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ABSTRACT
Ubiquitous mobile and wireless communication systems have the

potential to revolutionize transportation systems, making accurate

mobility traces and activity-based patterns available to optimize

the design and operations of mobility systems. However, these rich

data sets also pose significant privacy risks, potentially revealing

highly sensitive information about individual agents.

This paper studies how to use differential privacy to release mo-

bility data for transportation applications. It shows that existing

approaches do not provide the desired fidelity for practical uses. To

remedy this limitation, the paper proposes the idea of Constraint-
Based Differential Privacy (CBDP) that casts the production of a

private data set as an optimization problem that redistributes the

noise introduced by a randomized mechanism to satisfy fundamen-

tal constraints of the original data set.

The CBDP has strong theoretical guarantees: It is a constant

factor away from optimality and when the constraints capture

categorical features, it runs in polynomial time. Experimental re-

sults show that CBDP ensures that a city-level multi-modal transit

system has similar performance measures when designed and opti-

mized over the real and private data sets and improves state-of-art

privacy methods by an order of magnitude.
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1 INTRODUCTION
The availability of mobility traces and activity-based patterns has

the potential to revolutionize the design and operations of trans-

portation systems. For instance, shared-ride services such as Uber-
Pool and Via reroute driver paths in real time to optimize vehicle

capacity, bike-sharing programs such as CitiBike in New York re-

balance their fleets from popular destinations to popular origins,

and CityMapper operates a private night bus line in London based

on their analysis of the mobility data collected from user data.

However, the release of mobility data poses significant risks, as

they contain highly sensitive information about individual agents,
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(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
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Figure 1: Comparison of the direct and CBDP approaches.
The direct approach (top) uses the output Q̃(D) from the
Laplace mechanism MLap to construct the differentially-
private data set D̃. CBDP (bottom) issues additional queries
and uses an optimization model to redistribute the noise.

Indeed, De Montjoye et al. [4] have shown that only four spatio-

temporal points are sufficient to uniquely identify 95% of the indi-

viduals within the spatial resolution of an antenna. It is thus not

surprising that the release of private mobility data has attracted

significant attention in recent years [1, 10, 15].

In the last decade, differential privacy [6] has emerged as the

de-facto standard for protecting the privacy of individual agents.

Informally speaking, differential privacy bounds the harm caused

by the participation of an agent to a data set. To protect individual

agents, differential privacy uses randomized mechanisms that inject

noise in the data. The magnitude of the random noise impacts the

utility of the data set, creating a tradeoff between utility and privacy

[12, 17, 21].

This paper is motivated by the release of private data sets for

the design and operations of On-Demand Multimodal Transit Sys-

tems (ODMTS), where high-frequency buses or light-rail lines are

combined with on-demand shuttles to address both congestion and

the first/last mile problem [19]. It considers a case study where a

city desires to release temporal Origin-Destination (O-D) pairs of

its population so that third-parties can propose configurations of

the new mobility services. This setting is ideal for the application

of differential privacy. Unfortunately, experimental results on the

city of Ann Arbor in Michigan shows that the optimal design of

the ODMTS over the private data set is about 150% more expensive

than over the original data set. The noise added by the standard

differential privacy mechanism fails to preserve the combinatorial

structure of the original data.

To remedy this limitation, this paper proposes the framework

of Constrained-Based Differential Privacy (CBDP), whose key idea

is to use optimization technology to redistribute the noise intro-

duced by standard differential privacy mechanisms and preserve

salient features of the application. In a first step, CBDP applies a

standard differential privacy mechanism on two types of queries:

the traditional queries needed to construct the private database and
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a collection of feature queries that capture important constraints
of the targeted application. Since differential privacy mechanisms

introduce noise independently on each query, the resulting query

outputs, and the private data set, are inconsistent. The second step

of CBDP uses an optimization model to redistribute the noise in

order to restore consistency and ensure that the noise stays as close

as possible to the one in the standard mechanism. Figure 1 high-

lights the difference between the direct (top row) and the CBDP

(bottom row) approaches.

The paper shows that the CBDP has strong theoretical properties:

it achieves ϵ-differential privacy, it ensures query consistency, and

it is a constant factor away from optimality. When the constraints

capture categorical features, the CBDP mechanism also runs in

polynomial time. Finally, experimental results shows that the CBDP

mechanism is also practical: On the design of an ODMTS for the

city of Ann Arbor, MI, it improves the accuracy existing approaches

by an order of magnitude and results in negligible utility losses.

2 DIFFERENTIAL PRIVACY
This section summarizes key results in Differential Privacy (DP)

[8]. A randomized mechanism M : D → R with domain D and

range R is ϵ-differentially private if, for any S ⊆ R and any two

inputs D1,D2 ∈ D differing in at most one data item
1
(written

| |D1 − D2 | |1 ≤ 1),

Pr [M(D1) ∈ S] ≤ exp(ϵ)Pr [M(D2) ∈ S], (1)

where the probability is calculated over the coin tosses of M. The

parameter ϵ is the privacy budget of the mechanism.

Differential privacy satisfies several important properties, includ-

ing composability and immunity to post-processing. Composability

ensures that a combination of differentially private mechanisms

preserves differential privacy.

Theorem 2.1 (Composition Theorem). LetMi : D → Ri be an
ϵi -differentially private mechanism (1 ≤ i ≤ k). Their composition
M(D) = (Mi (D), . . . ,Mk (D)) is (

∑k
i=1 ϵi )-differentially private.

The immunity to post-processing ensures that applying arbitrarily

many functions to the output of a differentially private-mechanism

preserves its privacy guarantees.

Theorem 2.2 (Post-Processing Immunity). Let M : D → R
be an ϵ-differentially private mechanism and д : R → R ′ be an
(arbitrary) mapping. The mechanism д ◦M is ϵ-differentially private.

In private data analysis settings, agents interact with the data set

by issuing queries. A (numeric) query is a function from a data set

D ∈ D to a result set R ⊆ Rn . The sensitivity of a queryQ , denoted

by ∆Q , is defined as

∆Q = max

D1,D2 s.t.

| |D1−D2 | |1≤1

| |Q(D1) −Q(D2)| |1. (2)

Counting queries are particularly useful and return the number of

data points satisfying a predicate. They have sensitivity 1.

Adding Laplacian noise when answering numeric queries pro-

duces a differentially private mechanism [6].

1
I.e., |(D1 − D2) ∪ (D2 − D1) | = 1

Figure 2: A Multimodal Transit System. Squares denote
boarding/alighting stops. Colors highlight different service
zones. The line segment illustrates amulti-modal three-legs
route (shuttle-bus-shuttle).

Theorem 2.3 (Laplace Mechanism). Let Q : D → R be a nu-
merical query. The Laplace mechanism, defined asMLap(D;Q, ϵ) =
Q(D) + z where z ∈ R is a vector of i.i.d. samples drawn from the
Laplace distribution with scaling factor ∆f /ϵ , is ϵ-differential private.

3 ON-DEMAND MULTIMODAL TRANSIT
On-Demand multimodal transit systems (ODMTS) jointly address

congestion and the first/last mile problem that plagues many transit

systems. They combine high-frequency buses (or light-rail) between

hubs for high-density corridors, with on-demand shuttles to bring

riders from their origins to the hubs and from the hubs to their

destinations. On-demand shuttles also perform direct trips between

origins and destinations. Bus routes are fixed, while the shuttles are

dispatched and routed dynamically, maximizing ride sharing while

preserving short waiting and transit times for passengers. Riders

are picked up and dropped off at virtual vehicle stops (also called

locations for simplicity), which include the hubs. Figure 2 illustrates

a trip with three legs in an ODMTS consisting a shuttle leg from

the trip origin (location ℓ1) to a hub (location ℓ2), followed by a bus

leg to another hub (location ℓ3) and a final shuttle leg to the final

destination (location ℓ4).

The design of an ODMTS aims at minimizing the total cost of the

system (investment and operating costs), while keeping the average

transit time within a desired interval. Maheo et al. [19] proposed an

advanced Benders decomposition algorithm to design an optimal

ODMTS from a data set of temporal O-D pairs. When scaling to

large cities or significant riderships, it is also desirable to partition

the transit region into zones, which are operated and optimized

independently. In particular, each zone are allocated a number of

shuttles that serve the requests within the zone and from the zone

to a hub (and vice-versa). In Figure 2, the zones are depicted by the

color of the stops. The design of an ODMTS must then optimally

size the fleet of each zone and determine a cost-optimal rostering of

the drivers that obeys federal and state regulations. Finally, during

operations, real-time algorithms for shuttle dispatching, routing,

and ride-sharing aim at minimizing the average transit times of

riders, while satisfying convenience constraints.

For concreteness, the paper focuses on the following case study.

A transit agency has designed an ODMTS, including the bus net-

work and the shuttle zones, and would like to engage a mobility
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solution provider for servicing the shuttle component. To help the

procurement process, the transit agency would like to release a pri-

vate data set so that mobility solution providers can size their fleets

properly to minimize cost and satisfy the selected performance

criteria for waiting and transit times. Mobile solution providers

will then use their optimization algorithms for fleet sizing and real-

time operations, denoted by F and O respectively, in order to price

their services accurately. This case study is representative of many

procurement and competition settings.

4 NOTATIONS AND SETTINGS
Let N0 be the set of non-negative integers and U the data universe,
which we assume to be a finite set. A data set D is a multi-set of

elements in U or, equivalently, a vector inN
|U |

0
. The data universe

for our mobility data set is defined asU = L×L×T, where L is a set

of locations (virtual vehicle stops) and T is a partition of a 24-hour

day in time periods. The time resolution determines the cardinality

of T. Elements in U are called trip types and are denoted by ⟨o,d, t⟩,
where o,d ∈ L are the origin and destination of the request and

t ∈ T represents its time period. Our mobility data set is a multiset

of trip types or, equivalently, a vector of type N
|L2T |
0

.

This paper studies the release of a private version of a data

set, which is then used in a procurement or competition context.

The original data set can be obtained by numeric queries on every

u ∈ U . Similarly, a private data set can be produced via a mapping

from noisy outputs c̃u to these numeric queries. As a result, this

paper primarily focuses on differential-privacy mechanisms for

these numeric queries.

5 RELATEDWORK
As sketched in the introduction, the first step of CBDP uses a se-

quence of correlated (batched) queries. Research on answering

batched queries has focused primarily at reducing the sensitivity of

correlated queries. Xiao et al. [24] applies a wavelet transformation

to the data set frequency to generate a wavelet coefficient resulting

in reduced noise variance per query. Li et al. [16] proposed amatrix
mechanism to answer linear combinations of queries. Huang et

al. [13] applies a transformation to the batch of queries to output a

set of orthogonal queries to reduce correlation between them. The

literature on k-way marginals [5, 7, 22] focuses on improving the

time complexity or accuracy when the data universe is so large that

the full marginal is unnecessary and infeasible. In contrast, CBDP
releases the full private data set, imposes constraints to ensure its
consistency, and optimization to guarantee its accuracy.

The closest related work is the Hierarchical (H) mechanism of

Hay et al. [11] and its extensions [2, 21]. It uses a post-processing

step that enforces additive constraints based on a tree structure of

the data universe. The mechanism creates a balanced tree where

the leaves are singleton sets of the universe U , each internal node

is the union of its children, and the root is the entire universe. For a

tree of height h, H first uses the Laplace mechanism for answering a

counting query for each node of the tree (except the root). Each such

query has a privacy parameter ϵ/h, so that the step is ϵ-differentially

private. The second step of H takes the resulting tree T0 ∈ R |U |

and applies a variance reduction process to obtain a tree T1. The
final step in H finds a tree T in which a parent value is equal to the

sum of values of its children and the value ∥T −T1∥
2

2
is minimized.

Thanks to the tree structure and simplicity of the objective, there is

a simple closed form formula to computeT . The leaves can then be

used to reconstruct a data set. Although the original hierarchical

mechanism only considers balanced trees and is agnostic to the

data semantics, it can be altered to use features for branching and

is thus directly applicable to the setting of this paper. A detailed

comparison of CBDP and H is presented in Section 11.

6 THE DIFFERENTIAL PRIVACY CHALLENGE
It is useful to highlight the challenges raised by the case study. For

the OBMTS of Ann Arbor, the Laplace mechanism on the batched

queries outputs a real vector with many negative numbers (which

are obviously semantically meaningless). A post-processing step

that rounds each count to its closest non-negative number induces

a significant bias towards positive noise values. This problem is

exacerbated by the sparsity of our query results. For the considered

OBMTS, the original data set contains 37,714 trips. The Laplace

mechanism for ϵ = 1 returns on average of 261,032 trips (averaged

over 50 independent runs), which is about a 7 fold increase. For

ϵ = 0.01, the Laplace mechanism generates 3,312,350 trips just

between 8am-10am compared to 4878 actual trips. As a result, a

fleet-sizing optimizer will significantly overestimate the number

of shuttles required and the overall operating cost of the ODMTS,

making the release of the private data set useless.

To understand these results, it is useful to observe that, for a

resolution of 30 minutes, there are 67600 possible trip types within

the two-hour period 8am–10am. However, only 591 of them have

non-zero counts. This pathological behavior of the Laplace mech-

anism on sparse counting queries is a well-known critical issue

when applying differential privacy in practice [3, 9, 18, 23].

7 THE CBDP MECHANISM
To remedy this important issue, this paper introduces the idea

of Constraint-Based Differential Privacy (CBDP). It is especially

suitable for complex optimization tasks whose outcomes, crucially,

but indirectly, depend on structural properties of the data. CBDP

uses the concept of features to capture semantic properties of the

application and queries these features in addition to the orginal

data set.

Features and Feature Queries. A central element of CBDP is the

concept of feature. A (categorical) feature is a partition of the uni-

verse U and the size of the feature is the number of elements in

the partition. A feature F′ is a sub-feature of F, denoted by F′ ≺ F,
if F′ is obtained by sub-partitioning F. The feature query on data

set D ∈ D associated with feature F = {d1, . . . , dn } is denoted by

QF(D): It returns an n-dimensional count vector (c1, . . . , cn ) where
each ci is the number of data points in D that belong to di .

The Input. The mechanisms studied in this paper take as input

the data set D and a collection of features F = {F1, . . . , Fk } where
Fi = {di1, . . . , dini } for (i = 1, . . . ,k). For simplicity, the first feature

always partitions the universe into singletons, i.e., F1 = {{u} : u ∈

U }, since these are the counts used to construct the private data

set. The paper also assumes that the second feature contains the

universe as a single element, i.e., F2 = {U }. Hence, query QF1 (D)
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minimize: ∥x − c̃∥2
2,w =

k∑
i=1

1

ni

ni∑
j=1

(xi j − c̃i j )2 (O1)

subject to:

∀i′, i : Fi′ ≺ Fi , j ∈ [ni ] : xi j =
∑

l :di′l ⊆di j

xi′l (O2)

∀i, j : xi j ≥ 0. (O3)

Figure 3: The CBDP Post-Processing Step.

reports the counts of the original data set D, while query QF2 (D)
reports the total number of elements in the data set.When viewed as

queries, the inputs to the mechanism can be represented as a set of

counts QFi = ci = (ci1, . . . , cini ) (1 ≤ i ≤ k) or, more concisely, as

c = (c11, . . . , cknk ). Finally, for simplicity, the mechanisms assume

that the partial ordering ≺ of features is given.

The CBDPMechanism. CBDPfirst applies the Laplacemechanism

with privacy parameter
ϵ
k to each feature query, i.e.,

MLap(D;QFi , ϵ/k) = c̃i = (c̃i1, . . . , c̃ini ) ∈ R
ni (1 ≤ i ≤ k).

The resulting counts c̃ = (c̃11, . . . , c̃knk ) are then post-processed

by the optimization algorithm depicted in Figure 3 to obtain the

counts x∗ = (x∗
11
. . . ,x∗knk

). Finally, the CBDP mechanism outputs

a data set D̃ such thatQF1 (D̃) returns a rounded version of x∗. This
is trivially achieved as described earlier, since our universe is finite.

The essence of the CBDP mechanism is obviously the optimiza-

tion model. Its decision variables are the postprocessed counts

x = (x11 . . . ,xknk ), and w = (w1, . . . ,wk ) ∈ (0, 1]k is a vector of

reals representing weights for the terms of the objective function.

The objective minimizes the squared weighted L2-Norm of x − c̃,
where the weight wi of element xi j − c̃i j is

1

ni . The optimization

is subject to a set of consistency constraints among comparable fea-

tures and non-negativity constraints on the variables. For each pair

of features (Fi′ , Fi ) with Fi′ ≺ Fi , constraint O2 selects an element

di j ∈ Fi and all its subsets di′l ∈ Fi′ and imposes the constraint

xi j =
∑

l :di′l ⊆di j

xi′l

which ensures that the postprocessed count xi j is consistent with
the sum of the postprocessed counts of its partition in Fi′ . By defi-

nition of sub-features, there exists a set of elements in Fi′ whose
union is equal to di j . Note that the Laplacian counts do not gener-

ally satisfy these constraints.

Intuitively, the CBDP mechanism can be thought as redistribut-

ing the noise introduced by the Laplace mechanism to obtain a

consistent data set. The post-processing step searches for a solution

that satisfies all the feature constraints and is as close as possible

to the Laplacian counts. A feasible solution always exists, since the

real counts c satisfy all constraints. Observe that, when only F1 and
F2 are used then the optimization model enforces the constraints

|U |∑
j=1

x1j = x21

and minimizes

(x21 − c̃21)
2 +

1

|U |

|U |∑
j=1

(x1j − c̃1j )
2

Together they impose a strong relationship between the post-

processed individual counts and the post-processed total count,

which aims at preserving the number of elements in the data set

and the sparsity of the data set,

The CBDP mechanism exploits three insights. First, by using a

weighted L2-norm, CBDP ensures that the sums of the terms for

each partition are of the same order of magnitude. This is natural,

since they all partition the entire universe. Second, observe that the

features are not hierachical: They can capture fundamentally dif-

ferent aspects of the problem structure. Finally, the non-negativity

constraints ensure that only non-nengative post-processed counts

are generated, contrary to the Laplacian mechanism.

8 THEORETICAL PROPERTIES OF CBDP
This section presents some theoretical properties of the CBDP.

Theorem 8.1. CBDP achieves ϵ-differential privacy.

Proof. Since each feature partitions the universe, each feature

query is a counting query with sensitivity 1. Thus each c̃i j ob-
tained from the Laplace mechanism is ϵ/k-differentially-private
by Theorem 2.3. The combination of these results (c̃11, . . . , c̃knk )
is ϵ-differentially-private by Theorem 2.1. The result follows from

post-processing immunity (Theorem 2.2). □

Observe that the mechanisms considered in this paper all operate

over the universe, (e.g., the set of trip types of the form ⟨o,d, t⟩ in the
case study). This is the case for instance of the Laplace mehanisms

which runs in polynomial time in the size of the universe. The

next theoretical result characterizes the complexity of the post-

processing step and hence the complexity of the CBDP mechanism.

Recall that a δ -solution to an optimization problem is a solution

whose objective value is within distance δ of the optimum.

Theorem 8.2. A δ -solution to the optimization to the optimization
model in Figure 3 can be obtained in time polynomial in the size of
the universe, the number of features, and 1

δ .

Proof. First observe that the number of variables and con-

straints in the optimization model are bounded by a polynomial in

the size of the universe and the number of features. Indeed, since

the features are partitions, every set di′l in Constraint (O2) is a

subset of exactly one di j . The result then follows from the fact that

the optimization model is convex, which implies that a δ -solution
can be found in time polynomial in the size of the universe, the

number of features, and
1

δ [20]. □

The final theoretical results bounds the accuracy of the CBDPmech-

anism in terms of the accuracy of the Laplace mechanism.

Theorem 8.3. The optimal solution to the optimization model in
Figure 3 satisfies

∥x∗ − c∥2,w ≤ 2∥c̃ − c∥2,w .
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Proof.

∥x∗ − c∥2,w ≤ ∥x∗ − c̃∥2,w + ∥c̃ − c∥2,w (3)

≤ 2∥c − c̃∥2,w . (4)

where the first inequality follows from the triangle inequality on

weighted L2-norms and the second inequality follows from

∥x∗ − c̃∥2,w ≤ ∥c − c̃∥2,w

by optimality of x∗ and the fact that c is a feasible solution to

constraints (O2) and (O3). □

The following corollary follows from the optimality of the Laplace

mechanism [14].

Corollary 8.4. The CBDP mechanism is at most a factor 2 away
from optimality.

9 APPLICATION TO THE CASE STUDY
This section applies the CBDPmechanism to the case study inmobil-

ity. The CBDP mechanism uses the following features {F1, . . . , F5}:
(1) F1= {{l} : l ∈U } is the partition into singleton sets.

(2) F2= {U } captures the total number of trips, a key feature for

the fleet sizing of ODMTS.

(3) F3 partitions the universe by trips occurring within a given

time period t .
(4) F4 partitions the universe by the zones of the O-D pair (e.g.,

from Zone 1 to Zone 3). The amount of inter-zone mobility

demands is also a key feature of ODMTS, especially for high

fidelity in transit times. The set of all zones is denoted by Z.
(5) F5 partitions the universe by the transportation modem (e.g.,

shuttle-bus-shuttle, shuttle-bus, bus, etc.). Transportation

modes have a significant effect on fleet sizing and the overall

cost of the ODMTS. The set of all transportation modes is

denoted by M.

In lieu of numeric subscripts, the presentation uses the following

notations for more clarity; c̃D , c̃t , c̃l t , c̃zt , and c̃mt , respectively,

denote the total noisy number of trips (F2), the noisy number of

trips grouped by time intervals t (F3), the noisy number of trips

for an O-D pair l and time t (F1), the noisy number of a trips for

a zonal O-D pair z and time t (F4), and the noisy number of trips

for a given transportation mode and time t (F5). The optimization

model associates variables xD ,xt ,xl t ,xzt , and xmt with each of

these noisy counts.

The optimization model, which is an instantiation of the general

mechanism, is given in Figure 4. The constraints are driven from

the partial ordering F1 ≺ F4 ≺ F3 ≺ F2 and F1 ≺ F5 ≺ F3 ≺ F2.

10 EXPERIMENTAL RESULTS
This section presents an evaluation of the CBDP mechanism on the

case study. It first presents the experimental setup and compares the

CBDP mechanism with the Laplace and hierarchical mechanisms.

Data sets and Experimental Setup. The experimental results

concern an on-demand multi-modal transportation system for the

city of Ann Arbor in Michigan. The city has 160 locations that are

allotted as stops for both buses and small shuttles, which makes

a total of 16,900 possible O-D pairs. Buses have a capacity of 100

passengers, while shuttles have a capacity of 8 passengers. The

minimize: (xD − c̃D )
2 +

1

|T|

∑
t ∈T

(xt − c̃t )
2

(5)

+
1

|T × L2 |

∑
l ∈L2,t ∈T

(xl t − c̃l t )
2

(6)

+
1

|T × Z2 |

∑
z∈Z2,t ∈T

(xzt − c̃zt )
2

(7)

+
1

|T ×M|

∑
m∈M,t ∈T

(xmt − c̃mt )
2

(8)

subject to: xD =
∑

(l,t )∈L2×T

xl t (9)

xD =
∑
t ∈T

xt (10)

xt =
∑

{(l,t )}∈d
3l t

xl t (∀t ∈ T) (11)

xD =
∑

(z,t )∈Z2×T

xzt (12)

xt =
∑
z∈Z2

xzt (∀t ∈ T) (13)

xzt =
∑

(l,t )∈d4zt

xl t (∀z ∈ Z2, t ∈ T) (14)

xD =
∑

(m,t )∈M×T

xmt (15)

xt =
∑
m∈M

xmt (∀t ∈ T) (16)

xmt =
∑

(l,t )∈d5mt

xl t (∀z ∈ M, t ∈ T) (17)

xD , xt ,xl t ,xzt ,xmt ≥ 0

(∀t ∈ T, l ∈ L2, z ∈ Z2,m ∈ M) (18)

Figure 4: The CBDP Optimization Step for the ODMTS.

experiments use multiple data sets collected during a weekday and

a weekend capturing user mobility activities. The data is collected

through a collaboration with the urban transit system of the city

under an IRB. The baseline MLap is the Laplace mechanism with a

post-processing that rounds the results to the nearest non-negative

integer. The mechanisms are implemented in Python 3 and Gurobi
6.0. The fleet sizing and operational optimization algorithms F

and O are implemented in C++ with some scripting code in Python
3. The experiments are executed on an Intel(R) Xeon(R) E3-1240

3.50GHz with 4GB of RAM. The optimization algorithm F is allo-

cated 24 hours for finding a fleet sizing that satisfies the desired

expected waiting time which must be no more than 180 seconds.

The resolution of the time periods is set to 30 minutes, there are

4 different mobility zones, and 12 feasible combinaitons of trans-

portation modes.

The CBDPMechanism. Three variants of the CBDP mechanisms

were implemented:
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(a) (b)

(c) (d)

Figure 5: Average errors for the weekend (a) and the weekday (b) trip data sets, andMTSOP system cost (c) and average waiting
time (d) reported at the varying of the privacy budget.

• MO3 uses three features: F1 and F2, and F3 The optimization

step is therefore with objective Eq. (5, 6) and constraints (9–11)

and (18);

• MO4 uses four features: F1, F2, F3, and F4. The optimization step

is therefore with objective Eq. (5–7) and constraints (9–14) and

(18);

• MO5 uses all five features. The optimization step is therefore

with objective Eq. (5–8) and constraints (9–18).

Hierarchical Mechanism. The hierarchical mechanism was

also evaluated with three different sets of features. Mechanisms

MH3,MH4, and MH5 generate trees of heights 3, 4, and 5 respec-

tively. The root in MH3 represents all trip types, the next level

represents the trip partitioning by time intervals, and each leaf is

assigned to an individual trip types. MH4 extends MH3 with an

second intermediate level for the zones.MH5 has a second inter-

mediate level for zones and a third intermediate level for modes.

MH3,MH4, and MH5 are thus the counterparts of MO3,MO4,

andMO5 respectively. All the experiments with the hierarchical

mechanism employ the heuristic used by Hay et al. [11]: If a node in

T1 has a non-positive value, then the node and all its successors are

pruned. This heuristic was shown to reduce the error in sparse data

sets [11]. Additionally, the privacy budget is distributed according

to the geometric scheme from Cormode et al., which was shown to

outperform the original uniform privacy budget allocation scheme.

Privacy Budgets and Execution Times. The mechanisms are

evaluated for privacy budgets ϵ ∈ {1.0, 0.1, 0.05, 0.01}, where

smaller values for ϵ means increased privacy guarantees and hence

more noise in the private counts. All experimental results are re-

ported as the average of 50 runs. The CPU times to generate the

private datasets are between 30.1 and 543 seconds for the MH ex-

periments, 9.9 and 52.8 seconds forMLap , and 7.8 and 15.4 seconds

for the MO experiments, depending on the chosen privacy budget.

Interestingly, the MO experiments, despite the convex optimiza-

tion step, can be faster than theMLap experiment. This is due to

the huge volume of extra data points that MLap introduces.

Error Analysis. The first experiments measure the error intro-

duced by a mechanism as the average distance between the exact

and the private answers to the counting queries. The error of the

mechanisms are depicted in Figure 5(a) for the weekday (high de-

mand) and in Figure 5(b) for the weekend (low demand) data sets

using various privacy budgets. The results are shown in log-scale.

For all privacy budgets, the hierarhical mechanism performs

slightly worse than MLap , with MH5 reporting the largest er-

rors. Obviously,MH5 introduces more noise thanMH4,MH3, and

MLap , as it splits the privacy budget into more levels. Overall, for

the ODMTS case study, the hierarchical mechanism is not able

to redistribute the additional noise effectively to obtain a higher

accuracy.

In contrast, the CBDP mechanism always improve the Laplace

mechanism and brings an order of magnitude improvement in

accuracy over the Laplace and hierarchical mechanisms as soon as

ϵ < 1.0. This is especially striking with respect to the hierarchical

mechanisms since both sets of mechanisms apply the same amount

of noise.
2
This highlights the benefits of the optimization model in

2
The magnitude of improvements remain the same when a uniform privacy budget

allocation is used for the MH mechanisms.
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Weekday Weekend
shuttles wtime (s) itime (s) shuttles wtime (s) itime (s)

MO5 0.158 0.040 0.061 0.252 0.005 0.004
MO4 0.483 0.003 0.196 0.843 0.024 0.049

MO3 0.510 0.028 0.145 0.891 0.024 0.051

MH5 0.788 0.028 0.483 2.647 0.025 0.150

MH4 1.262 0.007 0.578 3.694 0.026 0.159

MH3 1.394 0.029 0.586 3.704 0.024 0.172

MLap 1.518 0.029 0.587 4.371 0.021 0.192

O(π ,Do ) 99 135.0 5130 48 127.8 4779

Table 1: Error on the system utilities obtained using private data sets generated with privacy budget ϵ = 1.0.

the post-processing step. The discussion in the next section provides

an in-depth study of the sources of the improvements observed in

the MO experiments.

A strength of the CBDP mechanisms is their ability to repre-

sent non-negativity constraints on the decision variables in the

optimization model. In contrast, MH3,MH4, and MH5 produce

8285, 7006, and 11453 negative counts in average over all our exper-

iments. The average values span from -2.3 (for the lowest privacy

budget) to -171.6 (for the highest privacy budget), suggesting that

the mechanism must generate leaf nodes with large positive counts

to satisfy the constraints imposed by the counts in the hierarchy.

Analysis of the ODMTS Utility. Consider now the evaluation

of mechanisms on the utility of the ODMTS, which is the most

important metric in our context. The effectiveness of a mechanism

is evaluated by considering a trip data set D and the private version

D̃ it generates. The comparison first performs the fleet sizing over

the original and private dataset, i.e., it computes π = F (D) and
π̃ = F (D̃). Then, it evaluates the real-time operation configured

with π and π̃ respectively on a real operational dataset Do , i.e., it

computes O(π̃ ,Do ) and O(π ,Do ). These optimization models make

it possible to evaluate the system cost under various mechanisms,

as well as the performance of the ODMTS operations in terms of

convenience.

Figure 5(c) present the results in terms of system costs. They

use the number of shuttles as a proxy for costs. Since the cost of

shuttle drivers represents about 50 percent of the total cost in the

actual system and the experiments can only be performed for the

8am-10am time period because of the scalability of the Laplace

and hierarchical mechanisms, this proxy can be used to compare

the various mechanisms. Figure 5(d) present the results for the

average waiting time per leg in seconds on the weekday dataset

again. Both figures report results for various privacy budgets and

the red lines report the value of F (D) and O(π ,D) respectively.
The mechanism results should thus be as close as possible to the

red lines. Unfortunately, it was not possible to find a feasible fleet

sizing (within a 24h limit) for the trip datasets produced by MLap
and theMH variants for privacy budgets smaller than 1 due to the

loss of sparsity in these mechanisms. To provide some perspectives,

the number of trips generated by MLap for these privacy budgets

are 320, 940.40, 656,577.40, and 3,312,350.00. For MH5
, they are

839,150.50, 1,698,770.00, and 8,543,366.50.

Figure 5(c) shows that the CBDP mechanism better preserves

the system costs compared to other mechanisms. In general, all

mechanisms produce over-sized fleets but the cost increases of

the Laplace and hierarchical mechanisms are very significant. In

contrast, when the privacy budget decreases, mechanism MO5

exactly matches, or slightly underestimates, the number of shuttles.

These results show that MO5 produces a small increase in cost.

Figure 5(d) shows that all the mechanisms preserve the waiting

times with great accuracy. This is not surprising since the mech-

anisms almost always have over-sized fleets. When MO5 slightly

underestimates the fleet size for the smallest privacy budget, a slight

increase in waiting time is observed.

Table 1 tabulates the ODMTS utilities in these experiments for

the weekday and weekend datasets and privacy budget ϵ = 1.0. The

last row reports the fleet sizing (shuttles), the average waiting time

per trip in seconds (wtime), and the average shuttles idle time in

seconds (itime), defined as the total amount of time during which a

vehicle is serving no passenger. The other rows show the relative

error between the true utility f ∗ of the ODMTS and its counterpart

˜f for a given mechanism. The highlighted values denote the most

accurate utilities across the mechanisms. The table clearly shows

thatMO5
produces results with smaller relative errors for all met-

rics. For the weekday setting, MO5
increases the fleets size by 16%

and the waiting time by 4% for this privacy budget. In contrast, the

hierarchical mechanisms increase the number of vehicles in the

system by 79% to 139% and the Laplace mechanism by 152%. The
benefits of the CBDP mechanism are thus substantial.

11 DISCUSSION
This section provides an in-depth analytical comparison between

the hierarchical mechanisms and the CBDPmechanisms. It is impor-

tant to mention that the hierarchical mechanisms were designed for

a different purpose: They target a situation where users submit a se-

quence of queries ⟨Q1, . . . ,Qn⟩ and the hierarchical mechanism is

used to ensure consistency across the queries, while preserving the

overall accuracy. The CBDP mechanism in contrast was designed

for producing private data sets in mobility: The application is only

interested in the counts of the possible trip types but the mecha-

nism adds additional queries to improve the accuracies of these

counts given the large universe and the sparsity of the datasets.

However, as shown earlier, given a feature set F = {F1, . . . , Fk }, it
is possible to solve the ODMTS problem with MH by constructing
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a hierarchy where F2 describes the root node, F1 the leaf nodes, and
the node for intermediate level i are the elements of the feature set

Fk−i+1. Thus, both methods make use of an optimization step to

post-process the counting queries, althoughMH "solves" a relaxed

version of the problem using a closed-form solution (relaxing the

non-negativity constraints), while MO solves an actual convex

optimization problem. There are three key aspects that differentiate

the CBDP from the hierarchical method:

1. The Problem Structure. The CBDP and hierarchical mecha-

nisms imposed a fundamentally different structure on the con-

straints of the optimization model: flat (F) or hierarchical (H). The

flat structure imposed by MO allows each element of a feature set

to be related via a constraint to any set of elements of any other

feature set. The hierarchical structure used by MH imposes a hier-

archy on the elements of the feature set so that children counts are

related to the parent counts. This has an important consequence

on the number of total queries the mechanisms need to answer. In

the flat representation, the mechanism requires at most

∑
Fi ∈F |Fi |

queries while, in the hierarchical representation, a mechanism re-

quires

∏
Fi ∈F |Fi | queries. Imposing a hierarchical structure has

also an important consequence on the amount of decision variables

and constraints of the optimization model. The program requires

a variable for each count associated with a node, i.e.,

∏
Fi ∈F |Fi |

variables. In contrast, a flat structure requires

∑
Fi ∈F |Fi | variables.

The same consideration holds for constraints. These quantities neg-

atively and dramatically affect the performance of a hierarchical

organization for the optimization method, hindering its scalability.

2. Non-Negative Variables. The CBDP mechanism naturally han-

dles the negative outputs from the Laplace mechanism via post-
processing. In contrast, the hierarchical mechanism’s closed-form

solution ignores the nonnegativity constraints. Such property is

especially important for counting queries on sparse datasets, as in

the ODMTS case study.

3. Weighted Distance. The CBDP mechanism also optimizes a

weighted L2-norm, which ensures that each feature contributes

equally to the objective. This is important since they all are parti-

tions of the same universe.

Impact Evaluation. These three aspects are now evaluated on the

case study. In addition to MO5 and MH5, the following variants

of MO5 are considered:

• MO5(a) uses a hierarchical structure in the constraints, non-

negative decision variables, and uniform weights for the terms

in the objective.

• MO5(b) uses a hierarchical structure in the constraints, non-

negative decision variables, and the weighting scheme of MO5.

• MO5(c) uses a flat structure, non-negative decision variables,

and a uniform weighting scheme.

Table 2 tabulates the errors introduced by the mechanisms as in

Figures 5(a–b), i.e., the average distance between the exact and the

private answers to the counting queries. The columns S, P, and W,

respectively, denote the type of structure adopted by the mecha-

nism (F or H), whether the optimization uses non-negative valued

variables, and whether a weighting scheme is used for the optimiza-

tion. The results clearly indicate that all three aspects are critical

for the required accuracy and demonstrate the superiority of the

combination adopted by MO5. The second line shows that the

Prop Privacy budget
Weekday Weekend

S P W 1.0 0.1 0.01 1.0 0.1 0.01

MO5 F ✓ ✓ 0.91 3.87 6.01 0.86 2.69 5.77
MH5 H ✗ ✗ 5.11 56.6 715 4.57 50.9 728

MO5(a) H ✓ ✗ 35.6 44.2 108 42.2 59.9 120.5

MO5(b) H ✓ ✓ 13.4 15.7 18.9 13.4 14.5 19.6

MO5(c) F ✓ ✗ 1.50 5.55 15.2 1.34 4.27 18.4

Table 2: Analysis of the Key Features of CBDP.

performance of the hierarchical mechanism significantly degrades

when the privacy budget decreases: The magnitude of its errors are

more than 5, 14, and 118 times larger from weekdays thanMO5 for

privacy budgets 1.0, 0.1, and 0.01. Mechanism MO5(a) shows that
adding the non-negativity constraints is helpful in slowing down

the performance degradation as the privacy budget decreases but

the errors remain more than an order of magnitude larger than

MO5. Mechanism MO5(b) indicates the importance of a flat struc-

ture in the optimization: For privacy budgets 1.0 and 0.1, the errors

introduced by a hierarchical structure are an order of magnitude

larger than those with a flat structure. Finally, mechanism MO5(c)
demonstrates the benefits of the weighted objective as the privacy

budget decreases: For a budget of 0.01, the weighting scheme de-

creases the errors by a factor of about 2.5 in weekdays. This analysis

clearly demonstrates the benefits of the CBDP mechanism for mo-

bility applications.

12 CONCLUSIONS
This paper introduced Constraint-Based Differential Privacy

(CBDP), an approach to differential privacy which aims at releasing

private mobility data set for complex optimization tasks. CBDP

casts the private data set release as an optimization problem that

redistributes the noise introduced by a randomized mechanism to

satisfy fundamental constraints of the original data. The optimiza-

tionmodelminimizes aweighted L2-norm between the noisy counts

generated by the Laplace mechanism and post-processed counts

that satisfy constraints imposed by the features of the application.

CBDP has been evaluated on several mobility datasets for the

city of Ann Arbor, MI, and the design and operations of an On-

Demand Multimodal Transit System (ODMTS). Experimental re-

sults show that CBDP improves the accuracy of existing approaches

(the Laplace mechanism and hierarchical mechanisms) by an order

of magnitude and results in negligible utility losses compared to an

ODMTS designed with the actual data. These results are promising

and indicates that CBDP has the potential to become an important

tool at the intersection of privacy, mobility, and optimization.

Although the paper focused on the applicability of CBDP to

ODMTS, the proposed mechanism is general and can be used for

other applications where data features and/or knowledge of the

problem of interest is available.
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