin by

randomly selecting one of the tracking scenarios provided by our

dataset. At each timestep t in the episode:

(1) For all i , compute x̂ it |t−1, the filter’s prior prediction of the

object’s state. If the filter is inactive, set x̂ it |t−1 to the zero

vector.

(2) Perform data association between the prior predictions and

the detections at the current timestep as described in Sec-

tion 3.2. If M > N , detections that are not associated to a

prediction are discarded.

(3) For all i , let dit be the track’s associated detection. IfM < N ,

a track may not have been associated with a detection. In

that case, set dit to the zero vector. Observe oit , as defined

Agent Filter

Associa-
tor

Ground truth

Detec-
tor

Agent Filter

...

...

...

...

Figure 1: TheMARLMOTmulti-agent environment architec-
ture. At each timestep, we associate detections with existing
tracks. Each agent computes a new object hypothesis by ob-
serving its associated detection and taking an action to up-
date a filter. The agents then receive a reward based on the
ground truth.

below. Take an action ati that determines how to estimate

x̂ it |t and the new internal mode of the track (see Table 1).

(4) During training, compute the joint reward rt using the poste-
rior hypothesis x̂ it |t and the true object positions x

i
t |t accord-

ing to the desired tracking metric using only the estimates

of visible trackers.

The real-valued observations oit ∈ R
18

of each agent include the

prior prediction x̂ it |t−1 ∈ R
7
of the agent, the associated detection

dit ∈ R
4
, the confidence of the detection cit ∈ R, the cost of the

association C ∈ R, and the internal mode of the track as a one-hot

encodingvt
i ∈ R

3
. Also, we include the number of timesteps since

the last association to the agent while the agent is in the active

or hidden state (nunassoc ∈ N), and the number of consecutive

timesteps that an association has been received by the agent while

it is in the active or hidden state (n
streak

∈ N). Agent observations
therefore include information about the past, and the vectors x̂ it |t
alone do not fully represent the underlying, unobservable state of

the environment.

The actions available to each tracker agent are designed to ad-

dress situations encountered during tracking:

• Action a1 terminates an object track, and should be taken

when an object leaves the scene.

• Action a2 restarts an object track, and should be taken when

an object enters the scene. Action a2 can also be helpful to

rectify a drifting track during a failure of the motion model

to account for an object’s trajectory, such as during a period

of sharp acceleration.
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Table 1: Action space of each track agent.

Action x̂ it |t−1 dit New object state estimate New track mode

a1 Ignore Ignore x̂ it |t ,P
i
t |t ← ∅ Inactive

a2 Ignore Use x̂ it |t ,P
i
t |t ← dit ,Pinit Visible

a3 Use Use x̂ it |t ,P
i
t |t ← Update(x̂ it |t−1,P

i
t |t−1,d

i
t ) Visible

a4 Use Ignore x̂ it |t ,P
i
t |t ← x̂ it |t−1,P

i
t |t−1 Visible

a5 Use Ignore x̂ it |t ,P
i
t |t ← x̂ it |t−1,P

i
t |t−1 Hidden

• Action a3 performs a filter update using the provided detec-

tion, which helps remove detection noise as in the single-

object tracking paradigm.

• Action a4 ignores the associated detection and uses the filter

prediction to update the estimated object state. This action

can be helpful during false negatives (no associated detec-

tion), false positives (when the associated detection does not

correspond to an actual object) or data association failures

(when the associated detection belongs to a different object

than the one currently tracked).

• Action a5 is similar to a4, but it puts the tracker in a hidden

state. This action is helpful during periods of occlusion, and

allows the agent to tentatively track an object without re-

vealing it to the downstream system until it is certain the

object exists.

When interacting in scenario i , we set the joint reward at time t
for all agents to

r it =
1

Ti
−
mt + fpt +mmet∑Ti

t ′=1 g
i
t ′

(6)

where mt , fpt , and mmet are the number of missed objects, false

positives, and mismatch errors with respect to the ground truth at

time t , while git is the total number of objects present at time t in the
ground truth scenario i . We compute missed objects, false positives,

and mismatch errors as defined in the popular multi-object tracking

accuracy (MOTA) metric [2]. The MOTA metric is defined as

MOTAi = 1 −

∑Ti
t=1 (mt + fpt +mmet )∑Ti

t=1 g
i
t

(7)

Therefore, the total return

∑Ti
t=1 r

i
t obtained in scenario i is equal

to the MOTA obtained for the scenario. Episodes terminate once

there are no more frames. In practice, we could set r iTi
= MOTAi ,

and r it = 0 for all other t , but we find that providing reward feed-

back throughout the trajectory helps guide the optimization. In the

MOTChallenge, the overall MOTAmetric is not equivalent to the av-

erage MOTA across all scenarios; rather, it is computed with respect

to the total number of ground truth objects across all scenarios. In

that case, we simply set the reward to r it = −(mt + fpt +mmet ).

3.4 Model Architecture
We want to learn a single policy π that we can use for all N tracks

simultaneously to decide how to act at every timestep. It is in-

tractable to optimize policies that consider all joint combinations

of actions by the N agents, since the dimensionality of the action

space becomes exponential with respect to N [25]. We instead solve

a multi-agent RL problem with N agents sharing the same policy.

Since the observation space is continuous, neural networks are a

good choice to optimize the policy of the agents. We parameterize

π by a 3-layer, fully-connected neural network, with hidden layers

of 128, 64, and 32 hidden units, in that order. Hidden units use

the ReLU activation function [21], while the output layer applies a

softmax function over the 5 possible actions.

We use the gradient-based trust-region policy optimization (TRPO)

[23] to optimize π using detections and ground truth labels pro-

vided by the MOTChallenge dataset. Unlike other policy optimiza-

tion algorithms, TRPO guarantees monotonic improvement in the

expected discounted cost of the policy. Although we could have

chosen a more straightforward reinforcement learning algorithm

such as DQN [20], Gupta et al. have shown TRPO to perform better

in cooperative environments than other deep reinforcement learn-

ing algorithms such as DQN and DDPG [18]. In practice, we found

that training was more stable when we used TRPO to optimize

the policy network. We use OpenAI’s rllab implementation of

TRPO [8], modified for the multi-agent setting [11]. We use a learn-

ing rate of 10
−4
. Although a baseline function is sometimes used

alongside TRPO to reduce the variance of the gradient estimate [10],

we do not use one in our implementation. We use a discount factor

γ = 0.95 to stabilize training.

To handle the multi-agent nature of the problem, we perform

joint policy rollouts for all agents in lockstep. During the rollout, we

accumulate the joint reward for all agents based on the ground truth.

The rest of the training procedure follows the TRPO algorithm as

if all rollouts in a batch came from a single agent. At the end of

the rollout (i.e., once there are no more detections), we update the

policy network’s weights according to the gradient of the TRPO

loss for the joint rewards. For conveninence during training, we

bound N to some fixed number of agents. However, since the policy

network weights are shared across agents, MARLMOT can track

any number of objects at test time. We dynamically create as many

agents as needed to associate every detection, and forward each

agent’s observation through the trained policy network to obtain

the agent’s action at that timestep.

Tracking environments such as the MOTChallenge pose addi-

tional hurdles. In theMOTChallenge, tracking scenarios varywidely

with respect to their frame size and frame rate. In some scenarios,

the camera is fixed high above a building, while in others, it is

moved along a sidewalk. We found that normalizing observations

by the width of the frame size and further normalizing them to be

in the range [0, 1] was important to stabilize training. To prevent
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exploding observations, the nunassoc and nstreak observations are

normalized by applying the sigmoid function to their values. Fur-

thermore, we set the batch size to the number of tracking scenarios

in the training set, such that each batch includes a rollout for each

of the scenarios for all agents. Each batch is therefore representative

of the scenario distribution on the training set, which we expect to

be similar to the distribution on the test set.

4 EXPERIMENTAL RESULTS
We evaluate our approach on both a simulated multi-object tracking

scenario and on the 2015 MOTChallenge tracking dataset [16].

The simulated scenario allows us to easily compare the qualitative

performance of our algorithm against rule-based approaches like

SORT. By controlling the tracking scenario, we can understand the

decisions of the learned policy network in challenging situations.

The 2015 MOTChallenge compares tracking algorithms on the task

of pedestrian tracking in videos. The dataset provides detections

and ground truth tracks in the form of bounding boxes, allowing

us to quantitatively assess the performance of MARLMOT in real-

world tracking scenarios.

4.1 Simulated Scenario
A challenging synthetic scenario illustrates the differences between

our supervised tracking algorithm and the rule-based SORT algo-

rithm. An instance of this tracking scenario is shown in Figure 2.

In each instance of the scenario, objects spawn at py = 0 at random

times, initially traveling upwards at a constant velocity. The start-

ing px position of an object is chosen uniformly at random between

0.1 and 0.5. Objects that spawn at px < 0.3 travel straight, while

objects that spawn at px > 0.3 travel straight and then turn sharply

to the right. We simulate a detection sensor by applying Gaussian

noise to the ground truth bounding boxes according to the mea-

surement noise covariance matrix R, stripping object identities, and
randomly omitting detections to simulate false negatives. Objects

with 0.7 < py < 0.9 are occluded and do not generate detections.

For clarity, we limit the scenario to at most two objects in the scene

at a time.

We train our multi-agent policy as described in Section 3.4, ob-

taining detections and ground truth tracks from the generative pro-

cess described above until training converges. We evaluate the pol-

icy against the rule-based SORT algorithm using the same Kalman

filter parameters. Figure 2 illustrates three challenges present in the

simulated scenario that the SORT algorithm is unable to address.

First, the long term occlusion of objects causes SORT to terminate

object tracks that enter the occlusion area and to spawn new object

tracks once they exit. Under the SORT policy, object tracks that have

not been associated with a detection for a fixed number of frames

(in this case, three) are terminated. Second, the constant velocity

motion model fails to account for the sharp turning behavior of the

objects. SORT fragments their tracks under the assumption that a

new object has entered the scene. Finally, objects commonly travel

close to each other, leading to frequent data association failures. It

is common for SORT to switch the identities of objects despite no

tracks ever crossing in the ground truth.

As a rule-based algorithm, SORT does not learn information

about the structure of the environment. Although the Kalman filter

parameters or the algorithm’s thresholds can be manually tuned,

adjustments are unlikely to be optimal in every scenario. For ex-

ample, in our simulated environment, it is advantageous to rely on

the constant-velocity motion model for objects traveling straight,

but to rely more heavily on detections during turns. In contrast,

our algorithm can exploit the structure of the tracking scenario to

overcome issues present in SORT’s rule-based approach, as seen in

Figure 2. Since each of these issues results in a lower MOTA, our

training procedure’s reward incentivizes policies that avoid them.

Figure 3 shows the trained policy network’s response to the three

challenges in the scenario in Figure 2.

The leftmost scenario in Figure 3 illustrates improved robustness

through periods of occlusion. While SORT terminates all object

tracks entering the occluded area because there have been no data

associations for too many timesteps, our trained policy learns to

propagate object tracks through this area using the Kalman filter

predictions until detections are visible again. In the scenario, both

agents begin by taking actions a1 and a4. Since the agents start in
the idle state, no object tracks are created. Once the object enters

the scene, the agent associated to the object responds to incoming

detections by increasing the probability of a3, updating the Kalman

filter with the detection every timestep. Once the object enters the

occluded area, the probability of action a4 peaks. The position of

the object is estimated during occlusion by using the Kalman filter’s

predictions, and the object’s identity is preserved. The probability

of a3 increases again under the policy once the object reappears.

Finally, once the object exits the scene, the probability of a1 peaks
for a single frame, terminating the track. No detections are received

by the agent during the occlusion and once the object leaves the

scene, but the policy behaves differently depending on the track’s

current position. The probability of a4 increases in the occlusion

area, but the probability of a1 increases once the object leaves the
scene, as desired.

The second scenario in Figure 3 shows MARLMOT’s response

against inaccurate motion models. The constant velocity motion

model cannot account for the sharp path of the turning object,

resulting in SORT incorrectly concluding that a new object traveling

rightwards entered the scene. Although our algorithm uses the

same motion model, it is able to exploit structure in the scenario

to correctly predict the object’s path. Since objects never spawn in

the center of the scene, the policy network learns to maintain the

identity of the object through the turn, rather than conclude that it

vanished midway through. Under the agent’s policy, the probability

of a2 increases once the object begins to turn, resetting the Kalman

filter to the detection position and maintaining the identity of the

agent through the turn. Once the turn is over, the probability of

a2 decays and the agent resumes a3 to update its Kalman filter as

usual, until the agent terminates the track once the object leaves

by taking action a1.
The rightmost scenario in Figure 3 illustrates the identity swap

caused by a failure in the data association step in Figure 2. In

this scenario, two objects are traveling very close to each other,

resulting in an increased likelihood of an identity switch. Since

the learned policy is shared across all agents, cooperative decision

making is not possible, so this is a challenging situation for our

algorithm. The learned policy partially overcomes this obstacle by

increasing the probability of a4. By probabilistically ignoring the
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Figure 2: An instance of the synthetic multi-object tracking scenario. Object identities are distinguished by color.
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associated detection and using the Kalman filter’s prediction instead,

the policy reduces the chance of updating the filter with an incorrect

detection and swapping the identities of the two objects. This option

is afforded by the simulated scenario’s structure: objects travel

straight at a constant velocity, so updating the filter every timestep

is unnecessary and increases the chances of an identity switch.

Once objects approach the turn, a2 increases again to maintain the

objects’ identities through the turn, as explained in the previous

paragraph.

In the simulated scenario, the agent never takes action a5. This
action places tracked objects in the occluded state, such that the out-

put tracks are hidden from the downstream system. However, in our

simulated scenario, ground truth objects that are occluded are con-

sidered when computing MOTA. In other words, a well-performing

algorithm should report the hypothesized positions of occluded

objects, so action a5 is not beneficial. In contrast, MOTChallenge

considers only visible objects when computing MOTA. In that case,

action a5 is necessary to maintain object identities through occlu-

sions while not reporting them as visible.

We designed the simulated scenario as a generative model so that

the tracking decisions of MARLMOT could be easily interpreted

and reproduced. In practice, more general tracking algorithms such

as MHT may be better choices if knowledge about the underlying

dynamics of the generative model is available. Unlike MARLMOT,

traditional appearance-free tracking algorithms typically require

a-priori knowledge about the environment in the form of a gener-

ative model or an explicit prior over the object birth, death, and

noise processes. However, in many cases, these dynamics are un-

available or hard to approximate. While access to the ground truth

during the MARLMOT training procedure constitutes a form of a-

priori knowledge, the structure in the environment is automatically

learned. Our results on the MOTChallenge in Section 4.2 showcase

the advantages of our approach in cases where the structure in the

environment is not obviously exploitable.

4.2 Pedestrian Tracking in Pixel Coordinates
To quantitatively compare the performance of our algorithm to

existing work, we focus on the 2015 MOTChallenge dataset. We
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Table 2: Quantitative tracker results on the 2015MOTChallenge training set for vision-free algorithms using public detections.
Metrics are (in order): MOTA andMOTP [2]; false positives, false negatives, ID switches and fragmented tracks;mostly-tracked
and mostly-lost tracks [17]; and recall and precision. SORT-Public refers to the results of the publicly-available implementa-
tion of the SORT algorithmwhen run on the public detections, while remaining results are quoted from [19]. Algorithms that
use offline post-processing are denoted with an asterisk (*), and algorithms that use the Hungarian algorithm are labeled with
HA. Higher values for metrics labeled ↑ are better, while lower values for metrics labeled ↓ are better.

Model MOTA ↑ MOTP ↑ FP ↓ FN ↓ IDs ↓ FM ↓ MT ↑ ML ↓ Rcll ↑ Prcn ↑

Kalman-HA 19.2 69.9 3031 28520 685 837 32 334 28.5 79.0

Kalman-HA2
*

22.4 69.4 2245 28626 105 342 39 354 28.3 83.4
JPDA-m

*
23.5 69.0 2728 27707 109 380 38 348 30.6 81.7

RNN-HA 24.0 68.7 4984 24832 518 963 50 267 37.8 75.2

RNN-LSTM 22.3 69.0 5327 25094 572 983 50 260 37.1 73.5

SORT-Public 26.0 72.5 6767 21988 780 1174 64 237 44.9 72.6

MARLMOT (Train on 1) 24.0 72.5 5631 23923 784 974 60 265 40.1 73.9

MARLMOT (Train on all) 27.7 72.5 6092 21976 767 1164 75 236 44.9 74.6
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Figure 4: Average joint return (MOTA) while training on
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choose this dataset due to the unavailability of appearance-free

tracking datasets, and due to several comparableworks in appearance-

free tracking using this dataset as well. We avoid appearance fea-

tures to focus on the tracking aspect of tracking-by-detection. Pre-

vious work has shown that optimizing vision features can have a

great effect on tracking performance, making it difficult to com-

pare tracking algorithms. For example, when paired with a good

detection algorithm, SORT performs near the state-of-the-art for

vision-based trackers, despite being much simpler than the MDP-

based tracker from Xiang et al [3, 29]. In practice, enhancing the

vision component of a tracking-by-detection algorithm is frequently

the easiest way to improve performance.

Since SORT is the state-of-the-art on this dataset for online,

appearance-free tracking, we use the same Kalman filter parameters

used in their publicly-available implementation to provide a fair

comparison. Figure 4 shows the average return obtained by all

tracking agents (equivalently, MOTA) for the first 900 iterations

of training. Normalizing observations improved performance, and

using batches representative of all possible scenarios stabilized

training. Since we are able to optimize MOTA directly, the eventual

performance of the algorithm during training is more interpretable

than when using proxy training metrics.

Table 2 shows our results on this dataset compared to other pub-

lished approaches according to the official evaluation procedure. On

most metrics, we outperform all other published online, appearance-

free algorithms that use publicly-available detections. Despite only

using MOTA as the environment’s reward, our algorithm performs

well on other metrics such as MOTP [2], mostly-tracked (MT), and

mostly-lost (ML) [17]. We speculate that this is due to MOTA be-

ing a good global tracking metric, as claimed by Bernardin and

Stiefelhagen. Our algorithm tends to report more false positives

than other approaches; however, it is more robust to false negatives,

illustrating a necessary trade-off in the presence of detection noise.

MARLMOT is also prone to fragmenting tracks, which may be a

consequence of the probabilistic nature of the tracking policy.

Even when training on only one of the 11 scenarios in the dataset,

we are able to outperform all supervised RNN approaches from

Milan et al. [19], demonstrating the ability of our algorithm to gen-

eralize to unseen scenarios. This generalization is only possible by

the use of observation normalization as described in Section 3.4,

given that scenarios in MOTChallenge vary widely in their frame

size and camera positioning. We found that only by normalizing

observations and training with representative batches was it possi-

ble to outperform SORT. Training proceeds in a much more stable

fashion if observations are similar across scenarios and batches

are representative of all possible scenarios. In most applications,

including autonomous driving, tracking is performed using the

same set of sensors in the same configuration, so this is usually not

as much of an issue. Although the version of MARLMOT trained

on only one scenario does not outperform SORT, the parameters

of the SORT algorithm were manually tuned on the entire training

data. In practice, the performance of SORT is highly dependent on

the choice of parameters. In this regard, MARLMOT provides an

advantage by defining a training algorithm to adjust the algorithm

parameters automatically.

Session 37: Learning and Adaptation 4 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1403 



In our experiments, the implementation of our algorithm runs

with 10 simultaneous agents at a frequency of 240 Hz on a laptop

CPU, demonstrating that it is possible to use for autonomous driving

or real-time video purposes. Since the observations for all agents

are forwarded through the same network and can be provided

simultaneously in a single batch, determining each agent’s action

every timestep is efficient. Data association is also efficient thanks to

the Hungarian algorithm, which has a cubic runtime. Furthermore,

the policy network is not especially deep or complex. We expect

that optimizing the algorithm or using a GPU alongside a deep

learning library would further improve runtime performance.

5 CONCLUSION
We presented a multi-agent reinforcement learning formulation of

multi-object tracking, where agents leverage sensor and motion

models to filter noise but learn a policy from data to start, propagate,

and end object tracks. Our algorithm outperforms state-of-the-art,

rule-based approaches using similar ideas as well as supervised

approaches involving RNNs. Although algorithms that use appear-

ance models of objects outperform our multi-agent formulation on

the MOTChallenge dataset, in tracking applications not involving

video it may not be possible to use them. In these cases, a hybrid

model-based/supervised approach such as ours may perform well,

especially if there is a known tracking metric to optimize and track-

ing scenarios are similar to each other.

Future work could explore recurrent policies. In particular, it

is likely that the optimal decision for an agent depends on the

history of observations rather than only the current observation.

In other words, the underlying dynamics are not truly Markovian.

While we include information about past states and actions in our

observations, it is likely that additional information about the past

would help agents make better decisions. Using an RNN as the

tracking policy may help learn these longer-term dependencies

between observations and optimal actions [12, 28]. Experimenting

with more sophisticated motion filters such as the extended Kalman

filter or a supervised filter is also likely to improve performance. As

another avenue of future work, incorporating visual information

into the agent observations would allow comparisons against high-

performing object trackers in videos. Finally, exploring supervised

approaches to data association such as those presented by Milan

et al. [19] may allow for end-to-end multi-object tracking.
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